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We address the problem of characterizing the steerability of quantum
states under restrictive measurement scenarios, i.e., the problem of
determining whether a quantum state can demonstrate steering when
subjected to N measurements of k outcomes. We consider the cases of

either general positive operator-valued measures (POVMs) or specific
kinds of measurements (e.g., projective or symmetric). We propose
general methods to calculate lower and upper bounds for the white-
noise robustness of a d-dimensional quantum state under different

measurement scenarios that are also applicable to the study of the noise
robustness of the incompatibility of sets of unknown qudit measu-
rements. We show that some mutually unbiased bases, symmetric
informationally complete measurements, and other symmetric choices of
measurements are not optimal for steering isotropic states and provide
candidates to the most incompatible sets of measurements in each case.
Finally, we provide numerical evidence that nonprojective POVMs do not
improve over projective ones for this task.

PRELIMINARIES

In a semi-device independent approach, the main mathematical object is

the assemblage {7a2} :
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where z € {1,..., N} labels measurements and a € {1,...,k} labels
outcomes of each measurement.

An assemblage is o oo it it admits a local hidden state (LHS)
model of the form:
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for all @, x. An assemblage is 1=~ =« it it violates a steering inequality:

ZTI(Fa|a:O-a|a:) = 5uns.

The depolarizing channel
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can be used to define a steering quantifier, the white noice robusiness,
when applied to the elements of an assemblage.
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A quantifier of steering for quantum states can be defined as
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which is the «ritico vicinit) of a quantum state subjected to N k-
outcome measurements.

We characterize steerability by calculating upper and lower bounds for
77* (pABv N, k)

We begin with the two-qubit Werner states under different
measurement scenarios. Planar projective measurements:
the optimal set is the set of equally spaced measurements.
General projective measurements: we tested the Fibonacci
spiral distribution and the Thomson problem distribution
(which includes Platonic solids). Our methods showed that
neither distributions are optimal and propose a nonintuitive
pattern for the optimal sets of 2 to 6 projective measure-
ments. 3- and 4-outcome symmetric POVMs: both kinds of

POVMs do not overperform projective measurements.
General POVMs: also do not improve over projective

N =6

Fig. 05. Candidates for the optimal sets of 2 to 6 projective measure-
ments for steering two-qubit Werner states.

In higher dimensions we studied the isotropic states
subjected to 2 general POMVs. From 2 to d outcomes:

the white noise robustness of the state improves with the
increase in the number of outcomes. Optimal measure-
ments are always projective. d+/ outcomes: the white-

noise robustness of the state seems to stop improving.
Optimal measurements are still projective with one null
outcome. This result strengthens the idea that projective
measurements are optimal for steering the isotropic states.

N =2

d=2 3 4 5 6
0.7071 0.7000 0.6901 0.6812 0.6736
0.7071 0.6794 0.6722 0.6621 0.6527
0.6794 0.6665 0.6544 0.6448
0.6665 0.6483 0.6429
0.6483 0.6390
0.6390
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Table 01. Upper bounds for the critical visibility of isotropic states
subjected to sets of 2 general POVMs.

All methods are based on semidefinite programming (SDP):
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Fig. 04. Plot of upper and lower bounds for the critical visibility of two-
qubit Werner states subjected to planar projective, general projective,
symmetric, and general POVMs.
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Fig. 06. Optimal sets of planar projective measurements for steering
two-qubit Werner states.

Fig. 07. Optimal sets of 2 trine POVMs (left) and 2 tetrahedron POVMs
(right) for steering two-qubit Werner states.

We also studied measurements constructed from mutually
unbiased bases (MUB). They are not optimal in many
scenarios with up to d measurements, and the optimal
measurements are also projective. However, MUB
measurements seem to be the best for dimensions 2, 3,

and 4 when a complete set of d+I measurements is

allowed.
MUBs
N d=2 3 4 5 6
2 0.7071 0.6830 0.6667 0.6545 0.6449
3 0.5774 0.5686 0.5469 0.5393 0.5204
4 0.4818 0.5000 0.4615
5 0.4309 0.4179
6 0.3863
General d-outcome POVMs
N d=2 3 4 5 6
2 0.7071 0.6794 0.6665 0.6483 0.6395
3 0.5774 0.5572 0.5412 0.5266 0.5139
4 0.4818 0.4797 0.4615
5 0.4309 -
6 _

Table 02. Upper bounds for the critical visibility of isotropic states
subjected to MUB measurements and general d-outcome POVMs.
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