
Universal algorithm for transforming Hamiltonian eigenvalues

Tatsuki Odake,1 Hlér Kristjánsson,2, 3, 1 Philip Taranto,1 and Mio Murao1

1Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
2Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5, Canada

3Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada

Manipulating the Hamiltonians governing physical systems has found a broad range of applications,
from quantum chemistry to semiconductor design. In this work, we provide a new way of manipulating
Hamiltonians, by transforming their eigenvalues while keeping their eigenvectors fixed. If a classical
description of the initial Hamiltonian is known, then one can—in principle—diagonalize it and
compute the Hamiltonian transformation on a classical computer. However, this comes with a
significant computational cost, and a classical description of the initial Hamiltonian is not always
available, in particular for complex systems. In this work, we develop a universal algorithm that
deterministically implements any desired (suitably differentiable) function on the eigenvalues of
any unknown Hamiltonian, whose dynamics is given as a black box. Our algorithm makes use of
correlated randomness to efficiently combine two subroutines—namely controlization and Fourier
series simulation—using a general compilation procedure developed in this work. We show that the
runtime of our algorithm is significantly reduced using our general compilation framework, compared
to a näıve concatenation of the subroutines, and moreover outperforms similar methods based on the
quantum singular value transformation.

I. INTRODUCTION

The physical properties of any given system are determ-
ined by its Hamiltonian. As such, realizing a Hamiltonian
which exhibits properties that are desirable in a given
context is an important task in fields ranging from con-
densed matter physics and materials science to quantum
chemistry. For example, an important problem in materi-
als science is the discovery of new materials for specific
tasks [1, 2].

In many cases, the physical properties of interest de-
pend in particular on the eigenvalues or eigenstates of
a Hamiltonian. The eigenstates of a given Hamiltonian
can be easily transformed through a unitary evolution,
however, tuning the eigenvalues of a Hamiltonian while
keeping the eigenstates fixed is a much more difficult prob-
lem. The ability to transform Hamiltonian eigenvalues
in an efficient manner would open up a new way of ma-
nipulating the physical properties of a system, leading to
increased flexibility in the simulation, control, and design
of quantum systems.

In this work, we propose a quantum algorithm to trans-
form the eigenvalues of a Hamiltonian by any given (suit-
ably differentiable) function, while keeping the eigenstates
fixed. Our algorithm is universal in the sense that it does
not require knowledge of the Hamiltonian, whose dynam-
ics can be given as a black box. In the standard setting
of Hamiltonian simulation, a classical description of the
Hamiltonian to be transformed is known in advance [3–9];
as such, the task is to construct a circuit composed of a
minimal number of high-fidelity gates that implements
the desired Hamiltonian. However, in many cases of in-
terest, the Hamiltonian of the system is not available but
rather only its dynamics is accessible, especially for many-
body or complex systems. Our algorithm can be seen
as an alternative Hamiltonian simulation method which
is based on transformations of black-box dynamics [10].

Possible applications of our method include construct-
ing oracles for Grover’s algorithm [11], and we envisage
that further developments in this direction could find
applications more broadly in condensed matter physics,
chemistry, and material science, for example in tuning
energy gaps to enable precise transitions between energy
levels [12] and in the materials design of semiconductors
[13].

To achieve our universal Hamiltonian eigenvalue trans-
formation, we employ the framework of higher-order
quantum operations, a research area that has attracted
significant attention in recent years [14–24]. The adjective
“higher-order” here refers to the fact that such processes
take quantum dynamics as input, returning a transformed
quantum dynamics as output, e.g., by appropriately ap-
plying quantum operations before and after the dynamics
(see Fig. 1). We construct a method to achieve this by
first controlizing the black-box dynamics [16] and then
applying a novel algorithm for Fourier series simulation
on the controlled black-box dynamics, which implements
the desired function on the eigenvalues.

Our methodology shows how component subroutines
can be compiled to build complex and efficient algorithms
from simpler ones. Concatenating subroutines—as we
do with controlization and Fourier series simulation—
provides an instance of quantum functional program-
ming [21, 25, 26], which endows quantum algorithms with
a modular flexibility similar to their classical counter-
parts. Yet, whenever two subroutines relying on random
sampling are concatenated directly, the overall runtime
scales poorly due to the independence of the two sampling
distributions. To overcome this issue, we develop a general
compilation procedure for the concatenation of random-
ised algorithms, which makes use of correlated randomness
as a key resource to optimize the algorithm at a global
level. As such, our compilation technique goes beyond the
existing techniques of quantum functional programming,

ar
X

iv
:2

31
2.

08
84

8v
1

 [
qu

an
t-

ph
]

 1
4

D
ec

 2
02

3

2

FIG. 1. Higher-order quantum transformation.—By appropriately
applying fixed quantum operations before and after the unknown
Hamiltonian dynamics, the physical properties of a system can be
transformed as desired.

leading to more efficient compiled algorithms. By introdu-
cing the notion of compilation to functional programming
in the context of quantum information processing, we
align it with classical software design principles that allow
code to be compiled and executed at various levels of
abstraction, opening the possibilities for computations to
be deployed across many different applications.

The reminder of the paper will be structured as follows.
First, we present a summary of our main results in Sec. II.
In Sec. III, we formalize the task of universal Hamilto-
nian eigenvalue transformation and the envisaged scenario.
The subsequent three sections each pertain to our key
results. In Sec. IV, we combine two subroutines, control-
ization and Fourier series simulation, to achieve said task.
Then, in Sec. V, we use the intuition gained in order to
construct a more efficient “compiled” algorithm. Finally,
in Sec. VI, we compare our new methods with a protocol
based upon the Quantum Singular Value Transforma-
tion (QSVT) [27, 28]. We finish with some concluding
discussions in Sec. VII.

II. SUMMARY OF MAIN RESULTS

The main results of our work are schematically depicted
in Fig. 2 and summarised as follows.

1. In Sec. IV, we develop an algorithm that performs
a universal Hamiltonian eigenvalue transformation
by concatenating two subroutines, namely control-
ization [16] and Fourier series simulation. The con-
trolization subroutine adds control to an unknown
Hamiltonian dynamics H; by approximating the
Fourier series of a desired function f , one can then
use this controlled dynamics to simulate the dy-
namics of the transformed Hamiltonian f(H). Both
subroutines are implemented efficiently using a ran-
domized Hamiltonian simulation technique.

2. In Sec. V, we present a method, hereby dubbed
“compilation”, which provides a framework for con-
structing a more efficient circuit of any quantum
algorithm constructed by concatenating subroutines
that make use of randomized Hamiltonian simula-
tion. We achieve this by employing the resource
of temporally correlated randomness in order to

Controlization

Fourier series
simulation

Component
subroutines

Universal
Hamiltonian
eigenvalue

transformation
(uncompiled)

Concatenation
Efficient
Universal

Hamiltonian
eigenvalue

transformation

Compilation

FIG. 2. Description of our work.—Tasks written in blue denote
our contributions. We first develop an “uncompiled” algorithm
for UHET by concatenating two subroutines, controlization and
Fourier series simulation. We then present a “compiled” version of
the UHET algorithm, which improves upon the efficiency.

optimize the overall task at hand rather than the in-
dividual modules as per the “uncompiled” algorithm.
In our case of UHET, we show that this leads to a
more efficient algorithm.

3. In Sec. VI, we compare the performance of our
two new algorithms for transforming eigenvalues
of an unknown Hamiltonian with a method based
upon the Quantum Singular Value Transformation
(QSVT). We show that our compiled algorithm has
a better runtime than the QSVT-based algorithm,
which in turn outperforms our uncompiled algorithm
in this regard.

We begin by formalizing the task and our envisaged
framework.

III. TASK: UNIVERSAL HAMILTONIAN
EIGENVALUE TRANSFORMATION (UHET)

The goal of universal Hamiltonian eigenvalue transform-
ation (UHET) is to simulate the dynamics of a desired
function of an unknown input Hamiltonian H. Here, the
term “simulate” refers to implementing the corresponding
Hamiltonian dynamics for an arbitrary evolution time
up to an acceptable approximation error. More precisely,
given a function f : [−1, 1] → R, time t > 0, and precision
ϵ > 0, a universal Hamiltonian eigenvalue transformation
uses an unknown input dynamics e±iHτ (τ > 0) to ap-
proximate a desired transformed dynamics e−if(H0)t up
to precision ϵ and for all t.
Here, H is associated to an n-qubit Hilbert space H

and H0 := H − (tr(H)/2n)I is its traceless part, which
we assume to be upper bounded ∥H0∥op ≤ 1. Note that
taking only the traceless part of the Hamiltonian leads to
no loss of generality, since forH1 = H2+αI whereH1, H2

are Hamiltonians and α ∈ R, e−iH1t = e−iαte−iH2t, thus
the dynamics corresponding to H1 and H2 are equivalent
(up to a global phase). Furthermore, as long as an upper
bound ∆H of the difference between the maximum and
the minimum energy eigenvalues of the Hamiltonian is
known, then one can always rescale the Hamiltonian as
H → H/∆H and change the definition of the function f
as f → fH such that fH(x) := f(∆Hx), justifying the
assumption ∥H0∥op ≤ 1. We note that f(H0) is defined in

3

the usual way, i.e., by applying f to the spectrum of H0.
Lastly, we assume access to both the positive and negative
time dynamics; if only the positive time dynamics is
accessible, then the negative time one can be constructed
with a small overhead using the algorithm in [10]. In
fact, the negative time dynamics can be simulated using
a special case of the algorithm in [10] which does not
require the use of an auxiliary system.
As mentioned previously, transforming Hamiltonians

has applications ranging from condensed matter physics
to quantum information processing. In many situations
considered, at least a classical description of the initial
seed Hamiltonian is known, e.g., in algorithms based upon
QSVT. However, from a physics perspective, this scenario
is not always the case; for instance, one may have access
to a time-evolving many-body system without knowing
any description of the dynamics a priori. Our setting of
universal Hamiltonian transformations allows such scen-
arios: the classical description of the input Hamiltonian
H can be completely unknown, as long as its (positive
and negative time) dynamics e±iHτ is accessible.
Throughout the remainder of this article, we will

present various methods to achieve UHET. At their core,
all such methods make use of classical randomness to sim-
ulate the desired dynamics by sampling many rounds of
evolution; being approximate, one must therefore take the
iteration number N sufficiently large to ensure a desired
accuracy ϵ > 0. To quantify said error in any such scheme,
we make use of the following distance measures. First,
note that simulating any Hamiltonian dynamics for a
specified amount of time (ideally) leads to a unitary oper-
ation. Thus, we consider the situation where one attempts
to simulate such a unitary operation U : L(H) → L(H) by
a random protocol

∑
j pjFj where the index j is chosen

with a probability pj and Fj : L(H) → L(H) is the cor-
responding quantum operation. If the input state to said
dynamics is not fixed (i.e., remains arbitrary), then we use
the following error measure for the quantum operation:

sup
dim(H′)

|ψ⟩∈H⊗H′

∥|ψ⟩∥=1

∥U ⊗ IH′(|ψ⟩ ⟨ψ|)−
∑

j

pjFj ⊗ IH′(|ψ⟩ ⟨ψ|)∥1.

(1)

Here, I represents the identity channel, H′ is an auxiliary
Hilbert space of arbitrary dimension and ∥ · ∥1 denotes
the 1-norm. If, on the other hand, the input state is
specified to be some known |ψ⟩ ∈ H, then the accuracy of
any protocol can be determined by comparing the post-
transformation state with the ideal case, and hence we
use the following error measure for quantum states:

∥U(|ψ⟩ ⟨ψ|)−
∑

j

pjFj(|ψ⟩ ⟨ψ|)∥1. (2)

When the average state
∑
j pjFj(|ψ⟩ ⟨ψ|) approximates

the target state U(|ψ⟩ ⟨ψ|) [in terms of Eq. (2)] with
an error that is upper bounded by a fixed constant ϵ

for any input state |ψ⟩, then the mean square of the
approximation is upper bounded by 2ϵ for any input, i.e.,

∑

j

pj∥U(|ψ⟩ ⟨ψ|)−Fj(|ψ⟩ ⟨ψ|)∥21 ≤ 2ϵ (3)

(see App. B 1 for technical details).

IV. UNCOMPILED UHET ALGORITHM

We now move to present our first algorithm that per-
forms the task of UHET. This algorithm is based upon
a random protocol for simulating Hamiltonian dynamics.
Our method can be seen as an extension of a Hamilto-
nian simulation technique called qDRIFT [5] to the case
where the Hamiltonian is unknown. Using this technique
as a basis, we concatenate two subroutines, namely con-
trolization and Fourier series simulation, to develop our
overall UHET algorithm. Finally, we present a resource
and runtime analysis of the protocol. Additional technical
details are provided throughout App. C.

A. Efficient Hamiltonian Simulation (qDRIFT)

Suppose one has access to a set of Hamiltonian dynam-
ics, i.e., the ability to perform e−iHjτ (τ > 0) for a set of
Hamiltonians {Hj}. Assuming w.l.o.g. that the Hamilto-
nians are normalized ∥Hj∥op = 1, any dynamics of the

form e−i(
∑

j hjHj)t (t > 0) for a set of positive coefficients
hj > 0 can be approximated by the following protocol
(see Fig. 3):

1. Define λ :=
∑
k hk and the probability distribution

pj := hj/λ, from which an index j is randomly
sampled.

2. Apply the dynamics e−iHjtλ/N .

3. Repeat steps (1)–(2) N times.

This method is based on the Hamiltonian simulation
technique qDRIFT [5], which makes use of the Trotter-

Suzuki decomposition [4] of e−i(
∑

j hjHj)t to approximate

e−i(
∑

j pjHj)δt for a small time interval δt := tλ/N up to
the first order of δt via a probabilistic mixture of dynamics
e−iHjδt with probability pj . In order to suppress the
approximation error below ϵ, taking the iteration number

N(λ, t, ϵ) := ceil[max(10λ2t2/ϵ, 5λt/2)] (4)

is sufficient (see App. C 1).
We now describe the two subroutines that leverage this

qDRIFT primitive for unknown Hamiltonians, namely
controlization [16] and Fourier series simulation, to per-
form UHET upon their concatenation. We refer to such a
straightforward concatenation as uncompiled, in contrast
to a later algorithm which we dub compiled that optimizes
UHET globally (see Sec. V).

4

e−iHjtλ/N

{pj , j}

×N

FIG. 3. qDRIFT primitive.—Circuit representation of the qDRIFT

protocol for approximating e−i(
∑

j hjHj)t by randomly implement-
ing e−iHjτ with probability pj for each j for a number N times.

B. Controlization

Controlization is a method that adds control to an
unknown Hamiltonian dynamics [16]. It takes a finite
number of queries to the dynamics e−iHτ as a resource
and outputs a random unitary operator approximating
ctrl(e−iH0t) ∈ L(Hc⊗H), where H0 represents the trace-
less part of H, Hc is the Hilbert space associated to the
control qubit, and ctrl(e−iH0t) := |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗
e−iH0t represents controlled-e−iH0t. Our following un-
compiled algorithm for UHET first makes use of a vari-
ant of controlization which simulates ctrl0(e

−iH0t) :=
|0⟩ ⟨0| ⊗ e−iH0t + |1⟩ ⟨1| ⊗ I by reversing the roles of |0⟩
and |1⟩ of the control qubit, as presented in Subroutine 1
and the circuit in Fig. 4.

Subroutine 1 Controlization
Input:

• A finite number of queries to a black-box Hamiltonian
dynamics e−iHτ of a seed Hamiltonian H normalized
as ∥H0∥op ≤ 1, where H0 is the traceless part of H,
i.e., H0 := H − (1/2n)tr(H)I, with τ > 0

• Allowed error ϵ > 0

• Time t > 0

Output: A random unitary operator approximating(
e−iH0t 0

0 I

)
= ctrl0(e

−iH0t) ∈ L(Hc ⊗H) (5)

with an error according to Eq. (1) upper bounded by ϵ

Runtime: Θ(t2n/ϵ)
Used Resources:

System: n-qubit system H and one auxiliary qubit Hc

Gates: e−iHτ and Clifford gates on Hc ⊗H

Procedure:
Pre-processing:
1: Compute N := N(1, t, ϵ) using N(λ, t, ϵ) from Eq. (4)
Main Process:
2: Initialize Ucurrent ← I
3: for m = 1, . . . , N do
4: Randomly choose v⃗ ∈ {0, 1, 2, 3}n

5: Ucurrent ← ctrl(σv⃗)(I ⊗ e−iHt/N)ctrl(σv⃗)
6: end for
7: Return Ucurrent

Intuitively, controlization makes use of a randomized
algorithm to approximately implement a unitary dynam-

e−iH0t

≃
σv⃗ σv⃗e−iHt/N

{1/4n, v⃗}

×N

FIG. 4. Controlization circuit.—By randomly applying controlled
Pauli gates ctrl(σv⃗) before and after portions of unknown Hamilto-
nian dynamics e−iHt/N a sufficient number of times, said dynamics
can be controllized, i.e., simulate ctrl0(e−iH0t).

ics (in a similar manner to the qDRIFT procedure) to
simulate the Hamiltonian

∑

v⃗∈{0,1,2,3}n

1

4n

(
I 0
0 σv⃗

)(
H 0
0 H

)(
I 0
0 σv⃗

)

=

(
H0 0
0 0

)
+

tr(H)

2n
I, (6)

where v⃗ := (v1, . . . , vn) ∈ {0, 1, 2, 3}n and σv⃗ :=
σv1 ⊗ · · · ⊗ σvn . Equation (6) follows from the iden-

tity 1
4n

∑
v⃗ σv⃗Hσv⃗ = tr(H)

2n I. Each term ctrl(σv⃗)(I ⊗
H)ctrl(σv⃗) in the sum on the l.h.s. of Eq. (6) can
be implemented by applying the dynamics e−iHτ in
between the gate ctrl(σv⃗), which follows from the iden-

tity Ue−iHtU† = e−i(UHU
†)t for a general Hamiltonian

H and unitary U . When exponentiated, the r.h.s. of Eq.
(6) yields the desired controlled Hamiltonian dynamics
(up to a global phase contribution from the second term,
which is irrelevant).

The runtime Θ(t2n/ϵ) follows from the fact that N :=
N(1, t, ϵ) is Θ(t2/ϵ) and that implementing ctrl(σv⃗) takes
Θ(n) time.

C. Fourier Series Simulation

We now move to describe the second subroutine that
comprises our uncompiled UHET algorithm, namely Four-
ier series simulation. This algorithm serves to transform
eigenvalues of an unknown Hamiltonian using the theory
of Fourier series at its core. A Fourier expansion of a
function f : [−1, 1] → R is given by

∑∞
k=−∞ cke

iπkx for

ck := (1/2)
∫ 1

−1
dxf(x)e−iπkx, which converges to f(x) for

a wide range of functions (see, e.g., [29]). The procedure

exp[−i(cosϕkX − sinϕkY)βt/N]

×N

{pk, k}

|+⟩ tr

|ψ⟩ e−if(H0)t |ψ⟩∼
e−ikπ(H0+I)/2 eikπ(H0+I)/2

FIG. 5. Fourier series simulation circuit.—By randomly ap-
plying ctrl0(e±ikπ(H0+I)/2) before and after the dynamics
e−i(cosϕkX−sinϕkY)βt/N , the circuit simulates the Fourier series of
the desired transformation function f̃ [(H0 + I)/2] = f(H0).

5

of Fourier series simulation is described in Subroutine 2,
with a circuit representation presented in Fig. 5.

Subroutine 2 Fourier Series Simulation
Input:

• A finite number of queries to ctrl0(e
±iH0τ) ∈

L(Hc ⊗ H) (τ > 0) where H0 ∈ L(H) is a trace-
less Hamiltonian normalized as ∥H0∥op ≤ 1

• A class C3 (3 times continuously differentiable) func-

tion f : [−1, 1]→ R, such that f (4) is piecewise C2

(see App. A 1)

• Input state |ψ⟩ ∈ H
• Allowed error ϵ > 0

• Time t > 0

Output: A state approximating e−if(H0)t |ψ⟩ (t > 0)
with an error according to Eq. (2) upper bounded by
ϵ, and mean squared error according to Eq. (3) upper
bounded by 2ϵ

Runtime: Θ(C2,f t
2/ϵ) for an f -dependent constant C2,f

which is independent of n, t, and ϵ
Used Resources:

System: n-qubit system H and one auxiliary qubit Hc

Gates: ctrl(e±iH0τ) and single-qubit gates on Hc

Procedure:
Pre-processing:
1: Define modified version f̃ of f as in Eq. (7)

2: Compute Fourier coefficients c̃k := (1/2)
∫ 1

−1
dxe−ikπxf̃(x)

for k ∈ {−K,−K + 1, . . . ,K} where the cutoff number K
satisfies∣∣∣∣∣f̃(x)−

K∑
k=−K

c̃ke
ikπx

∣∣∣∣∣ < ϵ

4t
∀ x ∈ [−1, 1]

3: Compute N := N(β, t, ϵ/2) using N(λ, t, ϵ) from Eq. (4),

for β :=
∑K

k=−K |c̃k|
Main Process:
4: Initialize |current⟩ ← |+⟩ ⊗ |ψ⟩
5: for m = 1, . . . , N do
6: Randomly choose k ∈ {−K, . . . ,K} with probability
pk := |c̃k|/β

7: Define Q := ctrl0(e
−ikπH0/2) and R :=

ctrl0(e
ikπH0/2)

8: |current⟩ ← (eikπZ/4 ⊗ I)R(e−i[cosϕkX−sinϕkY]βt/N ⊗
I)Q(e−ikπZ/4⊗I) |current⟩ for ϕk defined by c̃k = |c̃k|eiϕk

9: end for
10: Trace out Hc of |current⟩
11: Return |current⟩

Fourier series simulation makes use of a controlled dy-
namics ctrl0(e

±iH0τ) (τ > 0) (which can be constructed
using Subroutine 1) to implement the target Hamiltonian
dynamics e−if(H0)t (t > 0). First, the desired function f

is deformed to a periodically smooth function f̃ as

f̃(x) :=

{
gf (x) x ∈ [−1, 0]

f(2x− 1) x ∈ [0, 1]
, (7)

(a) f(x) = x (b) f̃ corresponding to f

FIG. 6. Comparison between the function f and its corresponding
f̃ .—The function f̃ is defined by merging f (blue) and an additional
function gf (red, see App. C 2). Defined appropriately, f̃ has a
faster convergence of the absolute value of its Fourier coefficients
|c̃k| than f .

with gf defined in App. C 2. Due to its periodic smooth-

ness, the absolute value of the Fourier coefficients of f̃
converges rapidly to 0, which avoids rapid growth of the
cutoff number K in terms of the error ϵ.
We then compute the Fourier coefficients c̃k :=

(1/2)
∫ 1

−1
dxe−ikπxf̃(x) for k ∈ {−K,−K + 1, . . . ,K},

where the cutoff number K satisfies

∣∣∣∣∣f̃(x)−
K∑

k=−K
c̃ke

ikπx

∣∣∣∣∣ <
ϵ

4t
∀x ∈ [−1, 1] , (8)

and the iteration number N := N(β, t, ϵ/2) (using Eq.

(4)) for β :=
∑K
k=−K |c̃k|.

The remainder of Subroutine 2 simulates the Fourier-
transformed Hamiltonian of H0, which can be understood
from the following analysis. The unitary applied in step
8, for a random k chosen with probability pk = |c̃k|/β,
can be written as a Hamiltonian evolution given by

(eikπZ/4 ⊗ I)

(
eikπH0/2 0

0 I

)
(e−i(cosϕkX−sinϕkY)βt/N ⊗ I)·

(
e−ikπH0/2 0

0 I

)
(e−ikπZ/4 ⊗ I)

= exp

[
−i
(

0 eiϕkeikπ(H0+I)/2

e−iϕke−ikπ(H0+I)/2 0

)
βt/N

]
.

(9)

As such, steps 5 to 9 of Subroutine 2 correspond to
simulating e−iH

′t for the following Hamiltonian H ′

H ′ :=
K∑

k=−K
|c̃k|

(
0 eiϕkeikπ(H0+I)/2

e−iϕke−ikπ(H0+I)/2 0

)

≃
∞∑

k=−∞
|c̃k|

(
0 eiϕkeikπ(H0+I)/2

e−iϕke−ikπ(H0+I)/2 0

)

=

(
0 f(H0)

f(H0) 0

)
= X ⊗ f(H0) , (10)

6

which follows from the fact that

∞∑

k=−∞
|c̃k|eiϕkeikπ(H0+I)/2

=

∞∑

k=−∞

∑

m

c̃ke
ikπ(Em+1)/2 |Em⟩ ⟨Em|

=
∑

m

f̃((Em + 1)/2) |Em⟩ ⟨Em| = f(H0) , (11)

where H0 is diagonalized as H0 :=
∑
mEm |Em⟩ ⟨Em|.

By taking the initial state as |+⟩ ⊗ |ψ⟩ in step 4 and
tracing out the Hc subsystem in step 10, the dynamics
e−if(H0)t is applied to the input state |ψ⟩.
We provide a full error analysis of Subroutine 2 in

App. C 3. We evaluate its runtime as (Number of iter-
ations N)×(Average runtime of each iteration). Given
that N is Θ(β2t2/ϵ) and that each iteration on average
takes time

∑
k pk ·Θ(|k|), we have that the runtime is

Θ

(
β2t2

ϵ

)
×
∑

k

pk ·Θ(|k|) =

Θ

((∞∑

k=−∞
|c̃k|
)(∞∑

k=−∞
|c̃k||k|

)
t2

ϵ

)
=: Θ

(
C2,f

t2

ϵ

)
,

(12)

where C2,f is a parameter that depends on f but is in-
dependent of n, t, ϵ. Note that the sum

∑∞
k=−∞ |c̃k||k| is

guaranteed to converge due to the periodic smoothness
of f̃ (see App. C 4 for details).

e−i[cosϕkX−sinϕkY]βt/N(F)

×N (F)

{pk, k}

|+⟩ tr

|ψ⟩ e−if(H0)t |ψ⟩∼
Sub1(k) Sub1(k)†

(a) Outer layer: Fourier series simulation (Subroutine 2)

Sub1(k) :=

σv⃗

e−ikπZ/4

e−ikπH/2N
(C)

k
σv⃗

{1/4n, v⃗}

×N (C)
k

e−ikπ(H0+I)/2

≃

(b) Inner layer: The procedure inside square brackets corresponds
to controlization (Subroutine 1).

FIG. 7. Circuit representation of Algorithm 3.—The uncompiled
UHET algorithm comprises an “outer” layer (a) that implements the
Fourier series simulation Subroutine 2 upon the output of the “inner”
layer (b), which itself controlizes the seed Hamiltonian dynamics
via Subroutine 1.

D. Uncompiled UHET Algorithm

We now present the uncompiled UHET Algorithm 3,
which results from concatenating the previous two sub-
routines and is depicted in Fig. 7. We first construct
ctrl0(e

±ikπ(H0+I)/2) from the input dynamics e±iHτ via
controlization and then perform the Fourier series simu-
lation to simulate the desired dynamics e−if(H0)t. Thus,
Algorithm 3 is a direct concatenation of Subroutines 1
and 2, and we therefore dub it uncompiled.

Algorithm 3 Universal Hamiltonian eigenvalue trans-
formation (uncompiled)

Input:

• A finite number of queries to a black-box Hamiltonian
dynamics e±iHτ of a seed Hamiltonian H normalized
as ∥H0∥op ≤ 1 where H0 is the traceless part of H,
i.e., H0 := H − (1/2n)tr(H)I, with τ > 0

• A class C3 (3 times continuously differentiable) func-

tion f : [−1, 1]→ R, such that f (4) is piecewise C2

(see App. A 1)

• Input state |ψ⟩ ∈ H
• Allowed error ϵ > 0

• Time t > 0

Output: A state approximating e−if(H0)t |ψ⟩ (t > 0)
with an error according to Eq. (2) upper bounded by ϵ;
additionally, the mean squared error according to Eq. (3)
is upper bounded by 2ϵ)

Runtime:
Pre-processing (only once): T3

Main Process: Θ(C3,f t
4n/ϵ3) for an f -dependent con-

stant C3,f which is independent of n, t, and ϵ
Used Resources:

System: n-qubit system H and one auxiliary qubit Hc

Gates: e±iHτ , single qubit gate on Hc, and Clifford
gates on Hc ⊗H

Procedure:
Pre-processing:
1: Run Pre-processing of Subroutine 2 for allowed error ϵ/2

to obtain iteration number N (F) := N(β, t, ϵ/4), cutoff
number K and Fourier coefficients c̃k

Main Process:
2: Run Main Process of Subroutine 2 with N (F) iterations

using K and c̃k obtained before, with step 7 modified to:
3: Run Pre-processing of Subroutine 1 for allowed er-

ror ϵ/4N (F) to obtain iteration number N
(C)
k :=

N(1, kπ/2, ϵ/4N (F))

4: Run Main Process of Subroutine 1 with N
(C)
k iterations

and time kπ/2 for H to obtain unitary Q′

5: Run Main Process of Subroutine 1 with N
(C)
k iterations

and time kπ/2 for −H to obtain unitary R′

6: Define Q := Q′ and R := R′

As a consequence of its concatenated structure, two

layers of iterations are used in Algorithm 3: N
(C)
k for

the controlization part and N (F) for the Fourier series

7

simulation. We choose these numbers such that the total
error of each subroutine is bounded from above by ϵ/2
(so that overall error is upper bounded by ϵ). We begin
by fixing the allowed error of the Fourier series simulation
to be ϵ/2. Then, fixing that for controlization to be
ϵ/(4N (F)), it follows that iterating the outer layer of the
procedure (see Fig. 7a) N (F) times implies that the error
due to controlization is upper bounded by [ϵ/(4N (F))] ·
2N (F) = ϵ/2.

We now analyze the runtime of Algorithm 3. We split
this cost into two parts. First, there is the pre-processing
step, which refers to the processes that only need to be run
once for a given set of inputs. In our case, this corresponds
to the time required to compute the Fourier coefficients
c̃k and cutoff number K until Eq. (8) is satisfied, plus
the time for computing N (F). We define the sum of these
two times as T3. The main process takes N (F)× (average
runtime of each iteration), the latter of which in turn

depends upon N
(C)
k .

The iteration number N (F) = N(β, t, ϵ/4) scales as
Θ[(
∑∞
k=−∞ |c̃k|)2t2/ϵ] (note that

∑∞
k=−∞ |c̃k| is an upper

bound of β which is independent of ϵ). Furthermore, the

average runtime of each iteration is
∑K
k=−K pk×(runtime

of circuit inside Fig. 7a for each k), which scales as

K∑

k=−K
pkΘ(nN

(C)
k) =

K∑

k=−K
pkΘ

(
β2t2k2n

ϵ2

)

≤ Θ

((∞∑

k=−∞
|c̃k|k2

)(∞∑

k=−∞
|c̃k|
)
t2n

ϵ2

)
.

The inequality is obtained by replacing K with ∞ in order
to remove the ϵ dependence. Taking the product of the
scaling of the two iteration layers, the overall runtime
scaling of the main process of Algorithm 3 is bounded
from above by

Θ



(∞∑

k=−∞
|c̃k|
)3(∞∑

k=−∞
|c̃k|k2

)
t4n

ϵ3


 =: Θ

(
C3,f

t4n

ϵ3

)
.

V. COMPILED UHET ALGORITHM

We now move to introduce a more efficient algorithm
that implements UHET. At its core, this algorithm is
inspired by the components that make up Algorithm 3,
but rather than optimizing the subroutines independently,
here we compile the algorithm at the level of the overall
task by making use of correlated classical randomness to
provide a more efficient implementation. We begin by
describing a general framework of this novel notion of com-
pilation, which can be used in many situations in which
random Hamiltonian simulation subroutines are concaten-
ated to perform a particular task. We subsequently apply
this technique specifically to the task of UHET, compiling
Algorithm 3 in order to construct the better Algorithm

e−iH̃kβt/N

×N

{pk, k}

Uk U†
k

(a) Outer layer: The inner layer is called in
each round of the outer layer simulation.

×M

{p(k)j , j}

Vk,j V †
k,jUk ≃

e−iHµk/M

G
(L)
k G

(R)
k

(b) Inner layer: This circuit simulates Uk defined in Eq. (14) by
random Hamiltonian simulation.

FIG. 8. Circuit representation of a general algorithm involving
two layers of Hamiltonian simulation.—Our method of compilation
can be applied to any general two-layer protocol in which each
subroutine uses the method of random Hamiltonian simulation.

4. Finally, we provide a resource analysis. Details are
provided throughout App. D.

A. General Method of Compilation

We begin by abstracting the key structural compon-
ents of the uncompiled algorithm above. Notably, the
algorithm consists of two independent layers, namely those
depicted in Figs. 7a and 7b. These circuits are a special
case of the more general form depicted in Figs. 8a and 8b
respectively. The outer layer comprises portions of the in-
put dynamics sandwiched between a unitary Uk(H) that
depends on the input Hamiltonian H and is iterated some
N ∈ Z>0 times; for the sake of conciseness, we will simply
write Uk instead of explicitly writing Uk(H). Since

U†
ke

−i βtN H̃kUk = e−i
βt
N U†

kH̃kUk , (13)

this process corresponds to the simulation of the random-

ized dynamics e−i(
∑

k pkβU
†
kH̃kUk)t. In this simulation, Uk

is itself approximated using the inner layer procedure de-
picted in Fig. 8b. Here, j is a random index (depending on
the choice of k) sampled from the probability distribution

{p(k)j }j , µk ∈ R, iteration number M ∈ Z>0 (which also

depends on k, but we omit the subscript k for simplicity),

and Vk,j , G
(L)
k , and G

(R)
k are unitaries such that

Uk = G
(R)
k e−i(

∑
j p

(k)
j µkV

†
k,jHVk,j)G

(L)
k . (14)

Evidently, Algorithm 3 corresponds to the special case

where H̃k = cosϕkX − sinϕkY , β =
∑K
k=−K |c̃k|,

pk = |c̃k|/β, Uk = ctrl0(e
−ikπ(H0+I)/2), M = N

(C)
k ,

8

e−iH̃kβt/N

×N

{pkp(k)j1:M
, (k, j1:M)}

Wk,j1:M W †
k,j1:M

(a) Instead of taking the two layers independently, here we
correlate the outer (Fig. 8a) and inner layer (Fig. 8b) and

run the overall scheme N times.

Wk,j1:M :=

Vk,j2 V †
k,j2

e−iHµk/M

· · ·

· · ·
Vk,j1 V †

k,j1

e−iHµk/M

G
(R)
k

Vk,jM V †
k,jM

e−iHµk/M

G
(L)
k

· · ·

· · ·

(b) The subroutine constructs the unitary Wk,j1:M from M uses of
the seed Hamiltonian dynamics.

FIG. 9. Intermediate stage of compilation.—By correlating the
layers, an additional error is introduced due to the finite iteration
of the previously inner layer. However, we next show how this
error can be compensated for by choosing Wk,j1:M appropriately,
therefore constructing an efficient compiled algorithm.

j = v⃗, µk = kπ/2, p
(k)
v⃗ = 1/4n, Vk,j = ctrl(σv⃗),

G
(L)
k = e−ikπZ/4 ⊗ I, and G

(R)
k = I ⊗ I.

Having abstracted the key features of our previous
algorithm, we are now in a position to introduce the gen-
eral notion of compilation. The structure described above
evidently consists of two independent layers of random
Hamiltonian simulation; the method of compilation makes
use of correlated randomness in order to correlate said lay-
ers in such a way that the error accumulation is reduced.
In general, in order to reduce the approximation error
of this overall procedure below ϵ, we must ensure that
both errors introduced due to the simulations depicted in
Figs. 8a and 8b are at most of O(ϵ). Subsequently, both
iteration numbers N and M must have a 1/ϵ dependence,
which leads to an accumulation of 1/ϵ dependence for
each round of concatenated subroutines.
We do this by first modifying the circuit in Fig. 8a to

an intermediate circuit in Fig. 9a, where Wk,j1:M (H) =:
Wk,j1:M is written with its dependence on H implicit and
defined as in Fig. 9b; similarly, we compress the labels

j1:M := {j1, . . . , jM} and p
(k)
j1:M

:= p
(k)
j1
. . . p

(k)
jM

for ease
of notation. Finally, an additional modification—which
depends upon the specific task at hand—can then be
applied to said intermediate circuit in order to compensate
for error accumulation, leading to the compiled algorithm,
as we will show for the case of UHET in the coming

section.
In the intermediate circuit, the random indices j1:M

are correlated in such a way that the components before

and after the dynamics e−iH̃kβt/N are inverse to each
other. Therefore, the circuit of Fig. 9 corresponds to the
simulation of e−iHnewt, where

Hnew := β
∑

k,j1:M

pk p
(k)
j1:M

W †
k,j1:M

H̃kWk,j1:M . (15)

It can be shown using analysis of qDRIFT [5] that

∑

j1:M

p
(k)
j1:M

W †
k,j1:M

H̃kWk,j1:M = U†
kH̃kUk +O

(
µ2
k

M

)
,

(16)

since the error analysis for the qDRIFT procedure remains
valid when replacing the simulation of a density operator
with that of a Hamiltonian.

In order to suppress the inner layer error O(µ2
k/M) due

to the random sampling of j in each of the N iterations
of the outer layer below O(ϵ/N), the iteration number
M must be chosen as Ω(µ2

kN/ϵ). Consequently, since N
itself must have 1/ϵ dependence (in order to suppress
the overall error below ϵ, as explained previously) the
overall runtime of the intermediate circuit N ·M scales
according to 1/ϵ3. Next, by compiling the subroutines
of the algorithm, one can reduce this resource scaling
to 1/ϵ. This compilation procedure can be achieved by
setting M as O(µ2

k)—removing the dependence on ϵ here
comes at a cost of increasing the error. However, said
O(µ2

k/M) = O(1) inner layer error can be compensated for
by introducing an additional modification to the procedure
shown in Fig. 9, as we will discuss in the coming section.
The total runtime will be proportional to N ·M which
scales in terms of ϵ in the same way as N . Therefore, the
total runtime scales as O(1/ϵ) in terms of ϵ.

B. Compiled UHET Algorithm

We now move to apply this general method of com-
pilation to the task of UHET, thereby providing a more
efficient procedure than Algorithm 3. The compiled al-
gorithm is presented in full in Algorithm 4, with details
regarding the error and runtime provided throughout
App. D.

With respect to the circuit depicted in Fig. 9a, here
we choose each iteration of the circuit to correspond to a
short time-evolution by the following Hamiltonian:

9

(
1

4

)nM ∑

v⃗1:M

W †
k,v⃗1:M

([cosϕkX − sinϕkY]⊗ I)Wk,v⃗1:M

= Ak,M (eiθk,MZ/2 ⊗ I)

(
0 eiϕkeikπ(H0+I)/2

e−iϕke−ikπ(H0+I)/2 0

)
(e−iθk,MZ/2 ⊗ I) (17)

Algorithm 4 Efficient universal Hamiltonian eigenvalue
transformation (Compiled)

Input:

• A finite number of queries to a black-box Hamiltonian
dynamics e±iHτ of a seed Hamiltonian H normalized
as ∥H0∥op ≤ 1, where H0 is the traceless part of H,
i.e., H0 := H − (1/2n)tr(H)I, with τ > 0

• A class C3 (3 times continuously differentiable) func-

tion f : [−1, 1]→ R, such that f (4) is piecewise C2

(see App. A 1)

• Input state |ψ⟩ ∈ H
• Allowed error ϵ > 0

• Time t > 0

Output: A state approximating e−if(H0)t |ψ⟩ (t > 0)
with an error in terms Eq. (2) upper-bounded by ϵ (also,
the mean square of error in terms of Eq. (3) upper-bounded
by 2ϵ)

Runtime:
Pre-processing (only once): Θ(K̀3t3n/ϵ3) + T4, K̀ =

O((t/ϵ)1/3)
Main Process: Θ(C4,f t

2n/ϵ) for an f -dependent constant
C4,f which is independent of n, t, and ϵ
Used Resources:

System: n-qubit system H and one auxiliary qubit Hc

Gates: e±iHτ , single qubit gate on Hc, and Clifford
gates on Hc ⊗H

Procedure:
Pre-processing:
1: Define f̃ as shown in Eq. (7) and compute Fourier coef-

ficients c̃k := (1/2)
∫ 1

−1
dxe−ikπxf̃(x) for k ∈ {−K̀,−K̀ +

1, . . . , K̀} for a K̀ > 0 satisfying Eq. (19)

2: for k ∈ {1, . . . , K̀} do
3: Generate (Âk, θ̂k) by Subroutine D5 of App. D 2 with

allowed error set as
√
3ϵ/(12π(

∑∞
k=−∞ |c̃k||k|))

4: (Â−k, θ̂−k)← (Âk,−θ̂k)
5: end for
6: (Â0, θ̂0)← (1, 0)

7: Compute Ǹ := N(β̀, t, ϵ/3) for β̀ :=
∑K̀

k=−K̀(|c̃k|/Âk)

Main Process:
8: Initialize |current⟩ ← |+⟩ ⊗ |ψ⟩
9: for m ∈ {1, . . . , Ǹ} do

10: Randomly choose k with probability p̀k := |c̃k|/(Âkβ̀)

11: Randomly choose jk := {v⃗1,10k2} ∈ ({0, 1, 2, 3}n)10k
2

12: |current⟩ ← Ẁ †
k,jk

(e−i[cosϕkX−sinϕkY]β̀t/Ǹ(F)

⊗
I)Ẁk,jk |current⟩

13: end for
14: Trace out Hc of |current⟩
15: Return |current⟩

where the iteration number M can depend upon k,
Ak,M = 1−O(k2/M) > 0, θk,M = O(k3/M2) ∈ R and

W
(M)
k,v⃗1:M

:=

[
M∏

l=1

ctrl(σv⃗l)(I ⊗ e−i(kπH)/(2M))ctrl(σv⃗l)

]

× (e−ikπZ/4 ⊗ I). (18)

For simplicity, we sometimes suppress the superscript
(M) and just write Wk,v⃗1:M . We prove the validity of
Eq. (17) in App. D 1.
As mentioned earlier, in order to improve the scaling

behavior with respect to the uncompiled algorithm, we
seek to modify the circuit to correct for the error intro-
duced by the finite iteration number M of the inner layer.
The factor Ak,M can be compensated for by modifying
the probability distribution pk and the iteration num-
ber of the outer layer N ; the rotation errors of the form
e±iθk,MZ/2 ⊗ I can be corrected via an inverse rotation.
Thus, the general compilation procedure can be applied
to UHET in order to reduce the runtime. In particular,
we take M as 10k2 such that Ak,M = 1−O(k2/M) > 1/2
independently of k, which follows from a lower bound of
Ak,M [see Eq. (D3) in App. D 1].
If a classical description of the dynamics were given,

then the compensation parameters Ak,M and θk,M could
be explicitly calculated via Eq. (17); however, since we
only have access to the black-box dynamics e±iHτ , we
must now construct a circuit that efficiently estimates
them without relying on explicit knowledge of H. We
present such a method that makes use of robust phase

estimation [30] to obtain estimates (Âk, θ̂k) of the error
parameters (Ak,10k2 , θk,10k2) for k ∈ {−K, . . . ,K} (where
K is a cutoff number) in App. D 2. This completes the
pre-processing step of Algorithm 4.

The main part of Algorithm 4 then makes use of these
estimates to compensate the error in simulating the de-
sired transformed dynamics e−if(H0)t; we provide a com-
plete error and runtime analysis in App. D 3. The circuit
representation of Algorithm 4 is depicted in Fig. 10, in
which we choose a new cutoff number K̀ satisfying

∣∣∣∣∣∣
f̃(x)−

K̀∑

k=−K̀

c̃ke
ikπx

∣∣∣∣∣∣
<

ϵ

6t
∀x ∈ [−1, 1], (19)

and set jk := (v⃗1:10k2) ∈ ({0, 1, 2, 3}n)10k2 , β̀ :=∑K̀
k=−K̀(|c̃k|/Âk), Ǹ := N(β̀, t, ϵ/3), p̀k := |c̃k|/(Âkβ̀),

10

e−i[cosϕkX−sinϕkY]β̀t/Ǹ(F)

×Ǹ (F)

{(1/4n)10k
2

p̀k, (k, jk)}

Ẁk,jk Ẁ †
k,jk

|+⟩ tr

|ψ⟩ e−if(H0)t |ψ⟩∼

FIG. 10. Compiled version of outer layer (Fig. 7a).—By using

modified values p̀k, β̀, Ǹ(F), and a modified operator Ẁk,jk (see

Algorithm 4 for details), the iteration number N
(C)
k = Θ(β2t2k2/ϵ2)

for controlization in Algorithm 3 is reduced to 10k2 = Θ(k2) inde-
pendent of f, n, t and ϵ, thereby leading to a more efficient algorithm
for UHET.

and

Ẁk,jk :=W
(10k2)
k,jk

(eiθ̂kZ/2 ⊗ I). (20)

The average number of times that the unknown dynamics
e−iHτ (τ > 0) is called in any one sampling of k is reduced
via compilation from

∑
k pkΘ(β2t2k2/ϵ2) (Algorithm 3)

to
∑
k p̀kΘ(k2) (Algorithm 4) and the average depth of

the overall circuit is subsequently reduced accordingly.
The runtime of Algorithm 4 is Θ(K̀3t3n/ϵ3) + T4 for

pre-processing, where K̀ = O((t/ϵ)1/3) is the cutoff num-
ber defined in step 1 and T4 refers to the sum of the
classical computation times for steps 1 (computation of
the Fourier coefficients c̃k until Eq. (19) is satisfied) and

step 7 (computation of Ǹ). The main process has runtime
Θ(C4,f t

2n/ϵ) (see App. D 3 for the proof). The scaling of
the runtime of the main process in the t→ ∞ and ϵ→ 0
limits are reduced in Algorithm 4 compared to Algorithm
3.

VI. COMPARISON WITH A QSVT-BASED
UHET ALGORITHM

Algorithms 3 and 4 above provide two novel methods to
implement the task of UHET; we now move to compare
these algorithms with another one that achieves the same
task via a modified QSVT procedure. In principle, one
can combine standard QSVT methods with the ability to
simulate Hamiltonian dynamics to achieve the said task.
Given a classical description of the Hamiltonian, this can
be achieved by performing a block-encoding of H into a
unitary, using QSVT to approximate e−if(H0)t (up to a
proportionality constant), and then amplifying the block
via robust oblivious amplitude amplification [27, 28]. How-
ever, such a procedure requires a classical description of
the Hamiltonian to be known a priori, in contradistinction
to the UHET task we have so far considered. Here, instead
of a classical description of H, one is only given access
to a black-box Hamiltonian dynamics e±iHt. In App. E,
we provide a method that modifies the standard QSVT
procedure by essentially applying control to a modified
version of the unknown Hamiltonian and then applying
appropriate gates to simulate the desired function.

This allows us to compare the runtimes of Algorithm
3 (uncompiled), Algorithm 4 (compiled) and the QSVT-
based Algorithm 7 presented in full in App. E 1. We show
that the scaling of the runtime of the main process (i.e.,
the part which must be run each time) of these algorithms
behaves in the limit of ϵ→ 0 according to:

Runtime of Algorithm 4 (compiled)

≤Runtime of QSVT-based Algorithm 7

≤Runtime of Algorithm 3 (uncompiled). (21)

In other words, Algorithm 3, which is slower than the
QSVT-based Algorithm 7 when uncompiled, becomes
faster than it via compilation into Algorithm 4. In
App. E 1, we first describe how QSVT techniques can
be applied to the task of UHET and present an algorithm
that leverages ideas from Hamiltonian singular value trans-
formation [31] and the QSVT-based Hamiltonian simula-
tion [27, 28]. In App. E 2, we subsequently calculate the ϵ
dependence of the three studied algorithms, demonstrat-
ing Eq. (21), and we explain the technical reasons for the
differences in scaling.

VII. CONCLUSION

In this work, we developed a universal quantum al-
gorithm for transforming the eigenvalues of any Hamilto-
nian, by any (suitably differentiable) function, while keep-
ing the eigenstates fixed. Our algorithm is universal
in the sense that it does not rely on knowledge of the
input Hamiltonian, whose dynamics can be given as a
black box. The algorithm is initially constructed by con-
catenating two subroutines, namely controlization and
Fourier series simulation. This is followed by a compila-
tion step, based on a general framework we develop, using
correlated randomness to perform the multiple layers of
random sampling in a more efficient way. We show that
the compilation step significantly reduces the runtime of
the algorithm, making it even more efficient than sim-
ulation methods based on the quantum singular value
transformation.

Our results have implications broadly across the realm
of quantum information and beyond. First, the notion
of compilation reconciles quantum computing practices
with a key notion implemented in classical computing,
where subroutines are compiled into larger functions to
be implemented more efficiently. Extending this approach
to different tasks could significantly improve our ability
to develop complex and efficient quantum algorithms in
a modular fashion, similar to that of classical software.
Second, we expand the class of universal Hamiltonian
transformations that can be efficiently performed to all
suitably differential functions on the space of Hamiltoni-
ans, extending previously known results for linear func-
tions of Hamiltonians [10].
In the future, developing a general theoretical frame-

work for higher-order transformation of Hamiltonian dy-

11

namics will provide more insight into the possible ma-
nipulation of Hamiltonian dynamics for information pro-
cessing tasks. In the longer term when fault-tolerant
quantum computers become available, we envisage that
our methods could be applied to practical use cases in the
simulation and manipulation of quantum systems, such
as in quantum chemistry or materials discovery.

ACKNOWLEDGMENTS

We would like to thank Toshinori Itoko, Antonio Mezza-
capo, Kunal Sharma, and Satoshi Yoshida for help-

ful discussions. This work was supported by MEXT
Quantum Leap Flagship Program (MEXT QLEAP) JP-
MXS0118069605, JPMXS0120351339, Japan Society for
the Promotion of Science (JSPS) KAKENHI Grant No.
21H03394, and the IBM-UTokyo lab. Research at Peri-
meter Institute is supported in part by the Government
of Canada through the Department of Innovation, Sci-
ence and Economic Development and by the Province of
Ontario through the Ministry of Colleges and Universities.
P. T. acknowledges support from the Japan Society for
the Promotion of Science (JSPS) Postdoctoral Fellowship
for Research in Japan.

[1] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder,
et al., Commentary: The materials project: A materials
genome approach to accelerating materials innovation,
APL Materials 1 (2013).

[2] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Efficient
topological materials discovery using symmetry indicators,
Nature Physics 15, 470 (2019).

[3] M. Suzuki, Fractal decomposition of exponential operators
with applications to many-body theories and Monte Carlo
simulations, Physics Letters A 146, 319 (1990).

[4] M. Suzuki, General theory of fractal path integrals with
applications to many-body theories and statistical physics,
J. Math. Phys. 32, 400 (1991).

[5] E. Campbell, Random compiler for fast Hamilto-
nian simulation, Phys. Rev. Lett. 123, 070503 (2019),
arXiv:1811.08017.

[6] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and
R. D. Somma, Simulating Hamiltonian dynamics with
a truncated Taylor series, Phys. Rev. Lett. 114, 090502
(2015), arXiv:1412.4687.

[7] G. H. Low and I. L. Chuang, Optimal Hamiltonian sim-
ulation by quantum signal processing, Phys. Rev. Lett.
118, 010501 (2017), arXiv:1606.02685.

[8] G. H. Low and I. L. Chuang, Hamiltonian simulation by
qubitization, Quantum 3, 163 (2019), arXiv:1610.06546.

[9] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su,
Toward the first quantum simulation with quantum spee-
dup, Proc. Natl. Acad. Sci. U.S.A. 115, 9456 (2018),
arXiv:1711.10980.

[10] T. Odake, H. Kristjánsson, A. Soeda, and M. Murao,
Higher-order quantum transformations of Hamiltonian
dynamics (2023), arXiv:2303.09788.

[11] L. K. Grover, Quantum Mechanics Helps in Searching for
a Needle in a Haystack, Phys. Rev. Lett. 79, 325 (1997),
arXiv:quant-ph/9706033.

[12] R. N. Zare, Laser control of chemical reactions, Science
279, 1875 (1998).

[13] M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang,
J. Qiu, and Z.-H. Lu, Universal energy-level alignment of
molecules on metal oxides, Nat. Mater. 11, 76 (2012).

[14] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Quantum
circuit architecture, Phys. Rev. Lett. 101, 060401 (2008),
arXiv:0712.1325.

[15] J. Miyazaki, A. Soeda, and M. Murao, Complex conjuga-

tion supermap of unitary quantum maps and its univer-
sal implementation protocol, Phys. Rev. Res. 1, 013007
(2019), arXiv:1706.03481.

[16] Q. Dong, S. Nakayama, A. Soeda, and M. Murao, Con-
trolled quantum operations and combs, and their ap-
plications to universal controllization of divisible unitary
operations (2019), arXiv:1911.01645.

[17] M. T. Quintino, Q. Dong, A. Shimbo, A. Soeda, and
M. Murao, Probabilistic exact universal quantum circuits
for transforming unitary operations, Phys. Rev. A 100,
062339 (2019), arXiv:1909.01366.

[18] M. T. Quintino, Q. Dong, A. Shimbo, A. Soeda, and
M. Murao, Reversing unknown quantum transforma-
tions: Universal quantum circuit for inverting general
unitary operations, Phys. Rev. Lett. 123, 210502 (2019),
arXiv:1810.06944.

[19] S. Yoshida, A. Soeda, and M. Murao, Reversing Unknown
Qubit-Unitary Operation, Deterministically and Exactly,
Phys. Rev. Lett. 131, 120602 (2023), arXiv:2209.02907.

[20] G. Chiribella and H. Kristjánsson, Quantum Shannon
theory with superpositions of trajectories, Proc. R. Soc.
A 475, 20180903 (2019), arXiv:1812.05292.

[21] G. Chiribella, G. M. D’Ariano, P. Perinotti, and
B. Valiron, Quantum computations without definite
causal structure, Phys. Rev. A 88, 022318 (2013),
arXiv:0912.0195.

[22] F. A. Pollock, C. Rodŕıguez-Rosario, T. Frauenheim,
M. Paternostro, and K. Modi, Non-Markovian quantum
processes: Complete framework and efficient characteriza-
tion, Phys. Rev. A 97, 012127 (2018), arXiv:1512.00589.

[23] O. Oreshkov, F. Costa, and Č. Brukner, Quantum cor-
relations with no causal order, Nat. Commun. 3, 1092
(2012), arXiv:1105.4464.

[24] G. Bai, Y.-D. Wu, Y. Zhu, M. Hayashi, and G. Chiribella,
Efficient algorithms for causal order discovery in quantum
networks (2020), arXiv:2012.01731.

[25] P. Selinger, Towards a Quantum Programming Language,
Math. Struct. Comput. Sci. 14, 527 (2004).

[26] P. Selinger and B. Valiron, A Lambda Calculus for
Quantum Computation with Classical Control, in Typed
Lambda Calculi and Applications (2005) pp. 354–368,
arXiv:cs/0404056.

[27] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quantum
singular value transformation and beyond: exponen-
tial improvements for quantum matrix arithmetics, in

https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1063/1.529425
https://doi.org/10.1103/PhysRevLett.123.070503
https://arxiv.org/abs/1811.08017
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.114.090502
https://arxiv.org/abs/1412.4687
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://arxiv.org/abs/1606.02685
https://doi.org/10.22331/q-2019-07-12-163
https://arxiv.org/abs/1610.06546
https://doi.org/10.1073/pnas.1801723115
https://arxiv.org/abs/1711.10980
https://arxiv.org/abs/2303.09788
https://doi.org/10.1103/PhysRevLett.79.325
https://arxiv.org/abs/quant-ph/9706033
https://doi.org/10.1126/science.279.5358.1875
https://doi.org/10.1126/science.279.5358.1875
https://doi.org/10.1038/nmat3159
https://doi.org/10.1103/PhysRevLett.101.060401
https://arxiv.org/abs/0712.1325
https://doi.org/10.1103/PhysRevResearch.1.013007
https://doi.org/10.1103/PhysRevResearch.1.013007
https://arxiv.org/abs/1706.03481
https://arxiv.org/abs/1911.01645
https://doi.org/10.1103/PhysRevA.100.062339
https://doi.org/10.1103/PhysRevA.100.062339
https://arxiv.org/abs/1909.01366
https://doi.org/10.1103/PhysRevLett.123.210502
https://arxiv.org/abs/1810.06944
https://doi.org/10.1103/PhysRevLett.131.120602
https://arxiv.org/abs/2209.02907
https://doi.org/10.1098/rspa.2018.0903
https://doi.org/10.1098/rspa.2018.0903
https://arxiv.org/abs/1812.05292
https://doi.org/10.1103/PhysRevA.88.022318
https://arxiv.org/abs/0912.0195
https://doi.org/10.1103/PhysRevA.97.012127
https://arxiv.org/abs/1512.00589
https://doi.org/10.1038/ncomms2076
https://doi.org/10.1038/ncomms2076
https://arxiv.org/abs/1105.4464
https://arxiv.org/abs/2012.01731
https://doi.org/10.1017/S0960129504004256
https://www.doi.org/10.1007/11417170_26
https://www.doi.org/10.1007/11417170_26
https://arxiv.org/abs/cs/0404056

12

Proceedings of the 51st Annual ACM SIGACT Sym-
posium on Theory of Computing (2019) pp. 193–204,
arXiv:1806.01838.

[28] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L.
Chuang, Grand Unification of Quantum Algorithms, PRX
Quantum 2, 040203 (2021), arXiv:2105.02859.

[29] J. S. Walker, Fourier Series (Academic Press, 2003) pp.
167–183.

[30] S. Kimmel, G. H. Low, and T. J. Yoder, Robust calibration
of a universal single-qubit gate set via robust phase estim-
ation, Phys. Rev. A 92, 062315 (2015), arXiv:1502.02677.

[31] S. Lloyd, B. T. Kiani, D. R. Arvidsson-Shukur, S. Bosch,
G. De Palma, W. M. Kaminsky, Z.-W. Liu, and M. Mar-
vian, Hamiltonian singular value transformation and in-
verse block encoding (2021), arXiv:2104.01410.

[32] J. Watrous, The theory of quantum information (Cam-
bridge University Press, Cambridge, UK, 2018).

[33] M. Bocher, Introduction to the Theory of Fourier’s Series,
Ann. Math. 7, 81 (1906).

[34] J. P. Boyd, Chebyshev and Fourier spectral methods
(Dover Publications Inc., New York, NY, 2001).

[35] R. Chao, D. Ding, A. Gilyen, C. Huang, and M. Szegedy,
Finding angles for quantum signal processing with ma-
chine precision (2020), arXiv:2003.02831.

https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://arxiv.org/abs/1806.01838
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.1103/PRXQuantum.2.040203
https://arxiv.org/abs/2105.02859
https://doi.org/10.1103/PhysRevA.92.062315
https://arxiv.org/abs/1502.02677
https://arxiv.org/abs/2104.01410
https://doi.org/10.1017/9781316848142
https://doi.org/10.2307/1967238
https://arxiv.org/abs/2003.02831

13

APPENDICES

Appendix A: Preliminary Definitions

Here, we provide some basic definitions that will prove useful throughout our work.

1. J-Smoothness of Functions

Definition 1 (Piecewise CJ). Let X := {x0, . . . , xn}, where −1 = x0 < x1 < · · · < xn = 1. A function g :

[−1, 1]\X ′ → R, where X ′ ⊆ X , is piecewise CJ (J ∈ N+) :
def⇔ the derivatives g(m) for m ∈ {0, 1, . . . , J} are

well-defined and continuous everywhere in [−1, 1]\X , and additionally, at the exceptional points x1, . . . , xn−1 of g, we
have that for all j ∈ {1, . . . , n− 1}, limx→x+

j
g(m)(x) and limx→x−

j
g(m)(x) exist for all m ∈ {0, . . . , J} (although the

limits from above and below need not coincide), as well as for x = ±1, limx→−1+ g
(m)(x) and limx→1− g

(m)(x) exist.
In particular, when J = 1, g is said to be piecewise smooth

Definition 2 (J-Smoothness). Here, we extend the notion of piecewise continuity to higher orders of smoothness.

1. A function g : [−1, 1] → R is J-smooth :
def⇔ g is piecewise CJ−1 and g(J) is piecewise C2.

2. A function g : [−1, 1] → R is periodically J-smooth :
def⇔ g is J-smooth and g(m)(+1) = g(m)(−1) ∀ m ∈

{0, . . . , J − 1}.

3. A function g : [−1, 1] → R is strictly J-smooth :
def⇔ g is J-smooth and g(J) does not satisfy

lim
x→a+

g(J)(x) = lim
x→a−

g(J)(x) ∀ a ∈ (−1, 1). (A1)

4. A function g : [−1, 1] → R is strictly periodically J-smooth :
def⇔ g is periodically J-smooth and g(J) does not

satisfy either or both of the following conditions:

1. lim
x→a+

g(J)(x) = lim
x→a−

g(J)(x) ∀ a ∈ (−1, 1)

2. lim
x→1−

g(J)(x) = lim
x→−1+

g(J)(x). (A2)

2. Norms for Quantifying Errors

When quantifying the error of a simulated operation, we will often make use of the diamond norm, defined as

∥Φ∥⋄ := max
A∈L(H⊗H);∥A∥1=1

∥(Φ⊗ I)(A)∥1, (A3)

where Φ : L(H) → L(H) is a quantum operation, I is an identity operation on L(H), and ∥ · ∥1 denotes the 1-norm

defined as ∥A∥1 := tr(
√
A†A).

3. Scaling Notation

Throughout this article, we use the symbols O(·), Ω(·), and Θ(·) to denote the scaling behavior of algorithm runtimes,
the definitions of which are provided in Table I. Furthermore, we consider various limits depending on the parameter
of interest. In particular, we consider the limit → ∞ for qubit number n ∈ Z>0, simulation time t ∈ R, and the limit
→ 0 for the allowed error ϵ > 0. For instance f(t, ϵ) = O(t2ϵ−1) means that lim supt→∞(f(t, ϵ)/t2) <∞ for all ϵ > 0
and lim supϵ→0(f(t, ϵ)/ϵ

−1) <∞ for all t ∈ R. Intuitively speaking, f(x) = O(g(x)) if g(x) grows at least as fast as
f(x) in limx→ ∞ (i.e., g asymptotically upper bounds f); f(x) = Ω(g(x)) if f(x) grows at least as fast as g(x) in
limx→ ∞ (i.e., g asymptotically lower bounds f); and f(x) = Θ(g(x)) if g provides both an upper and lower bound
of f asymptotically.

14

Notation Definition

f(x) = O(g(x)) lim supx→∞(f(x)/g(x)) <∞
f(x) = Ω(g(x)) lim infx→∞(f(x)/g(x)) > 0

f(x) = Θ(g(x)) f(x) = O(g(x)) and f(x) = Ω(g(x))

TAB. I. Scaling symbols.—For any g(x), we say that a function f(x) is O(g(x)), Ω(g(x)), or Θ(g(x)), if the above are satisfied.

Appendix B: Universal Hamiltonian Eigenvalue Transformation (UHET)

1. Mean Squared Error Bound

Here we demonstrate the validity of Eq. (3), which bounds the mean squared error of an average operation in terms of
some original error bound. More precisely, we prove:

Lemma 1 (Mean Squared Error Bound). Consider an arbitrary unitary operation defined by U(ρ) := UρU† with a
unitary operator U and a density operator ρ on a Hilbert space H. If the error (in terms of the 1-norm) of a set of
deterministic quantum operations (completely-positive trace-preserving maps) Fj : L(H) → L(H) and a probability
distribution {pj} satisfies

sup
|ψ⟩∈H

∥U(|ψ⟩ ⟨ψ|)−
∑

j

pjFj(|ψ⟩ ⟨ψ|)∥1 ≤ ∆, (B1)

for some ∆ > 0, then the mean squared error of the average operation
∑
j pjFj is upper bounded by

sup
|ψ⟩;∥|ψ⟩∥=1

∑

j

pj∥U(|ψ⟩ ⟨ψ|)−Fj(|ψ⟩ ⟨ψ|)∥21 ≤ 2∆, (B2)

where |ψ⟩ is any pure state on H.

This lemma is proven in App. B of Ref. [10]. Furthermore, if a modified version of Eq. (B1) is applied to an extended
Hilbert space, namely

sup
dim(H′)

|ψ⟩∈H⊗H′

∥|ψ⟩∥=1

∥U ⊗ IH′(|ψ⟩ ⟨ψ|)−
∑

j

pjFj ⊗ IH′(|ψ⟩ ⟨ψ|)∥1 ≤ ∆ (B3)

holds, then a stronger version of Eq. (B2), i.e.,

sup
dim(H′)

|ψ⟩∈H⊗H′

∥|ψ⟩∥=1

∑

j

pj∥U ⊗ IH′(|ψ⟩ ⟨ψ|)−Fj ⊗ IH′(|ψ⟩ ⟨ψ|)∥21 ≤ 2∆, (B4)

follows.

15

Appendix C: Uncompiled UHET Algorithm

Here we provide details relevant to the uncompiled UHET algorithm presented throughout Sec. IV of the main text.

1. Sufficient Number of qDRIFT Iterations

The qDRIFT procedure is a stochastic method for simulating Hamiltonian dynamics [5]. Here, we determine a sufficient
number of iterations to ensure a sufficiently small error ϵ.

Lemma 2. Suppose one is given access to the dynamics e−iHjτ (τ > 0) corresponding to a set of Hamiltonians
{Hj}j on L(H) which normalized as ∥Hj∥op = 1. Then, the dynamics e−iHt (t > 0) of a Hamiltonian represented
as H =

∑
j hjHj for a set of positive coefficients {hj}j can be simulated using qDRIFT with an error of at most

(2λ2t2/N)e2λt/N where λ :=
∑
j hj and N refers to the number of iterations of the random sampling. Here, the error

is quantified by

1

2
∥Ftarget −Fapprox∥⋄, (C1)

where Ftarget(ρ) := e−iHtρeiHt and Fapprox is the average quantum operation simulated by the qDRIFT protocol.

The proof of this Lemma is provided in Ref. [5]. In particular, if N is chosen as N(λ, t, 2ϵ) (as defined in Eq. (4)),
then the error in terms of Eq. (C1) is bounded from above by ϵ, i.e.,

2λ2t2

N(λ, t, 2ϵ)
e2λt/N(λ,t,2ϵ) ≤ 2λ2t2 ·

(
5λ2t2

ϵ

)−1

e2λt·(5λt/2)
−1

=
2ϵ

5
e4/5 < ϵ. (C2)

Moreover, making use of Eqs. (B3) and (B4), it follows that the error in terms of Eq. (1), namely

sup
|ψ⟩∈H⊗H′

∥|ψ⟩∥=1
dimH′

∥Ftarget ⊗ IH′(|ψ⟩ ⟨ψ|)−Fapprox ⊗ IH′(|ψ⟩ ⟨ψ|)∥1 (C3)

is upper bounded by twice that of Eq. (C1) and can therefore be upper bounded by ϵ by choosing the iteration number
as N(λ, t, ϵ).

2. Definition of gf in Fourier Series Simulation [Subroutine 2, Eq. (7)]

The first step in the Fourier Series Simulation part of our UHET algorithm is to modify the desired transformation
function f to a suitable periodically smooth one f̃ , which is in turn defined in terms of the function g below [see
Eq. (7)]:

gf (x) :=C1 cos (πx) + S1 sin (πx) +
1

2
S2 sin (2πx) + C2 cos (2πx) + C3 cos (3πx) +

1

3
S3 sin (3πx)

+
1

4
S4 sin (4πx) + C4 cos (4πx), (C4)

where the coefficients C1, C2, C3, C4, S1, S2, S3, S4 are defined succinctly in terms of the coefficient matrix

Φ :=




9/16 1/16 −9/16 −1/16

2/3 1/24 2/3 1/24

−1/16 −1/16 1/16 1/16

−1/6 −1/24 −1/6 −1/24


 (C5)

as

(C1, C2, C3, C4)
T := Φ ·

(
f(−1),

4f (2)(−1)

π2
, f(1),

4f (2)(1)

π

)T
,

(S1, S2, S3, S4)
T := Φ ·

(
2f (1)(−1)

π
,
8f (3)(−1)

π3
,
2f (1)(1)

π
,
8f (3)(1)

π3

)T
. (C6)

16

3. Error Analysis of Fourier Series Simulation (Subroutine 2)

Here, we rigorously analyze the performance of Subroutine 2. In particular, we prove the following Theorem:

Theorem 1. Subroutine 2 outputs e−if(H0)t |ψ⟩ with an error of at most ϵ. Here, the error is defined as:

sup
dim(H′)

|ψ⟩∈H⊗H′

∥|ψ⟩∥=1

∥G ⊗ IH′(|ψ⟩ ⟨ψ|)−
∑

j

pj(Gj ⊗ IH′)(|ψ⟩ ⟨ψ|)∥1, (C7)

where G(ρ) := e−if(H0)tρeif(H0)t, j labels the tuple of all random indices k chosen in N iterations, pj refers to the
probability that j is chosen, which leads to the particular quantum operation Gj being simulated, and H′ is an auxiliary
system of arbitrary dimension.

We prove this theorem as follows. First, we decompose the error into two contributions: that of approximating the
function f̃ via its (truncated) Fourier series and that of the qDRIFT protocol itself. We then upper bound each error
to derive an upper bound for the total error of the subroutine.

Proof: First, we define three quantum operations G1,G2,G3 : L(Hc ⊗H) → L(Hc ⊗H):

G1(ρ) := e−i(X⊗f(H0))tρei(X⊗f(H0))t

G2(ρ) := e−i(X⊗f̃K(H0))tρei(X⊗f̃K(H0))t

G3 :=
∑

j

pjG′
j . (C8)

where f̃K(x) :=
∑K
k=−K c̃ke

ikπ(x+1)/2 is the truncated Fourier representation of f (which is a real function due to
c̃−k = c̃∗k) and G′

j : L(Hc ⊗H) → L(Hc ⊗H) is the quantum operation simulated between steps 5 and 9 of Subroutine
2. By applying G1 to the initial state |+⟩ ⊗ |ψ⟩ and finally tracing over the control Hilbert space Hc, one yields
the desired transformation, i.e., the ideal dynamics. The expression G2 corresponds to the simulated dynamics of a
truncated Fourier series in the absence of any Trotterization error (i.e., a perfectly accurate simulation of the finite
Fourier series). Lastly, G3 denotes the actual dynamics simulated in Subroutine 2, which includes errors due to both
finite Fourier series cutoff and Trotterization.

Consider the norm E defined as

E(F) := sup
|ψ⟩∈Hc⊗H⊗H′

∥|ψ⟩∥=1
dimH′

∥F ⊗ IH′(|ψ⟩ ⟨ψ|)∥1, (C9)

for any quantum operation F : L(Hc ⊗H) → L(Hc ⊗H). The difference E(G3 − G1), therefore quantifies the error
between the simulated dynamics and the ideal case.

Since G3 is a qDRIFT protocol approximating the ideal dynamics by simulating a Hamiltonian X ⊗ f̃K(H0) with
finite cutoff number K as shown in Eq. (10), it follows from Lemma 2 that E(G3 − G2) = ϵ/2 (since the precision

is chosen as ϵ/2). Furthermore, we can make use of the identity ∥ |β⟩ ⟨β| − |γ⟩ ⟨γ| ∥1 = 2
√
1− | ⟨β|γ⟩ |2 (see, e.g.,

Eq. (1.186) of [32]) where |β⟩ , |γ⟩ are unit vectors in the same Hilbert space, as well as the triangle inequality to yield

E(G3 − G1) ≤ E(G3 − G2) + E(G2 − G1)

≤ ϵ

2
+ sup

|ψ⟩∈Hc⊗H⊗H′

∥|ψ⟩∥=1
dim(H′)

2
[
1− | ⟨ψ| e−iX⊗(f(H0)−f̃K(H0))t ⊗ I |ψ⟩ |2

]1/2
. (C10)

We now lower bound the r.h.s. by decomposing |ψ⟩ =:
∑
s,m as,m |s⟩ |Em⟩ |ψs,m⟩ (

∑
s,m |as,m|2 = 1), where Em and

|Em⟩ are the eigenvalues and eigenvectors of H0 respectively, |s⟩ ∈ {|+⟩ , |−⟩} are eigenvectors of the operator X in

17

Hc, and |ψs,m⟩ is a unit vector in H′. With this, it follows that | ⟨ψ| e−iX⊗(f(H0)−f̃K(H0))t ⊗ I |ψ⟩ | is lower bounded as

| ⟨ψ| e−iX⊗(f(H0)−f̃K(H0))t ⊗ I |ψ⟩ | =
∣∣∣∣∣
∑

s,m

|as,m|2e−i⟨s|X|s⟩·(f(Em)−f̃K(Em))t

∣∣∣∣∣

≥
∣∣∣∣∣
∑

s,m

|as,m|2Re(e−i⟨s|X|s⟩·(f(Em)−f̃K(Em))t)

∣∣∣∣∣

≥
∣∣∣∣∣
∑

s,m

|as,m|2 cos(12R(f − f̃K)t)

∣∣∣∣∣

= cos(12R(f − f̃K)t), (C11)

where R(g) := 2 max
x∈[−1,1]

|g(x)| for a function g : [−1, 1] → R. Substituting Eq. (C11) into Eq. (C10) and invoking

Eq. (8), we finally have

E(G3 − G1) ≤
ϵ

2
+ 2 sin[R(f − f̃K)t/2] ≤ ϵ

2
+R(f − f̃K)t ≤ ϵ

2
+
ϵ

2
= ϵ. (C12)

By substituting back to Eq. (C9), we have that

ϵ ≥ E(G3 − G1) ≥ sup
|ψ⟩∈Hc⊗H⊗H′

∥|ψ⟩∥=1
dimH′

∥trHc [(G3 − G1)⊗ IH′](|ψ⟩ ⟨ψ|)∥1

≥ sup
|ψ⟩∈H⊗H′

∥|ψ⟩∥=1
dimH′

∥trHc
[(G3 − G1)⊗ IH′](|+⟩ ⟨+| ⊗ |ψ⟩ ⟨ψ|)∥1, (C13)

which is equal to the expression in Eq. (C7), therefore asserting our claim.

4. Fourier Series Convergence

Lemma 3. For arbitrary f : [−1, 1] → R which belongs to class C3 with f (4) being piecewise C2, the function f̃ defined
in Eq. (7) is periodically 4-smooth.

Proof: We will now demonstrate that f̃ belongs to class C3, f̃ (j)(1) = f̃ (j)(−1) (j ∈ {0, 1, 2, 3}), and f̃ (4) is piecewise
C2. Let S ⊂ [−1, 1] denote the finite set of points outside of which f (4) is defined and is continuously differentiable. It

is straightforward to see that f̃ (4) is piecewise C2 with exceptional points x ∈ S̃ ∪ {0} where S̃ := {(x+ 1)/2 | x ∈ S}.
Thus it suffices to show that f̃ belongs to class C3 and f̃ (j)(1) = f̃ (j)(−1) ∀ j ∈ {0, 1, 2, 3}. This follows directly from
the following equations, which in turn follow from the definition of gf

dj

dxj
gf (x)|x=0 =

dj

dxj
f(2x− 1)|x=0

dj

dxj
gf (x)|x=−1 =

dj

dxj
f(2x− 1)|x=1, (C14)

where j ∈ {0, 1, 2, 3}.

We now move on to analyze the convergence rate of the Fourier series being simulated, which leads to a relationship
between the allowed error ϵ and the truncation number K. Whenever a function g : [−1, 1] → R is piecewise smooth,
its Fourier series converges (except for at a finite number of discontinuities; see, e.g., Ref. [33]). In general, for a
periodically J-smooth function, the rate of convergence can be determined via the following lemma.

Lemma 4. For any periodically J-smooth function g : [−1, 1] → R, its Fourier coefficients ck := (1/2)
∫ 1

−1
dx g(x)e−iπkx

converge at the rate:

lim
|k|→∞

|ck||k|J <∞. (C15)

18

In particular, if g is strictly periodically J-smooth, then

∞∑

k=K

|ck|2 = Ω(K−(2J+1)) and

−K∑

k=∞
|ck|2 = Ω(K−(2J+1)) (C16)

hold for K > 0.

Proof: If g is periodically J-smooth, then each coefficient ck can be rewritten using the following Fourier asymptotic
coefficient expansion method [34]:

ck =
1

2

∫ 1

−1

dx g(x)e−iπkx

=
1

2

i

πk

[
(−1)k {g(1)− g(−1)} −

∫ 1

−1

dx g(1)(x)e−iπkx
]

= · · · = 1

2

J−1∑

j=0

(−1)k+j
(
i

πk

)j+1 {
g(j)(1)− g(j)(−1)

}
+

(−1)J

2

(
i

πk

)J ∫ 1

−1

dx g(J)(x)e−iπkx. (C17)

The final line follows by successively applying integration by parts on the relevant integral term; this technique is valid
since the interval of integration [−1, 1] can be decomposed into smaller intervals [x0, x1], . . . , [xn−1, xn] (with x0 = −1
and xn = 1) between the exceptional points, upon which all derivatives of g are C2 by assumption. The rightmost
part of Eq. (C17) is O(1/kJ) because all of the terms in the summation vanish due to periodicity and the remaining
integral in the second term is bounded. This proves the first part of our claim, i.e., the rate of convergence according
to Eq. (C15).
Furthermore, when g is strictly periodically J-smooth, then the integral term on the r.h.s. of Eq. (C17) can be

rewritten as:

∫ 1

−1

dx g(J)(x)e−iπkx =

∫ x1

−1

dx g(J)(x)e−iπkx + · · ·+
∫ 1

xn−1

dx g(J)(x)e−iπkx

=
i

πk

[
eiπk{g(J)(1−)− g(J)(−1+)} + e−iπkx1{g(J)(x−1)− g(J)(x+1)}+

· · ·+ e−iπkxn−1{g(J)(x−n−1)− g(J)(x+n−1)}
]
− i

πk

∫ 1

−1

dxg(J+1)(x)e−iπkx. (C18)

By rewriting the final integral similarly, we can show that this expression is of O(1/k2). Specifically, let us define gm
for m ∈ {0, . . . n− 1} as g0 := g(J)(1−)− g(J)(−1+) and gm := g(J)(x−m)− g(J)(x+m) for m > 1; with this, Eq. (C18)

can be expressed succinctly as i
πk

∑n−1
m=0 gme

−iπkxm +O(1/k2). Substituting Eq. (C18) into Eq. (C17) then yields

ck =
(−1)J

2

(
i

πk

)J+1
(
n−1∑

m=0

gme
−iπkxm

)
+O(k−(J+2)). (C19)

In order to reach the desired claim, we now seek to lower bound |ck|. For any k0 ∈ Z and M > 0, we have that

k0+M−1∑

k=k0

∣∣∣∣∣
n−1∑

m=0

gme
−iπkxm

∣∣∣∣∣

2

=

k0+M−1∑

k=k0



n−1∑

m=0

|gm|2 +
∑

m1 ̸=m2

g∗m1
gm2

e−iπk(xm2
−xm1

)




≥
k0+M−1∑

k=k0

n−1∑

m=0

|gm|2 −

∣∣∣∣∣∣
∑

m1 ̸=m2

g∗m1
gm2

k0+M−1∑

k=k0

e−iπk(xm2
−xm1

)

∣∣∣∣∣∣

≥
k0+M−1∑

k=k0

n−1∑

m=0

|gm|2 −
∑

m1 ̸=m2

|gm1
||gm2

|
∣∣∣∣∣
k0+M−1∑

k=k0

e−iπk(xm2
−xm1

)

∣∣∣∣∣

≥M

n−1∑

m=0

|gm|2 − 1

∆

(
n−1∑

m=0

|gm|
)2

, (C20)

19

where ∆ := sin

[
π
2

{
min

0≤m1<m2≤n−1
(xm2 − xm1 , 2− (xm2 − xm1))

}]
> 0. The last inequality above follows by evaluat-

ing the geometric series and then bounding it appropriately, i.e., |∑k0+M−1
k=k0

e−iπkq| = |(e−iπ(k0+M)q−e−iπk0q)/(e−iπq−
1)| ≤ 2/|e−iπq − 1| = 1/ sin(πq/2) for q > 0. Since 1/ sin(πq/2) = 1/ sin(π(2− q)/2) and 1/ sin(πq/2) is a decreasing

function in 0 < q ≤ 1, it follows that
∣∣∣
∑k0+M−1
k=k0

e−iπk(xm2−xm1)
∣∣∣ can be upper bounded by 1/∆ for m1 ̸= m2.

In particular, when M is chosen as M ′ := ceil{[2(∑n−1
m=0 |gm|)2]/[∆(

∑n−1
m=0 |gm|2)]}, the last line of Eq. (C20) yields

M ′
n−1∑

m=0

|gm|2 − 1

∆

(
n−1∑

m=0

|gm|
)2

=M ′



n−1∑

m=0

|gm|2 − 1

M ′∆

(
n−1∑

m=0

|gm|
)2



≥M ′



n−1∑

m=0

|gm|2 − 1

∆

(
n−1∑

m=0

|gm|
)2

· ∆(
∑n−1
m=0 |gm|2)

2(
∑n−1
m=0 |gm|)2




=M ′ · 1
2

n−1∑

m=0

|gm|2. (C21)

Therefore, the average value of
∣∣∣
∑n−1
m=0 gme

−iπkxm

∣∣∣
2

for k ∈ {k0, . . . , k0+M ′−1} is lower bounded by (
∑n−1
m=0 |gm|2)/2.

Since there exists at least one k ∈ {k0, . . . , k0 +M ′ − 1} such that |∑n−1
m=0 gme

−iπkxm |2 ≥ (
∑n−1
m=0 |gm|2)/2 for all

k0 > 0 and the O(k−(J+2)) term converges to 0 quicker than 1/kJ+1, there exists constants C > 0 and k′0 > 0 such
that for all k0 > k′0, there exists at least one k ∈ {k0, . . . , k0 +M ′ − 1} such that |ck| > C/kJ+1 ≥ C/(k0 +M

′ − 1)J+1.

Since
∑∞
k=K |ck|2 =

∑∞
l=1

∑M ′−1
j=0 |cK+(l−1)M ′+j |2 ≥ ∑∞

l=1 |C/(K + lM ′ − 1)J+1|2 = Θ(K−(2J+1)) for sufficiently

large K, it follows that
∑∞
k=K |ck|2 = Ω(K−(2J+1)) and

∑−K
k=∞ |ck|2 = Ω(K−(2J+1)) for K > 0, asserting the second

part of our claim.

20

Appendix D: Compiled UHET Algorithm

1. Proof of Eq. (17) for the Compiled Algorithm (Algorithm 4)

Here, we prove the validity of Eq. (17) of the main text. To be precise with notation, we denote the order of matrix
multiplication as Πnj=1Mj :=M1 · · ·Mn. Formally, we show:

Lemma 5. Let k ∈ Z, N ∈ Z≥0, and j := (v⃗1, . . . , v⃗N) ∈ ({0, 1, 2, 3}n)N . For any unitary W
(N)
k,j defined as per

Eq. (18), namely

W
(N)
k,j :=

[
N∏

m=1

ctrl(σv⃗m)(I ⊗ e−i
kπ
2N H)ctrl(σv⃗m)

]
(e−i

kπ
4 Z ⊗ I), (D1)

there exist parameters Ak,N > 0 and θk,N ∈ [0, 2π) such that
(
1

4

)nN ∑

v⃗1,...,v⃗N

(W
(N)
k,j)†([cosϕkX − sinϕkY]⊗ I)W

(N)
k,j

=Ak,N (ei
θk,N

2 Z ⊗ I)


 0 eiϕkei

kπ
2 (H0+I)

e−iϕke−i
kπ
2 (H0+I) 0


 (e−i

θk,N

2 Z ⊗ I), (D2)

where H0 is the traceless part of H, i.e., H0 := H − (tr[H]/2n)I. Furthermore, Ak,N and θk,N satisfy

1− π2k2

8N
≤ Ak,N ≤ 1 and |θk,N | ≤ π3k3

32N2
(N ≥ 0.625πk). (D3)

Proof: For the special case N = 0 (in which case we employ the convention that for any matrices {Xm}m, we have
ΠN=0
m=1Xm = I), it is straightforward to verify that (Ak,N , θk,N) = (1, 0) satisfies Eq. (D2); thus, the remainder of the

proof concerns N > 0.
For convenience, we define

Υk,N,j :=

N∏

m=1

ctrl(σv⃗m)(I ⊗ e−i
kπ
2N H)ctrl(σv⃗m) =


 e−i

kπ
2 H 0

0
∏N
m=1 σv⃗me

−i kπ2N Hσv⃗m


 . (D4)

With this, Eq. (D2) can be rewritten as
(
1

4

)nN ∑

v⃗1,...,v⃗N

Υ†
k,N,j([cosϕkX − sinϕkY]⊗ I)Υk,N,j

=

(
1

4

)nN ∑

v⃗1,...,v⃗N


 0 eiϕkei

kπ
2 H(

∏N
l=1 σv⃗le

−i kπ2N Hσv⃗l)

e−iϕk(
∏N
l=1 σv⃗le

−i kπ2N Hσv⃗l)
†e−i

kπ
2 H 0




=


 0 eiϕkei

kπ
2 H [

∏N
l=1{(14)n

∑
v⃗l
σv⃗le

−i kπ2N Hσv⃗l}]
e−iϕk [

∏N
l=1{(14)n

∑
v⃗l
σv⃗le

−i kπ2N Hσv⃗l}]†e−i
kπ
2 H 0




=

(
1

2

)nN

 0 eiϕk{tr[e−i

kπ
2N H]}Nei

kπ
2 H

e−iϕk{tr[e−i
kπ
2N H]∗}Ne−i

kπ
2 H) 0


 , (D5)

where we have made use of the matrix identity
∑
v⃗1,...,v⃗N

(
∏N
l=1Mv⃗l) =

∏N
l=1(

∑
v⃗l
Mv⃗l). By now invoking

{tr(e−i πk
2NH)}Neiπk

2 H = {tr(e−iπkα
2N e−i

πk
2NH0)}Neiπkα

2 ei
πk
2 H0 = {tr(e−i πk

2NH0)}Neiπk
2 H0 , where α := tr(H)/2n, the

final line of Eq. (D5) can be rewritten as

(
1

2

)nN (
0 eiϕk{tr(e−i πk

2NH)}Neiπk
2 H

e−iϕk{tr(e−i πk
2NH)∗}Ne−iπk

2 H 0

)

=

(
1

2

)nN (
0 eiϕk{tr(e−i πk

2NH0)}Neiπk
2 H0

e−iϕk{tr(e−i πk
2NH0)∗}Ne−iπk

2 H0 0

)
. (D6)

21

Thus, by setting

Ak,Ne
iθk,N :=

[
tr(e−i

πk
2NH0)

2n

]N
, (D7)

where Ak,N ≥ 0 and θk,N ∈ R, we obtain

(
1

4

)nN ∑

v⃗1,...,v⃗N

Υ†
k,N,j([cosϕkX − sinϕkY]⊗ I)Υk,N,j = Ak,N


 0 ei(ϕk+θk,N)ei

kπ
2 H0

e−i(ϕk+θk,N)e−i
kπ
2 H0 0


 , (D8)

which is equivalent to Eq. (D2).

For the second part of the claim, note that when H0 is diagonalized as H0 =
∑2n−1
j=0 Ej |j⟩⟨j|, then the expression

{tr(e−i πk
2NH0)/2n}N reduces to

{tr(e−i πk
2NH0)/2n}N =

(∑2n−1
j=0 e−i

πk
2NEj

2n

)N
=

(∑2n−1
j=0 cos(πk2NEj)− i

∑2n−1
j=0 sin(πk2NEj)

2n

)N
, (D9)

from which Ak,N ≤ 1 follows. Further invoking |Ej | ≤ 1 (which follows from our assumption that ∥H0∥op = 1) and the

inequality cos(x) ≥ 1− x2/2 (x ∈ R), it follows that cos(πk2NEj) ≥ cos (πk2N) ≥ 1− 1
2

(
πk
2N

)2
and subsequently

Ak,N ≥
∣∣∣∣∣

∑2n−1
j=0 cos(πk2NEj)

2n

∣∣∣∣∣

N

≥
[
1− 1

2

(
πk

2N

)2
]N

≥ 1− π2k2

8N
. (D10)

Finally, due to the fact that
∑2n−1
j=0 Ej = 0 (which follows from tr(H0) = 0) as well as the inequality | sinx − x| ≤

(|x|3/6) (x ∈ R), we have

∣∣∣∣∣∣

2n−1∑

j=0

sin

(
πk

2N
Ej

)∣∣∣∣∣∣
=

∣∣∣∣∣∣

2n−1∑

j=0

[
sin

(
πk

2N
Ej

)
− πk

2N
Ej

]∣∣∣∣∣∣
≤ 1

6

2n−1∑

j=0

∣∣∣∣
πk

2N
Ej

∣∣∣∣
3

≤ 2n

6

(
πk

2N

)3

. (D11)

Then, since 1
2n

∑2n−1
j=0 cos(πk2NEj) ≥ 1

2n

∑2n−1
j=0 cos(πk2N) = cos(πk2N) ≥ 1− 1

2

(
πk
2N

)2
, it follows that θk,N is upper bounded

by

|θk,N | ≤ N tan−1



{
1

6

(
πk

2N

)3
}{

1− 1

2

(
πk

2N

)2
}−1


 ≤ π3k3

32N2
(N ≥ 0.625πk). (D12)

The final inequality follows from tan−1[16x
3/(1− 1

2x
2)] ≤ 1

4x
3 (0 ≤ x ≤ 0.8).

2. Parameter Estimation for Compiled Algorithm (Algorithm 4)

The compiled UHET Algorithm 4 makes use of “correction” parameters (Âk, θ̂k) to compensate the error of the main
process and reduce the runtime from that of Algorithm 3. Here, we will develop two subroutines, namely Subroutine
D5 and D6, that allow one to estimate such parameters without any knowledge of the seed Hamiltonian. Subroutine D6
is used in step 2 of Subroutine D5 to generate a state |ϕ(N ′, l, kπ/N ′, 25k,Φ)⟩ that is used for robust phase estimation,
from which the parameters of interest can be estimated.

22

Subroutine D5 Generating parameters (Âl, θ̂l)

Input:

• A finite number of queries to a black-box Hamiltonian dynamics e±iHτ of a seed Hamiltonian H with τ > 0 on an
n-qubit system H

• Parameter l ∈ Z>0

• Allowed error ϵ > 0

• Time t > 0

Output: Estimates Âl >
1
2
and θ̂l ∈ [0, 2π) of Al,10l2 and θl,10l2 , respectively, with root mean square error of |1 −

(Al,10l2e
iθ

l,10l2)/(Âle
iθ̂l)| that is upper bounded by ϵ/t.

Runtime: Θ(l2t3n/ϵ3)

Procedure:
1: for Φ ∈ {0, π

2
} do

2: Perform robust phase estimation [30] with allowed root mean square of error set as ϵ/(
√
2t). Here, success of

|0⟩−measurements and |+⟩−measurements are defined as obtaining outcomes for |0⟩⊗I and |+⟩⊗I when performing Z− and
X−basis measurements respectively on the first qubit of the state |ϕ(N ′, l, kπ/N ′, 25k,Φ)⟩, where N ′ := N(1, kπ, 1/(4

√
2)),

generated by Subroutine D6. This provides an estimate v̂Φ.
3: end for
4: if (1/2π)

√
v̂20 + v̂2π/2 ≤

1
2
then

5: Return to step 1
6: end if
7: Compute Âl, θ̂l by

Âl cos(θ̂l) =
1

2π
v̂0

Âl sin(θ̂l) =
1

2π
v̂π/2

8: Return (Âl, θ̂l)

Step 2 of this routine makes use of the following subroutine to generate an appropriate state.

Subroutine D6 Generating a state used in Subroutine D5

Input:

• A finite number of queries to a black box Hamiltonian dynamics e±iHτ of a seed Hamiltonian H with τ > 0 on an
n-qubit system H

• Parameters N, l,M ∈ Z>0

• γ ∈ [0, 1]

• Φ ∈ [0, 2π)

Output: A random state |ϕ(N, l, γ,M,Φ)⟩
Runtime: Θ(Nl2nM)

Procedure:
1: Initialize:

|current⟩ ← |0⟩ ⊗ |0⟩ ∈ Hc ⊗H
2: for m ∈ {1, . . . , N} do
3: From j′ := {u⃗1, . . . , u⃗10l2}, j′′ := {w⃗1, . . . , w⃗l2M} where u⃗1, . . . , u⃗10l2 , w⃗1, . . . , w⃗l2M ∈ {0, 1, 2, 3}n, and s ∈ {+1,−1},

uniformly randomly choose j = (j′, j′′, s)

4: |current⟩ ← W̃l,j,Φ(e
−iγY ⊗ I)W̃ †

l,j,Φ |current⟩ for

W̃l,j,Φ := (e−i
sΦ
2

Z ⊗ I)

 l2M∏
m′′=1

ctrl(σw⃗m′′)(I ⊗ e
i

sπ
2lM

H)ctrl(σw⃗m′′)

 10l2∏
m′=1

ctrl(σu⃗m′)(I ⊗ e
−i

sπ
20l

H)ctrl(σu⃗m′)


5: end for
6: Return |ϕ(N, l, γ,M,Φ)⟩ := |current⟩

23

e−ikπY/N
′

Υ†
sl,10l2,j′

Υsl,10l2,j′Υ†
−sl,25kl2,j′′ Υ−sl,25kl2,j′′

eisΦZ/2 e−isΦZ/2

{(1/2)(1/4n)(10+25k)l2

, (j′, j′′, s)}

×N ′

|0⟩

|0⟩ tr

Z/X

FIG. 11. Compensation parameter estimation.—The circuit used to obtain estimates (Al, θl) that are subsequently used in Algorithm 4.

The runtime of Subroutine D6 scales as (Number of iterations N)×(The runtime of W̃l,j,Φ)=N×Θ(l2nM) = Θ(Nl2nM).
A circuit depiction of the combination of Subroutines D5 and D6 is provided in Fig. 11. In particular, the preparation

of the state |ϕ(N ′, l, kπ/N ′, 25k,Φ)⟩ in Subroutine D6 corresponds to the part of Fig. 11 before the measurement,
with M,γ set to 25k, kπ/N ′ respectively. For many values of k, Subroutine D5 implements this circuit and performs

appropriate measurements on the state in order to estimate (Âl, θ̂l) via robust phase estimation [30]. We now formalize
the validity of this algorithm and demonstrate its runtime.

Theorem 2. Subroutine D5 outputs estimates (Âl, θ̂l) of the parameters (Al,10l2 , θl,10l2) defined in Lemma 5 for l > 0

with a root mean square of |1− (Al,10l2e
iθl,10l2)/(Âle

iθ̂l)| upper bounded by ϵ/t with a runtime Θ(l2ϵ3n/t3).

In order to prove Theorem 2, we combine the results of Lemma 5 with Lemma 6 below, which concerns the robust
phase estimation procedure and is proven in Ref. [30]. We first show that steps 2 to 5 of Subroutine D6 generates the
state |ϕ(N, l, γ,M,Φ)⟩ by simulating a particular Hamiltonian that is proportional to v̂Φ [which is, in turn, a function
of (Al,102 , θl,10l2) and is defined below] via qDRIFT. We then show that the success probabilities of |0⟩-measurements
and |+⟩-measurements for each k (respectively, denoted (0, k)−measurements and (+, k)−measurements in Lemma
6) differ from 1

2 (1 + cos(kv̂Φ)) and 1
2 (1 + sin(kv̂Φ)), respectively, at most by 1√

8
, demonstrating that v̂Φ can be

well-estimated by robust phase estimation. Finally, we prove that Al,10l2 and θl,10l2 can be obtained with a root mean
square of error smaller than or equal to ϵ/t.

Lemma 6 (Robust Phase Estimation [30]). Let k ∈ Z>0. Suppose that one can perform two families of measurements,
(0, k)-measurements and (+, k)-measurements, whose success probabilities for obtaining outcomes 0 and + respectively
are given in terms of θ ∈ (−π, π] as

(0, k)-measurement: p0,k(θ) :=
1 + cos (kθ)

2
+ δ0(k)

(+, k)-measurement: p+,k(θ) :=
1 + sin (kθ)

2
+ δ+(k),

where δ0(k) and δ+(k) satisfy

sup
k
{|δ0(k)|, |δ+(k)|} =: δsup <

1√
8
.

Then for any allowed standard deviation s > 0, an estimate θ̂ of θ can be obtained with a root mean squared error
smaller than or equal to s by a classical computation with runtime O(polyK). This computation is a function of the
numbers of successful (0, 2j−1)-measurements and (+, 2j−1)-measurements (j ∈ {1, . . . ,K}), with both measurement
choices being implemented Mj times. Here, Mj and K are defined as

K := ceil

[
log2

(
3π

s

)]

Mj := F (δsup)(3(K − j) + 1)

F (δsup) := ceil

[
log
(
1
2 (1−

√
8δsup)

)

log
(
1− 1

2 (1−
√
8δsup)2

)
]
. (D13)

This lemma is proven in Ref. [30] (see Theorem 1 therein). We are now in a position to prove Theorem 2.

24

Proof of Theorem 2: To begin, note that steps 2 to 5 of Subroutine D6 simulates the dynamics e−iH
′
using qDRIFT

for the Hamiltonian H ′ defined as

H ′ =
Nγ

2

(
1

4

)(10+M)l2 ∑

u⃗1,...,u⃗10l2

w⃗1,...,w⃗l2M

s∈{1,−1}

W̃l,j,Φ(Y ⊗ I)W̃ †
l,j,Φ =: t

∑

j

hjHj , (D14)

where j := {(u⃗1, . . . , u⃗10l2), (w⃗1, . . . , w⃗l2M), s}, t := Nγ, hj := 1
2 (

1
4)

(10+M)l2 , and Hj := W̃l,j,Φ(Y ⊗ I)W̃ †
l,j,Φ. With

respect to Lemma 2, we can evaluate λ =
∑
j hj = 1 and thus the error of simulating this dynamics via qDRIFT in

terms of Eq. (C1) is upper bounded by (2t2/N)e2t/N .

We can further simplify Eq. (D14) as follows. First, note that W̃l,j,Φ can be rewritten as

W̃l,j,Φ = (e−i
sΦ
2 Z ⊗ I)Υ−sl,l2M,j′′Υsl,10l2,j′ (D15)

by using Υk,N,j defined in Eq. (D4). Moreover, according to Eq. (D8), the equality

(
1

4

)nN ∑

v⃗1,...,v⃗N

Υ†
k,N,j

(
0 e−iϕI
eiϕI 0

)
Υk,N,j = Ak,N


 0 e−i(ϕ−θk,N)ei

kπ
2 H0

ei(ϕ−θk,N)e−i
kπ
2 H0 0


 (D16)

holds for ϕ ∈ [0, 2π). Thus, Eq. (D14) can be rewritten as

Nγ

2

(
1

4

)(10+M)l2 ∑

u⃗1,...,u⃗10l2

w⃗1,...,w⃗l2M

s∈{1,−1}

W̃l,j,Φ(Y ⊗ I)W̃ †
l,j,Φ

=
t

2

(
1

4

)(10+M)l2 ∑

u⃗1,...,u⃗10l2

w⃗1,...,w⃗l2M

s∈{1,−1}

(e−i
sΦ
2 Z ⊗ I)Υ−sl,l2M,j′′Υsl,10l2,j′

(
0 −iI
iI 0

)
Υ†
sl,10l2,j′Υ

†
−sl,l2M,j′′(e

i
sΦ
2 Z ⊗ I)

=
t

2

(
1

4

)(10+M)l2 ∑

u⃗1,...,u⃗10l2

w⃗1,...,w⃗l2M

s∈{1,−1}

(e−i
sΦ
2 Z ⊗ I)Υ†

sl,l2M,j′′Υ
†
−sl,10l2,j′

(
0 −iI
iI 0

)
Υ−sl,10l2,j′Υsl,l2M,j′′(e

i
sΦ
2 Z ⊗ I)

=
t

2
A−sl,10l2

(
1

4

)Ml2 ∑

w⃗1,...,w⃗l2M

s∈{1,−1}

(e−i
sΦ
2 Z ⊗ I)Υ†

sl,l2M,j′′

(
0 −ieiθ−sl,10l2 I

ie−iθ−sl,10l2 I 0

)
Υsl,l2M,j′′(e

i
sΦ
2 Z ⊗ I)

=
t

2
A−sl,10l2Asl,l2M

∑

s∈{1,−1}
(e−i

sΦ
2 Z ⊗ I)

(
0 −iei(θ−sl,10l2+θsl,l2M)I

ie−i(θ−sl,10l2+θsl,l2M)I 0

)
(ei

sΦ
2 Z ⊗ I), (D17)

where in the third line we made use of the fact that Υ−k,N,j = (Υk,N,j′)
†, where j′ := (v⃗N , . . . , v⃗1). By substituting

Eq. (D7) into Eq. (D17), we have

t
∑

j

hjHj =
t

2

∑

s

(e−i
sΦ
2 Z ⊗ I)

(
0 −ia′l,M,sa

′
l,10,−sI

ia′l,M,−sa
′
l,10,sI 0

)
(ei

sΦ
2 Z ⊗ I) = tal,M,ΦY ⊗ I, (D18)

where a′l,m,s := [1
2n tr{e−is(π/(2ml))H0}]ml2 and al,M,Φ := 1

2 (e
iΦa′l,M,−sa

′
l,10,s+e

−iΦa′l,M,sa
′
l,10,−s) (note that al,M,Φ ∈ R).

In terms of the parameters Ak,N and θk,N , it is straightforward to show that al,M,Φ can be expressed as

al,M,Φ = Al,Ml2Al,10l2 cos(θl,10l2 − θl2,Ml2 +Φ). (D19)

In Subroutine D5, the input parameters of the state are specifically chosen as (N, l, γ,M,Φ) = (N ′, l, kπ/N ′, 25k,Θ)

where N ′ = N(1, kπ, 1/(4
√
2)), with respect to which, tal,M,Φ is expressed as

tal,M,Θ = kπAl,25kl2Al,10l2 cos(θl,10l2 − θl,25kl2 +Φ). (D20)

25

Using the fact that Al,10l2 ≤ 1, we can upper bound the difference between the above equation and kπAl,10l2 cos(θl,10l2 +
Φ) by

|tal,25k,Φ−kπAl,10l2 cos(θl,10l2 +Φ)| = kπ|Al,25kl2Al,10l2 cos(θl,10l2 − θl,25kl2 +Φ)−Al,10l2 cos(θl,10l2 +Φ)|
≤ kπ|Al,25kl2 cos(θl,10l2 − θl,25kl2 +Φ)− cos(θl,10l2 +Φ)|
≤ kπ{|Al,25kl2 [cos(θl,10l2 − θl,25kl2 +Φ)− cos(θl,10l2 +Φ)]|+ |(1−Al,25kl2) cos(θl,10l2 +Φ)|}. (D21)

Invoking the inequality | cos(θ + θ′)− cos(θ)| = | −
∫ θ+θ′
θ

dx sin(x)| ≤ θ′ and Eq. (D3), we then have that

kπ{|Al,25kl2 [cos(θl,10l2 − θl,25kl2 +Φ)− cos(θl,10l2 +Φ)]|+ |(1−Al,25kl2) cos(θl,10l2 +Φ)|}

≤ kπ(|θl,25kl2 |+ |1−Al,25kl2 |) ≤ kπ

(∣∣∣∣
π3

20000k2l

∣∣∣∣+
∣∣∣∣
π2

200k

∣∣∣∣
)
< 0.16 <

1

4
√
2
. (D22)

Now, let us define F1, F2, F3 : L(Hc ⊗H) → L(Hc ⊗H) as

F1(ρ) := e−ikπAl,10l2 cos(θl,10l2+Φ)Y⊗IρeikπAl,10l2 cos(θl,10l2+Φ)Y⊗I

F2(ρ) := e−ikπal,25k,ΦY⊗Iρeikπal,25k,ΦY⊗I

F3 := quantum operation simulated by qDRIFT in steps 2 to 5 of Subroutine D6. (D23)

With this, the success probability of |0⟩-measurements and |+⟩-measurements, which is given by ⟨0| trH[F3(|0⟩⟨0| ⊗
|0⟩⟨0|)] |0⟩ and ⟨+| trH[F3(|0⟩⟨0| ⊗ |0⟩⟨0|)] |+⟩ respectively, satisfies

|S(F3, |ψ⟩)− S(F1, |ψ⟩)| ≤ |S(F3, |ψ⟩)− S(F2, |ψ⟩)|+ |S(F2, |ψ⟩)− S(F1, |ψ⟩)| <
1

4
√
2
+

1

4
√
2
=

1√
8
, (D24)

where, for any quantum operation F : L(Hc ⊗ H) → L(Hc ⊗ H) and state |ψ⟩ ∈ Hc, we define S(F , |ψ⟩) :=
⟨ψ| trH[F(|0⟩⟨0| ⊗ |0⟩⟨0|)] |ψ⟩. Here, the upper bound of |S(F3, |ψ⟩)− S(F2, |ψ⟩)| is obtained using Lemma 2, and that
of |S(F2, |ψ⟩)−S(F1, |ψ⟩)| is obtained by noting that trH[F1(|0⟩⟨0|⊗|0⟩⟨0|)] and trH[F2(|0⟩⟨0|⊗|0⟩⟨0|)] are pure states,
and so we can use the fact that the operator norm of |β⟩⟨β| − |γ⟩⟨γ| for unit vectors |β⟩ and |γ⟩ is

√
1− | ⟨β|γ⟩ |2 (see

Eq. (1.185) of Ref. [32]). In particular, ⟨β|γ⟩ in this case is evaluated as ⟨0| e−ikπ(Al,10l2 cos(θl,10l2+Φ)−al,25k,Φ)Y |0⟩ and
t = kπ. Invoking Eqs. (D21) and (D22), as well as a similar discussion to Eq. (C11), we have |S(F2, |ψ⟩)−S(F1, |ψ⟩)| ≤
1/4

√
2.

Setting the appropriate measurements as |0⟩ and |+⟩, we can express the success probabilities as

S(F1, |0⟩) =
1 + cos(2kπAl,10l2 cos(θl,10l2 +Φ))

2

S(F1, |+⟩) = 1 + sin(2kπAl,10l2 cos(θl,10l2 +Φ))

2
. (D25)

Thus, an estimate v̂Φ of 2πAl,10l2 cos(θl,10l2 +Φ) can be successfully obtained by robust phase estimation. In particular,

by setting K in Eq. (D13) as K = ceil[log2(3
√
2t/ϵ)], one can estimate Al,10l2 cos(θl,10l2 +Φ) with root mean square

of error upper bounded by ϵ/(2
√
2t) with a runtime Θ(l2t3n/ϵ3). This follows from the fact that the runtime of

generating |ϕ(N ′, l, kπ/N ′, 25k,Φ)⟩ is Θ(l2nk3) and invoking

K∑

j=1

(K − j)rj =
rK+1 −Kr2 + (K − 1)r

(r − 1)2
r > 1. (D26)

Thus, the total runtime of the robust phase estimation procedure is given by
∑K
j=1MjΘ(l2n(2j−1)3) = Θ(l2nt3/ϵ3).

Finally, by setting Φ ∈ {0, π2 }, one can obtain estimates v̂0, v̂π/2 of 2πAl,10l2 cos(θl,10l2) and 2πAl,10l2 sin(θl,10l2),
respectively with the aforementioned error and runtime. When Al,10l2 cos(θl,10l2) and Al,10l2 sin(θl,10l2) are estimated

with an error of δ1 and δ2, respectively, then the quantity |1− (Al,10l2e
iθl,10l2)/(Âle

iθ̂l)| is upper bounded by
∣∣∣∣∣1−

Al,10l2e
iθl,10l2

Âleiθ̂l

∣∣∣∣∣ =
1

|Âleiθ̂l |
|Al,10l2eiθl,10l2 − Âle

iθ̂l |

=
1

|Âleiθ̂l |

∣∣∣∣
(
Al,10l2 cos(θl,10l2)−

v̂0
2π

)
+ i

(
Al,10l2 sin(θl,10l2)−

v̂π/2

2π

)∣∣∣∣

≤ 2
√
δ21 + δ22 , (D27)

26

where the inequality comes from the fact that Subroutine D5 returns values for the estimators only if

Âl =
√
v̂20 + v̂2π/2 > 1/2. Since the root mean square errors of δ1 and δ2 are upper bounded by ϵ/(2

√
2t), it

follows that the root mean square error of |1− (Al,10l2e
iθl,10l2)/(Âle

iθ̂l)| is upper bounded by ϵ/t, as claimed in the
output of Subroutine D5. Finally, note that including the rejection condition of steps 4 and 5 of Subroutine D5 only
increases the average runtime of generating v̂0, v̂π/2 by constant factor. This is because the root mean square of

|1−(Al,10l2e
iθl,10l2)/(Âle

iθ̂l)| is upper bounded by ϵ/t and according to Eq. (D3), we have that Al,10l2 ≥ 1−π2/80 > 1/2,

and thus the probability that
√
v̂20 + v̂2π/2 ≤ 1/2 is smaller than 1/2 for sufficiently small ϵ/t.

Above, we have demonstrated the ability to accurately obtain estimates (Âl, θ̂l) for the case of l > 0. We now show
how these estimates can be used to provide estimates for cases l ≤ 0.

Lemma 7. With respect to estimates (Âl, θ̂l) with l > 0 obtained by Subroutine D5, define (Âl, θ̂l) for l ≤ 0 as

(Âl, θ̂l) :=

{
(Â−l,−θ̂−l) l < 0

(1, 0) l = 0.
(D28)

Thus defined, these provide estimates of (Al,10l2 , θl,10l2) in Lemma 5 with a root mean squared error of |1 −
(Al,10l2e

iθl,10l2)/(Âle
iθ̂l)| upper bounded by ϵ/t.

Proof: For l = 0, it is shown in the proof of Lemma 5 that (Al,10l2 , θl,10l2) = (1, 0), thus Eq. (D28) provides an exact
estimate of (Al,10l2 , θl,10l2). For l < 0, note that by Eq. (D7), we have

Al,10l2e
iθl,10l2 :=

[
tr(e−i

π
20lH0)

2n

]10l2
, (D29)

and so (Al,10l2 , θl,10l2) = (A−l,10(−l)2 ,−θ−l,10(−l)2) holds. We can then write

∣∣∣∣∣1−
Al,10l2e

iθl,10l2

Âleiθ̂l

∣∣∣∣∣ =
∣∣∣∣∣1−

A−l,10(−l)2e
−iθ−l,10(−l)2

Â−le−iθ̂−l

∣∣∣∣∣ =
∣∣∣∣∣

(
1− A−l,10(−l)2e

iθ−l,10(−l)2

Â−leiθ̂−l

)∗∣∣∣∣∣ =
∣∣∣∣∣1−

A−l,10(−l)2e
iθ−l,10(−l)2

Â−leiθ̂−l

∣∣∣∣∣ ,

whose root mean square is upper bounded by ϵ/t, thus asserting our claim.

In summary, we have shown that one can estimate the parameters (Âl, θ̂l), which are necessary to construct
appropriate corrections to the “intermediate circuit” in order to build the compiled Algorithm 4, as depicted in Fig. 12.

27

e−
i[
c
o
s
ϕ
k
X

−
si
n
ϕ
k
Y
]β
t/
N

(
F

)

×
N

(F
)
∝

1
/
ϵ

{p
k
,k
}

|+
⟩

tr

σ
u⃗

e−
ik
π
Z
/
4

e−
ik
π
H
/
2
N

(
C

)

k
σ
u⃗

{1
/4
n
,u⃗

}

×
N

(C
)

k
∝

1/
ϵ2

σ
w⃗

ei
k
π
H
/
2
N

(
C

)

k
σ
w⃗

{1
/4
n
,w⃗

}

×
N

(C
)

k

ei
k
π
Z
/
4

e−
i[
c
o
s
ϕ
k
X

−
si
n
ϕ
k
Y
]β
t/
N

(
F

)

σ
v⃗
1

e−
ik
π
H
/
2
0
k
2

σ
v⃗
1

σ
v⃗
1
0
k
2

e−
ik
π
H
/
2
0
k
2

σ
v⃗
1
0
k
2

··
·

··
·

|+
⟩

e−
ik
π
Z
/
4

×
N

(F
)
∝

1
/ϵ

{(
1
/4
n
)1

0
k
2

p
k
,

tr

(k
,v⃗

1
,.
..
,v⃗

1
0
k
2
)}

σ
v⃗
1

ei
k
π
H
/
2
0
k
2

σ
v⃗
1

··
·

··
·

σ
v⃗
1
0
k
2

ei
k
π
H
/
2
0
k
2

σ
v⃗
1
0
k
2

ei
k
π
Z
/
4

⇓

e−
i[
c
o
s
ϕ
k
X

−
si
n
ϕ
k
Y
]β̀
t/
Ǹ

(
F

)

σ
v⃗
1

e−
ik
π
H
/
2
0
k
2

σ
v⃗
1

σ
v⃗
1
0
k
2

e−
ik
π
H
/
2
0
k
2

σ
v⃗
1
0
k
2

··
·

··
·

|+
⟩

e−
ik
π
Z
/
4

×
Ǹ

(F
)
∝

1/
ϵ

{(
1/
4n

)1
0
k
2

p̀
k
,

tr

(k
,v⃗

1
,.
..
,v⃗

1
0
k
2
)}

σ
v⃗
1

ei
k
π
H
/
2
0
k
2

σ
v⃗
1

··
·

··
·

σ
v⃗
1
0
k
2

ei
k
π
H
/
2
0
k
2

σ
v⃗
1
0
k
2

ei
k
π
Z
/
4

⇓

ei
θ̂
k
Z
/
2

e−
iθ̂

k
Z
/
2

A
lg
or
it
h
m

4

A
lg
or
it
h
m

3

In
te
rm

ed
ia
te

ci
rc
u
it

·C
or
re
la
te

ra
n
d
om

in
d
ic
es

fo
r
co
n
tr
o
li
za
ti
o
n
:
u⃗
,w⃗

→
(v⃗

1
,.
..
,v⃗

1
0
k
2
)

·R
ed
u
ce

th
e
it
er
a
ti
on

n
u
m
b
er

fo
r
co
n
tr
o
li
za
ti
o
n
:
N

(C
)

k
→

1
0k

2

C
om

p
en
sa
te

th
e
er
ro
r
b
y
p
k
→
p̀
k
a
n
d
a
d
d
in
g
ga
te
s
e±

iθ̂
k
Z
/
2

((
p̀
k
,θ̂
k
,β̀
,Ǹ

(F
)
)
a
re

d
efi
n
ed

u
si
n
g
(Â

k
,θ̂
k
))

FIG. 12. Summary of compilation of Algorithm 3.—First, the random variables u⃗, w⃗ ∈ {0, 1, 2, 3}n of the controlization become correlated.
Since the error of this intermediate circuit for finite iteration number 10k2 of the controlization happens as in Eq. (18), this error is

compensated in the final step by modifying N(F) → Ǹ(F), and pk → p̀k, and introducing an additional gate e±iθ̂kZ/2 according to the
parameters (Âk, θ̂k) obtained by Subroutine D5 in Appendix D2.

28

3. Error and Runtime Analysis of Compiled Algorithm (Algorithm 4)

Here, we will prove a theorem on the error, the mean square of the error, and the runtime of Algorithm 4.

Theorem 3.

1. Algorithm 4 outputs e−if(H0)t |ψ⟩ with an error (in terms of the 1-norm) upper bounded by ϵ, i.e.

sup
dim(H′)

|ψ⟩∈H⊗H′

∥|ψ⟩∥=1

∥F ⊗ IH′(|ψ⟩ ⟨ψ|)−
∑

j

pj(Fj ⊗ IH′)(|ψ⟩ ⟨ψ|)∥1 ≤ ϵ, (D30)

where j ∈ [
⋃K̀
k=−K̀({k} × ({0, 1, 2, 3}n)10k2)]Ǹ(F) × (R× [0, 2π))K̀ is chosen from the set of all random indices,

namely (k, jk) where k ∈ {−K̀, . . . , K̀} and jk = (v⃗1:10k2) ∈ ({0, 1, 2, 3}n)10k2 for each of the Ǹ (F) iterations and

parameters Φ := [(Â1, θ̂1), . . . , (ÂK̀ , θ̂K̀)] where Âl ∈ R and θ̂l ∈ [0, 2π) (which are random due to dependence on

measurement outcomes) with l ∈ {1, . . . , K̀}, pj is the probability that j is chosen, F(ρ) := e−if(H0)tρeif(H0)t,
Fj is the unitary performed when j is chosen, and H′ is an auxiliary system of arbitrary dimension.

2. Algorithm 4 outputs e−if(H0)t |ψ⟩ with mean squared error upper-bounded by 2ϵ, i.e.

sup
dim(H′)

|ψ⟩∈H⊗H′

∥|ψ⟩∥=1

∑

j

pj∥(F ⊗ IH′)(|ψ⟩ ⟨ψ|)− (Fj ⊗ IH′)(|ψ⟩ ⟨ψ|)∥21 ≤ 2ϵ. (D31)

3. The runtime of Algorithm 4 comprises of a pre-processing step and a main process. The pre-processing step
has a runtime of Θ(K̀3t3n/ϵ3) + T4, where T4 is the sum of computation times (on a classical computer) for

step 1 (calculation of Fourier coefficients c̃k until Eq. (19) is satisfied) and step 7 (computation of Ǹ (F)),

and K̀ = O[(t/ϵ)1/3]. The main process has a runtime of Θ(C4,f t
2n/ϵ), where C4,f is a (function-dependant)

constant.

Part 1 of Theorem 3 implies in particular that for an arbitrary input state |ψ⟩ ∈ H:

∥F(|ψ⟩ ⟨ψ|)−
∑

j

pjFj(|ψ⟩ ⟨ψ|)∥1 ≤ ϵ. (D32)

In addition, part 2 of Theorem 3 implies in particular that the mean square of the difference between the ideal state
and the single-shot output state is bounded above as:

∑

j

pj∥F(|ψ⟩ ⟨ψ|)−Fj(|ψ⟩ ⟨ψ|)∥21 ≤ 2ϵ. (D33)

Therefore, we prove the error bounds stated in Algorithm 4.

Proof: We begin with the first statement.

1. Steps 2 to 13 of Algorithm 4 simulate the following quantum operation

F6 :=
∑

Φ

pΦFΦ (D34)

applied to the input state |+⟩ ⊗ |ψ⟩, where Φ := ((Â1, θ̂1), . . . , (ÂK̀ , θ̂K̀)), pΦ is the probability Φ is obtained, and FΦ

is the quantum operation simulated by qDRIFT in steps 9 to 13 of Algorithm 4 whenever Φ is chosen. The operation

29

FΦ approximates the dynamics e−iHΦt for the Hamiltonian

HΦ :=

K̀∑

k=−K̀

|c̃k|
Âk

(
1

4

)10nk2 ∑

jk∈({0,1,2,3}n)10k2

Ẁ †
k,jk

([cos(ϕk)X − sin(ϕk)Y]⊗ I)Ẁk,jk

=

K̀∑

k=−K̀

|c̃k|
Âk

(e−i
θ̂k
2 Z ⊗ I)



(
1

4

)10nk2 ∑

jk∈({0,1,2,3}n)10k2

(W
(10k2)
k,jk

)†([cos(ϕk)X − sin(ϕk)Y]⊗ I)W
(10k2)
k,jk


 (ei

θ̂k
2 Z ⊗ I)

=

K̀∑

k=−K̀

|c̃k|
Âk

Ak,10k2(e
i
θk,10k2−θ̂k

2 Z ⊗ I)


 0 eiϕkei

kπ
2 (H0+I)

e−iϕke−i
kπ
2 (H0+I) 0


 (e−i

θk,10k2−θ̂k
2 Z ⊗ I). (D35)

By defining ∆k :=
Ak,10k2e

iθ
k,10k2

Âke
iθ̂k

− 1, the last line of Eq. (D35) can be rewritten as

K̀∑

k=−K̀

|c̃k|


 0 (1 + ∆k)e

iϕkei
kπ
2 (H0+I)

(1 + ∆∗
k)e

−iϕke−i
kπ
2 (H0+I) 0


 . (D36)

This expression can be further simplified by defining a function fΦ : [−1, 1] → R as

fΦ(x) :=

K̀∑

k=−K̀

c̃k∆ke
ikπx. (D37)

Note that the output is real since ∆−k = ∆∗
k. With this, we have

HΦ = X ⊗
[
fK̀

(
H0 + I

2

)
+ fΦ

(
H0 + I

2

)]
(D38)

where fK̀(x) :=
∑K̀
k=−K̀ c̃ke

ikπx.

Now, for any quantum operation F : L(Hc ⊗H) → L(Hc ⊗H) we define the following norm

E(F) := sup
|ψ⟩∈Hc⊗H⊗H′

∥|ψ⟩∥=1
dimH′

∥F ⊗ IH′(|ψ⟩ ⟨ψ|)∥1, (D39)

where IH′ is the identity operation in L(H′). Moreover, we define

F4(ρ) := e−i(X⊗f(H0))tρei(X⊗f(H0))t

F5(ρ) :=
∑

Φ

pΦe
−iHΦtρeiHΦt =:

∑

Φ

pΦGΦ. (D40)

With these definitions at hand, we can upper bound the simulation error E(F6 − F4) using Lemma 2 and similar
arguments to those presented in Eqs. (C10) and (C11) as follows.

E(F6 −F4) ≤ E(F6 −F5) + E(F5 −F4)

= sup
|ψ⟩∈Hc⊗H⊗H′

∥|ψ⟩∥=1
dimH′

∥∥∥∥∥
∑

Φ

pΦ[FΦ ⊗ IH′(|ψ⟩ ⟨ψ|)− GΦ ⊗ IH′(|ψ⟩ ⟨ψ|)]
∥∥∥∥∥
1

+ sup
|ψ⟩∈Hc⊗H⊗H′

∥|ψ⟩∥=1
dimH′

∥∥∥∥∥
∑

Φ

pΦ[(e
−iHΦt ⊗ I) |ψ⟩ ⟨ψ| (eiHΦt ⊗ I)− (e−i(X⊗f(H0))t ⊗ I) |ψ⟩ ⟨ψ| (ei(X⊗f(H0))t ⊗ I)]

∥∥∥∥∥
1

≤
∑

Φ

pΦ∥FΦ − GΦ∥⋄ +
∑

Φ

pΦ sup
|ψ⟩∈Hc⊗H⊗H′

∥|ψ⟩∥=1
dimH′

2[1− | ⟨ψ| (e−i{X⊗(f̃((H0+I)/2)−fK̀((H0+I)/2)−fΦ((H0+I)/2))}t ⊗ I) |ψ⟩ |2]1/2

≤ ϵ

3
+
∑

Φ

pΦ2 sin(R(f̃ − fK̀ − fΦ)t/2) ≤
ϵ

3
+
∑

Φ

pΦ[R(f̃ − fK̀) +R(fΦ)]t ≤
ϵ

3
+
ϵ

3
+
∑

Φ

pΦR(fΦ)t, (D41)

30

where for any function g : [−1, 1] → R, we have R(g) := 2 max
x∈[−1,1]

|g(x)|.
The final term

∑
Φ pΦR(fΦ)t in the above equation can be upper bounded as follows. First note that, for fΦ defined

in Eq. (D37), we have

R(fΦ) ≤ 2

K̀∑

k=−K̀

|c̃k||∆k|. (D42)

Now, because the allowed error of Subroutine D5 in step 3 of Algorithm 4 is set as
√
3ϵ/(12π(

∑∞
k=−∞ |c̃k||k|)), one

can employ the Chebyshev inequality to show that the probability that |∆k| ≤ |k|(
√
3ϵC)/(12π(

∑∞
k=−∞ |c̃k||k|)t) for

all k and a fixed positive value C > 0 is lower bounded by

∏

k∈{−K̀,...,−1

1,...,K̀}

(
1− 1

k2C2

)
≥ 1− 2

(∞∑

k=1

1

k2C2

)
= 1− π2

3C2
, (D43)

where the final equality follows from the identity
∑∞
k=1(1/k

2) = π2/6.

Independently, assuming that |∆k| ≤ |k|(
√
3ϵC)/(12π(

∑∞
k=−∞ |c̃k||k|)t) holds for all k, it follows that the r.h.s. of

Eq. (D42) is upper bounded by (
√
3Cϵ)/(6πt).

Combining these two results, we have that

Pr

[
R(fΦ) ≥

√
3Cϵ

6πt

]
≤ π2

3C2
. (D44)

Making use of the identity

∑

Φ

pΦR(fΦ) =

∫ ∞

0

dxPr[R(fΦ) ≥ x], (D45)

we can upper bound
∑

Φ pΦR(fΦ) via

∑

Φ

pΦR(fΦ) ≤
∫ ∞

0

dxmin

(
1,

ϵ2

62t2x2

)
=

ϵ

6t
+

ϵ

6t
=

ϵ

3t
. (D46)

Finally substituting Eq. (D46) into Eq. (D41), we obtain

E(F6 −F4) ≤ ϵ. (D47)

Therefore,

ϵ ≥ E(F6 −F4) ≥ sup
|ψ⟩∈Hc⊗H⊗H′

∥|ψ⟩∥=1
dimH′

∥trHc
[(F6 −F4)⊗ IH′](|ψ⟩ ⟨ψ|)∥1

≥ sup
|ψ⟩∈H⊗H′

∥|ψ⟩∥=1
dimH′

∥trHc
[(F6 −F4)⊗ IH′](|+⟩ ⟨+| ⊗ |ψ⟩ ⟨ψ|)∥1

, (D48)

which is equal to the expression in D30, as required.

2. This statement follows directly by combining the above result with Lemma 1.

3. In order to prove this statement regarding the runtime, we use Lemma 3, which shows that f̃ defined for any
input function f of Algorithm 4 is 4-smooth.

Based on Lemmas 3 and 4, we have that
∑∞
k=K |c̃k| = O(1/K3) and

∑−K
k=−∞ |c̃k| = O(1/K3) for K > 1. Thus, the

truncation number K̀ defined in Eq. (19) is shown to be O((t/ϵ)1/3), as claimed. Furthermore, the runtime can be

31

split into one for pre-processing stage and one for the main process as follows.

Pre-processing: For each k ∈ {−K̀, . . . , K̀}, the runtime of generating (Âk, θ̂k) is shown in Lemma 2 to be

Θ(k2t3n/ϵ3). Thus, by summing this over all k, the total runtime of steps 2 to 6 in Algorithm 4 is Θ(K̀3t3n/ϵ3). Thus

the total runtime of the pre-processing step is Θ(K̀3t3n/ϵ3) + T4.

Main process: The average runtime of the main process in Algorithm 4 is evaluated as (num-

ber of iterations Ǹ (F))×(average runtime of steps 10 to 12)= N(β̀, t, ϵ/3) × Θ(
∑∞
k=−∞ p̀knk

2) =

Θ((
∑∞
k=−∞ |c̃k|)(

∑∞
k=−∞ |c̃k|k2)t2n/ϵ) =: Θ(C4,f t

2n/ϵ) (note that |Âk| ≥ 1/2 due to steps 4 to 5 of Subroutine
D5).

32

Appendix E: QSVT-based UHET Algorithm

We will now present and analyze an alternative procedure to achieve UHET based upon a QSVT procedure. We will
finally compare this method to Algorithms 3 and 4.

1. QSVT-based UHET Algorithm (Algorithm 7)

Formally, the QSVT-based algorithm is as follows.

Algorithm 7 QSVT-based algorithm

Input:

• A finite number of queries to a black-box Hamiltonian dynamics e±iHτ of a seed Hamiltonian H normalized as
∥H0∥op = 1 where H0 is the traceless part of H, i.e., H0 := H − (1/2n)tr(H)I, with τ > 0

• A class C3 function f : [−1, 1]→ R such that f (4) is piecewise C2 (see Appendix A1)

• Input state |ψ⟩ ∈ H
• Allowed error ϵ > 0

• Time t > 0

Output: A state approximating e−if(H0)t |ψ⟩ (t > 0) with an error in terms Eq. (2) upper bounded by ϵ

Runtime:
Pre-processing (only once): O((KQ

f,t,ϵ)
3)

Main Process: Θ((KQ
f,t,ϵ)

2/ϵ) for KQ
f,t,ϵ depending on f , t, and ϵ

Used Resources:
System: H and two auxiliary qubit Hb, Hc

Gates: e±iHτ (τ > 0) and controlled-Pauli gates on L(Hb ⊗Hc ⊗H)

Procedure:
Pre-processing:
1: Define functions f0, f1 : [−1, 1] 7→ R as per Eq. (E2)

2: Compute c
(s)
k :=

∫ 1

−1
dx 2 sin(π

10
)fs[cos (πx)] cos(kπx) and K

Q
s (s ∈ {0, 1}) that satisfies∣∣∣∣∣∣2 sin(π

10
)fs[cos (πx)]−

KQ
s∑

k=0

c
(s)
k cos(πkx)

∣∣∣∣∣∣ < Θ(ϵ) (E1)

for all x ∈ [0, 1]. Note that one can recast the above bound in terms of Chebyshev polynomials Tk as∣∣∣2 sin(π/10)fs(x′)−∑KQ
s

k=0 c
(s)
k Tk(x

′)
∣∣∣ < Θ(ϵ) for x =: (1/π) cos−1(x′) (x′ ∈ [−1, 1]), as we will employ in the coming

steps.
3: Set KQ

f,t,ϵ ← KQ
0 +KQ

1

4: For s ∈ {0, 1}, find gate sequence of QSVT for a (1, 2, 0)-block-encoding unitary Us of
∑KQ

s
k=0 c

(s)
k Tk[cos(H

Q)] on |s0⟩⟨s0| ∈
L(Hb ⊗Hc) using Bs defined Eq. (E4) (see Fig. 13)

Main Process:
5: Initialize Ucurrent ← I
6: for s ∈ {0, 1} do
7: Construct unitary U ′

s by replacing Bs in the gate sequence for Us by the random unitary B′
s which approximate Bs up

to an error of Θ(ϵ/KQ
f,t,ϵ) (see Fig. 14)

8: Ucurrent ← (S−s ⊗ I ⊗ I)U ′
sUcurrent ▷ S := |0⟩ ⟨0|+ i |1⟩ ⟨1| is the phase gate

9: end for
10: Set Ucurrent ← (HAD⊗ I ⊗ I)Ucurrent(HAD⊗ I ⊗ I)
11: Perform robust oblivious amplitude amplification [27] with n = 5 on the block of Ucurrent specified by |00⟩ ⟨00| ∈ L(Hb ⊗Hc)
12: Return Ucurrent(|0⟩⊗2 ⊗ |ψ⟩)

33

Bs := (
cosHQ i sinHQ

i sinHQ cosHQ

)
s

eiH
Q

=

s

0

e−iH
Q

s

1HAD HAD

FIG. 13. Circuit representation of Bs.—The circled number in the controlled qubits means that the unitary on the target qubit is applied
if the control qubit is that state and otherwise identity is applied.

Begin by defining functions f0 and f1 as

f0(x) :=





f0,−(x) (0 ≤ x ≤ 1
2)

cos
[
f
(

12 cos−1(x)
π − 3

)
t
]

(12 ≤ x ≤
√
3
2)

f0,+(x) (
√
3
2 ≤ x ≤ 1)

f0(−x) (−1 ≤ x ≤ 0)

f1(x) :=





f1,−(x) (0 ≤ x ≤ 1
2)

sin
[
f
(

12 cos−1(x)
π − 3

)
t
]

(12 ≤ x ≤
√
3
2)

f1,+(x) (
√
3
2 ≤ x ≤ 1)

f1(−x) (−1 ≤ x ≤ 0)

, (E2)

where f0,−, f0,+, f1,−, f1,+ are any functions that are infinitely differentiable on their domains and lead to f0 and f1
such that

1. 2 sin(π10)f0(x) and 2 sin(π10)f1(x) is bounded in [−1, 1] for all x ∈ [−1, 1]. This ensures that they can be
constructed using QSVT (in particular, using the technique presented in Theorem 10 of Ref. [28]).

2. f
(n)
s (12

+
) = f

(n)
s (12

−
), f

(n)
s (

√
3
2

+
) = f

(n)
s (

√
3
2

−
), and f

(n)
s (0+) = f

(n)
s (1−) = 0 for s ∈ {0, 1} and n ∈ {0, 1, . . . , J −

1} for any integer J ≥ 4.

The Hamiltonian HQ in step 4 is defined as

HQ :=
π(H0 + 3I)

12
. (E3)

The functions f0 and f1 are defined in such a way that

f0(cosH
Q)− if1(cosH

Q) = e−if(H0)t.

Furthermore, as we discuss in more detail below, f0 and f1 are implementable via QSVT. Since the runtime of QSVT
scales polynomially on the cutoff number KQ

s , the functions f0(x) and f1(x) are chosen to be class C3 in x ∈ [−1, 1] so
that the sum in Eq. (E1) converges rapidly to 2 sin(π10)fs(cos(πx)) and K

Q
s scales slowly with ϵ.

With respect to the above Hamiltonian, the unitary Bs in step 4 is defined as

Bs := |s⟩ ⟨s| ⊗
(

cos(HQ) i sin(HQ)

i sin(HQ) cos(HQ)

)
+ |s̄⟩ ⟨s̄| ⊗ I ⊗ I. (E4)

See Fig. 13 for its circuit representation.
By defining the following function for sb, sc ∈ {0, 1} and unitary U

ctrl2[U, (sb, sc)] := [I − (|sbsc⟩⟨sbsc|)]⊗ I + |sbsc⟩⟨sbsc| ⊗ U, (E5)

the unitary Bs can be expressed as

Bs =(I ⊗HAD⊗ I)ctrl2[e
−iHQ

, (s, 1)]ctrl2[e
iHQ

, (s, 0)](I ⊗HAD⊗ I). (E6)

The operator ctrl2[e
±iHQt, (sb, sc)] can be constructed from e±iHt via double controlization [16], which makes use

of qDRIFT. In this way, the unitary Bs can be approximated by the circuit shown in Fig. 14.

34

B′
s :=

σv⃗1

s̄

HAD

σv⃗2

1

σv⃗1

s̄

σv⃗2

1

ei(π/12)H/N

×N = Θ(KQ
f,t,ϵ/ϵ)

{(1/4n)2, (v⃗1, v⃗2)}

σv⃗3

s̄

σv⃗4

0

σv⃗3

s̄

σv⃗4

0

e−i(π/12)H/N

×N

{(1/4n)2, (v⃗3, v⃗4)}

HAD

s

0

eiπ/4I

s

1

e−iπ/4I

FIG. 14. Definition of B′
s.—ctrl2(e±iHQt, (sb, sc)) in Fig. 13 is replaced by its approximation by controlization.

In summary, the Algorithm 7 simulates the dynamics e−if(H0)t by the following steps.

I ⊗ I ⊗ e±iHt
double controlization−−−−−−−−−−−−−→ ctrl2[e

±iHQt, (sb, sc)]
Eq. (E4)−−−−−−→

Bs = |s⟩ ⟨s| ⊗
(

cosHQ i sinHQ

i sinHQ cosHQ

)
+ |s̄⟩ ⟨s̄| ⊗ I ⊗ I

QSVT & post-application of (S−s⊗I⊗I)−−−−−−−−−−−−−−−−−−−−−−−−−→



2 sin(π10)f0(cosH
Q) ·

0
· ·

0
−2i sin(π10)f1(cosH

Q) ·

· ·




pre- and post-application of HAD⊗I⊗I−−−−−−−−−−−−−−−−−−−−−−−−−→




sin(π10)e
−if(H0)t · · ·
· · · ·
· · · ·
· · · ·




robust oblivious
amplitude amplification−−−−−−−−−−−−−−−→




e−if(H0)t 0 0 0

0 · · ·
0 · · ·
0 · · ·


 . (E7)

The leftmost column and the top row of the final matrix in Eq. (E7) is filled with 0 except for the top-left block
because both eif(H0)t and the entire matrix are unitary.

The procedure of Algorithm 7 ensures that the approximation error of simulating e−if(H0)t is O(ϵ). There are
two sources of errors in the overall procedure: the error due to the approximation in Eq. (E1) and that due to the
approximation of Bs by the circuit given in Fig. 14. The former error is O(ϵ) by definition and the latter is upper

bounded by (approximation error of B′
s)× (number of queries to B′

s) = Θ(ϵ/KQ
f,t,ϵ)×KQ

f,t,ϵ = Θ(ϵ). Thus, the sum

of these errors is O(ϵ).

The runtime of the main process is asymptotically proportional to (runtime of approximating B′
s) ×

(number of queries to B′
s) = Θ(KQ

f,t,ϵ/ϵ) × KQ
f,t,ϵ = Θ((KQ

f,t,ϵ)
2/ϵ) (indeed, the total runtime of gates other than

B′
s grows slower than (KQ

f,t,ϵ)
2/ϵ and can thus be ignored). Moreover, the runtime for the pre-processing step of

Algorithm 7 is O((KQ
f,t,ϵ)

3), which can be evaluated by noting that obtaining the gate sequence for QSVT implementing

a function of polynomial of degree d takes O(d3) runtime [35].

2. Algorithm Comparison

We now compare the runtimes of the three algorithms: Algorithm 3 (uncompiled), Algorithm 4 (compiled), and
Algorithm 7 (QSVT-based). The runtimes of the pre-processing and the main processes are summarized in Table II.

Pre-processing: Rigorous comparison of pre-processing runtimes is difficult in general due to difficulty in analyzing
the time T3 and T4. Nevertheless, the runtime for Algorithm 4 increases more rapidly in terms of ϵ and n than that of

Algorithm 7 because KQ
f,t,ϵ does not depend on n and its ϵ dependence is given by KQ

f,t,ϵ = O(1/ϵ1/3) (this can be

seen by considering that fs(x) defined in Eq. (E2) is 4-smooth and applying the result of Lemma 4, and subsequently

noting that KQ
f,t,ϵ = KQ

0 +KQ
1).

35

Pre-processing Step Main Process

Algorithm 3 T3 Θ(C3,f t
4n/ϵ3)

Algorithm 4 Θ(K̀3t3n/ϵ3) + T4 Θ(C4,f t
2n/ϵ)

Algorithm 7 O((KQ
f,t,ϵ)

3) Θ((KQ
f,t,ϵ)

2/ϵ)

TAB. II. Comparison of runtimes of Algorithm 3 (uncompiled), Algorithm 4 (compiled), and Algorithm 7 (QSVT-based).—The times T3

and T4 refer to the total classical computation time for computing the Fourier coefficients and the values N(F) and Ǹ(F) in Algorithms 3

and 4 respectively. C3,f and C4,f refer to function-dependent constants in Algorithms 3 and 4 respectively. The value KQ
f,t,ϵ depends on

the function f , the time t, and the allowed error ϵ.

Main Process: The main process scaling coefficients for Algorithms 3 and 4

C3,f :=

(∞∑

k=−∞
|c̃k|
)3(∞∑

k=−∞
|c̃k|k2

)
and C4,f :=

(∞∑

k=−∞
|c̃k|
)(∞∑

k=−∞
|c̃k|k2

)
(E8)

depend only on the function f and not on n, t, and ϵ. In terms of t and ϵ, the runtime of Algorithm 4 scales slower
than that of Algorithm 3. Furthermore, both algorithms are linear in terms of n. Therefore, it follows that compilation
reduces the runtime of the main process. For completeness, the explicit value of C4,f is calculated in the proof of

Theorem 3. In contrast, the scaling coefficient for the main process of Algorithm 7, KQ
f,t,ϵ, depends on f, t, and

ϵ, and its explicit expression is difficult to obtain in general. Nonetheless, below we show that for some class of

functions, KQ
f,t,ϵ depends on the allowed error ϵ as Ω(1/ϵ2/9). Moreover, we show that a larger class of functions

satisfies KQ
f,t,ϵ = Ω(1/ϵq) for some 0 < q ≤ 2/9. Also, since KQ

s are the cutoff numbers to used to approximate

functions 2 sin(π10)fs[cos(πx)] via its Fourier series and fs(x) oscillates with frequency proportional to t in the range

x ∈ [1/2,
√
3/2] as can be seen from Eq. (E2), it is expected that KQ

f,t,ϵ = KQ
0 +KQ

1 increases as t grows. The scaling

of KQ
f,t,ϵ can be obtained as an instance of the following lemma.

Lemma 8. For a periodically 4-smooth function g : [−1, 1] → R, the following inequality is a necessary condition for

gK(x) :=
∑K
k=−K cke

−iπkx (ck are Fourier coefficients of g) to satisfy |g(x)− gK(x)| ≤ ϵ for all x ∈ [−1, 1]:

−K−1∑

k=−∞
|ck|2 +

∞∑

k=K+1

|ck|2 ≤ ϵ2. (E9)

Proof:
∫ 1

−1
dx |g(x) − gK(x)|2 ≤ 2ϵ2 is a necessary condition of |g(x) − gK(x)| ≤ ϵ for all x ∈ [−1, 1]. Due to

Parseval’s identity,
∫ 1

−1
dx|g(x)− gK(x)|2 = 2[

∑−K−1
k=−∞ |ck|2 +

∑∞
k=K+1 |ck|2], thus Eq. (E9) is a necessary condition of

|g(x)− gK(x)| ≤ ϵ for all x ∈ [−1, 1].
Assuming that f is strictly periodically J-smooth, f0 and f1 in Eq. (E2) can also be defined to be strictly periodically

J-smooth, thus KQ
f,t,ϵ satisfies K

Q
f,t,ϵ = Ω(1/ϵ2/(2J+1)) by Lemma 4. In some cases, e.g., when f (4) has some jump

(i.e., non-removable) discontinuities, f becomes strictly periodically 4-smooth, and thus for some class of function f ,

KQ
f,t,ϵ = Ω(1/ϵ2/9) holds.
We can now compare the scaling of runtimes of all three algorithms in terms of ϵ. For any class of functions f such

that KQ
f,t,ϵ scales as Ω(1/ϵ

q) (0 < q ≤ 2/9), the runtime scaling of Algorithms 3, 4, and 7 in terms of ϵ behaves as

Θ(1/ϵ3), Θ(1/ϵ), and Ω(1/ϵ1+2q), respectively. By noting that the ϵ dependence of the runtime of Algorithm 7 is

O(1/ϵ5/3) due to the relation KQ
f,t,ϵ = O(1/ϵ1/3), the hierarchy presented in Eq. (21) follows.

Finally, we describe two technical factors that make Algorithm 4 more efficient than Algorithm 7 in terms of ϵ
dependence.

Efficient inputting of high-frequency terms: QSVT requires d queries in total to the block-encoding unitary
and its inverse when implementing a polynomial function of degree d. Consequently, the runtime of the main process

of Algorithm 7 increases proportionally to the total cutoff number KQ
f,t,ϵ, which gets larger as the precision increases.

On the other hand, the runtime of the main process of Algorithm 4 has no explicit dependence on the cutoff number
K̀. This feature is enabled because the information of Fourier coefficients c̃k is input by random sampling according
to the magnitude of c̃k. As can be seen from the step 12 of Algorithm 4, applying unitaries corresponding to high

36

frequency (i.e., large k) requires Θ(k2) runtime and is an obstacle in reducing the total runtime in general. Fortunately,
such high-frequency terms c̃k for larger k typically have smaller magnitude |c̃k| than their low-frequency counterparts,
and therefore costly unitaries (i.e., for large k) are rarely chosen. Moreover, the average runtime of one iteration (steps

10 to 12 of Algorithm 4) given by Θ[(
∑K̀
k=−K̀ |c̃k|k2)/(

∑K̀
k=−K̀ |c̃k|)] is tailored to converge in the limit K̀ → ∞ by

modifying input function f to a periodically smooth function f̃ with rapidly converging Fourier coefficients, and thus
has no dependence on K̀.

Iteration number in controlization procedure is independent of ϵ: In Algorithm 7, the allowed error of

ctrl(e−iHt) for making B′
s is proportional to 1/KQ

f,t,ϵ because B
′
s and its inverse is called KQ

f,t,ϵ times in total and the
error accumulates with each query. Since the iteration number of controlization increases with increasing accuracy, the

runtime of main process of Algorithm 7 gains an additional dependence on KQ
f,t,ϵ, which in turn depends upon ϵ. This

same logic holds for Algorithm 3. On the other hand, the iteration number 10k2 of controlization in Algorithm 4 is
independent of Ǹ (F) and consequently on ϵ due to compilation, and thus the controlization does not introduce any
additional ϵ dependence.

	Universal algorithm for transforming Hamiltonian eigenvalues
	Abstract
	Introduction
	Summary of Main Results
	Task: Universal Hamiltonian Eigenvalue Transformation (UHET)
	Uncompiled UHET Algorithm
	Efficient Hamiltonian Simulation (qDRIFT)
	Controlization
	Fourier Series Simulation
	Uncompiled UHET Algorithm

	Compiled UHET Algorithm
	General Method of Compilation
	Compiled UHET Algorithm

	Comparison with a QSVT-based UHET Algorithm
	Conclusion
	Acknowledgments
	References
	Appendices
	Preliminary Definitions
	J-Smoothness of Functions
	Norms for Quantifying Errors
	Scaling Notation

	Universal Hamiltonian Eigenvalue Transformation (UHET)
	Mean Squared Error Bound

	Uncompiled UHET Algorithm
	Sufficient Number of qDRIFT Iterations
	Definition of gf in Fourier Series Simulation [Subroutine 2, Eq. (7)]
	Error Analysis of Fourier Series Simulation (Subroutine 2)
	Fourier Series Convergence

	Compiled UHET Algorithm
	Proof of Eq. (17) for the Compiled Algorithm (Algorithm 4)
	Parameter Estimation for Compiled Algorithm (Algorithm 4)
	Error and Runtime Analysis of Compiled Algorithm (Algorithm 4)

	QSVT-based UHET Algorithm
	QSVT-based UHET Algorithm (Algorithm 7)
	Algorithm Comparison

