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We present an advanced quantum error suppression technique, which we dub robust error accumu-
lation suppression (REAS). Our method reduces the accumulation of errors in any circuit composed
of single- or two-qubit gates expressed as e−iσθ for Pauli operators σ and θ ∈ [0, π); since such gates
form a universal gate set, our results apply to a strictly larger class of circuits than those comprising
only Clifford gates, thereby generalizing previous results. In the case of coherent errors—which
include crosstalk—we demonstrate a reduction of the error scaling in an L-depth circuit from O(L)

to O(
√
L). Crucially, REAS makes no assumption on the cleanness of the error-suppressing protocol

itself and is, therefore, truly robust, applying to situations in which the newly inserted gates have
non-negligible coherent noise. Furthermore, we show that REAS can also suppress certain types of
decoherence noise by transforming some gates to be robust against such noise, which is verified by
the demonstration of the quadratic suppression of error scaling in the numerical simulation. Our
results, therefore, present an advanced, robust method of error suppression that can be used in
conjunction with error correction as a viable path toward fault-tolerant quantum computation.

I. INTRODUCTION

A central problem in quantum information processing is to counteract the noise effect that arises from uncontrolled
interactions between the system of interest and its external environment. Such errors build up rapidly throughout
quantum computations, typically limiting their practical applicability to logarithmic-depth circuits [1]. At the same
time, the discovery of quantum algorithms that can run exponentially more efficiently than their classical counterparts,
e.g., Shor’s algorithm [2, 3], has stimulated global efforts to developing quantum technologies [4, 5].
Key developments in quantum error correction provide a promising route to scaleable, fault-tolerant quantum

devices [6–10]; however, the errors must be well below the so-called “error correction threshold” to provide any practical
benefit. In other words, for moderate logical gate error rates on the order of 10−8, the errors accumulate at a rate that
is insurmountable by correction procedures alone, and thus, one must incorporate other methodologies that do not rely
on correcting the errors via measurement and feedback.

To this end, two classes of such complementary approaches are widely considered, namely error mitigation and error
suppression. Quantum error mitigation is a technique that aims to reduce the bias in estimating expectation values of
physical observables at the cost of increased estimation variance [11–18]. Incorporating such error mitigation methods
has recently led to demonstrations of quantum simulations that are even competitive with state-of-the-art classical
counterparts [19–21]. Nevertheless, a crucial drawback of error mitigation is the exponential increase in the number of
measurements required to improve estimation accuracy [22–24].
Quantum error suppression takes a different approach: instead of shifting the burden to measurement overheads,

it aims to modify parts of the noisy circuit in order to construct an implementable quantum operation that best
approximates the target one. A paradigmatic example of this is the well-known dynamical decoupling protocol, which
cancels out decoherence effects on idling qubits by periodically repeating fast random pulses that delete any spuriously
imprinted information [25]. However, dynamical decoupling only serves to keep the state from decohering, and it is
a priori unclear how to extend it to situations where noisy gates are being applied for computation. Fortunately,
in such scenarios, coherent errors in circuits composed of Clifford gates, such as those caused by accidental gate
overrotation, can be suppressed via related techniques that similarly beneficially harness randomness, e.g., probabilistic
compiling [26–28], Pauli twirling [29–31], and randomized compiling [32, 33].
Nonetheless, the class of noise that can be counteracted via such methods is rather limited and often surpassed in

realistic settings. Although coherent gate errors in Clifford circuits can be dealt with by previous techniques, a number
of practical challenges remain that must be surmounted to unleash the full potential of error suppression. Firstly, most
known methods break down when considering non-Clifford circuits. Secondly, it is not clear that the known techniques
are robust against errors in their own application (as opposed to those occurring in the computation gates). Lastly, the
extent to which error suppression techniques can counteract decoherence gate-level errors (while keeping the desired
gate applied) is yet to be determined. To summarize, it remains an open question whether one can reliably suppress a
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wide class of errors that concurrently include both coherent and decoherent effects—as is the case in reality—even for
non-Clifford circuits.

In this work, we present an advanced quantum error suppression technique, which we dub robust error accumulation
suppression (REAS), to address these problems. Our method reduces the accumulation of errors in any circuit
composed of single- or two-qubit gates expressed as e−iσθ for Pauli operators σ and θ ∈ [0, π); since such gates form
a universal gate set, our results apply to a strictly larger class of circuits than those comprising only Clifford gates,
thereby generalizing previous results. In the case of coherent errors—which includes spectator error as discussed in
Ref. [34]—we demonstrate a reduction of the error scaling in an L-depth circuit from O(L) to O(

√
L). Crucially,

REAS makes no assumption on the cleanness of the error-suppressing protocol itself and is, therefore, truly robust,
applying to situations in which the newly inserted gates have non-negligible coherent noise. Furthermore, we show
that REAS can also suppress certain types of decoherence noise, namely those that are well-approximated by a weak
system-environment coupling, by demonstrating numerical evidence for the quadratic suppression of error scaling. Our
results, therefore, present an advanced, robust method of error suppression that can be used in conjunction with error
correction as a viable path toward fault-tolerant quantum computation.

II. ROBUST ERROR ACCUMULATION SUPPRESSION

A. Layered Circuits

We begin by presenting the framework of circuit-based quantum computation with errors. Suppose that one wishes
to implement a layered circuit consisting of single- or two-qubit gates of the form e−iσθ for rotation angle θ ∈ [0, π)

(which can cover all gates of the form e−iσθ
′
for θ′ ∈ R up to a global phase). Such a circuit consisting of L layers of

gates applied to an n-qubit system can be expressed as

L∏
ℓ=1

⊗
q⃗∈Ql

e−iσℓ,q⃗ θℓ,q⃗

 . (1)

Here, ℓ labels the layers of the circuit, Qℓ consists of disjoint subsets of {1, . . . , n} of at most length two, with q⃗ ∈ Qℓ
specifying the particular qubits that acted on non-trivially in layer ℓ (with identity operators implied on the rest). One
can furthermore modify the above description by grouping layers into B blocks (which can now comprise sequentially
implemented gates on certain qubits), leading to the form

B∏
b=1

∏
ℓb

 ⊗
q⃗∈Qℓb

e−iσℓb,q⃗
θℓb,q⃗

 , (2)

where now ℓb labels the layer within each block b. We refer to the Pauli operators σℓb,q⃗ inside the exponential in the
desired circuit as “computation gates” in order to distinguish them from another type of Pauli gates that will be
introduced in the following section.

B. Motivating Example

In order to motivate the problem at hand, we now analyze the impact of (small) coherent gate errors on block-layered
quantum circuits of the form in Eq. (2). Intuitively, the operation applied to each layer is shifted slightly by some
additional unitary rotation, leading to the actual implementation of ⊗

q⃗∈Qℓb

e−iσℓb,q⃗
θℓb,q⃗

 [I + iϵCℓb ] , (3)

where ∥Cℓb∥op ≤ 1 for all b and ℓb, and ϵ > 0 is small such that I + iϵCℓb is close to the identity, encoding the
assumption that the error in each layer is not too large. In any such layered circuit, there are L =

∑
b ℓb layers where

O(ϵ) errors can occur, and thus the total error can be O(Lϵ) in the worst case.
Inspired by the Pauli twirling method, we now consider the effect of inserting random Pauli operators on all qubits

between each block. Let σv⃗b :=
⊗n

k=1 σ
(k)
vb for vb ∈ {0, 1, 2, 3} be a uniformly randomly sampled n-qubit Pauli operator
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applied before block b. Since, for tensor products of qubit Pauli gates, any such overall operation either commutes or
anti-commutes with any Pauli gates e−iσθ applied in the subsequent block, one can define

s :=

{
1 if σ and σv⃗ commute

−1 if σ and σv⃗ anti-commute
(4)

in order to express the transformation between blocks succinctly as

e−iσθ 7→ σv⃗e
−isσθσv⃗. (5)

Note that the technique of transforming Pauli rotation gates to the form of Eq. (5) itself is not new (see, e.g., Ref. [35]).
However, in previous works, the error on the inserted Pauli gate σv⃗, as well as the possible dependence of such errors
on the rotation direction s, was not explicitly considered. Here, we demonstrate explicitly that such errors can also be
dealt with, therefore showing that our method of error suppression is robust.
In the absence of errors, both the original gate e−iσθ and the average transformed one (1/4)n

∑
v⃗ σv⃗e

−isσθσv⃗ lead
to the same transformation. However, whenever the computation gate eisσv⃗θ is affected by a coherent error (i.e.,
corresponding to a unitary rotation of the form I + iϵCs), the original gate suffers from an O(ϵ) error, whereas the
transformed gate undergoes(
1

4

)n∑
v⃗

σv⃗
[
e−isσθ(I + iϵCs)

]
σv⃗ =

(
1

4

)n∑
v⃗

e−iσθ[I + iϵσv⃗Csσv⃗] = e−iσθ[I + iϵ(αI + βσ)] = eiϵαe−i(θ−ϵβ)σ +O(ϵ2),

(6)

where α and β are the coefficients of the term in Cs proportional to I and sσ, respectively. This can be shown from(
1

4n

) ∑
v⃗∈{0,1,2,3}n

σv⃗σσv⃗ =

{
I for σ = I

0 for σ ̸= I
(7)

and (
1

4n

) ∑
v⃗∈{0,1,2,3}n

σv⃗sσ
′σv⃗ =

{
σ for σ = σ′

0 for σ ̸= σ′ . (8)

Since eiϵα only contributes to a global phase and can thus be ignored, the additional O(ϵ) shift −ϵβ in the rotation
angle is the only error that must be dealt with in order to erase all O(ϵ) error within each layer.

The general expression for how the overall layered circuit with coherent errors transforms on average upon inserting
random Pauli gates between blocks is(

1

4n

)B ∑
v⃗1,...,v⃗B

σv⃗B ∏
ℓB

 ⊗
q⃗∈QℓB

e−is σℓB,q⃗ θℓB,q⃗

B−1∏
b=1

σv⃗b+1:b

∏
ℓb

 ⊗
q⃗∈Qℓb

e−is σℓb,q⃗
θℓb,q⃗

σv⃗1
=

B∏
b=1

∏
ℓb

 ⊗
q⃗∈Qℓb

e−iσℓb,q⃗
(θℓb,q⃗+ϵβℓb,q⃗

)

+O(ϵ+Bϵ2). (9)

Here, we have introduced the notation u⃗j:k for two vectors that satisfy σu⃗j:k
∝ σu⃗j

σu⃗k
and implicitly understand the

value of s to depend upon whether or not each inserted Pauli gate string commutes or anti-commutes with each layer
of computational gates in the neighboring block. We refer to the random Pauli operators σv⃗1 , σv⃗2:1 . . . , σv⃗B as the
“inserted Pauli gates” to distinguish them from the computational Pauli gates.

In the following, we will demonstrate a method that cancels the O(ϵ) errors caused by the shift in rotation angle.
This leaves an overall error that scales as O(ϵ + Bϵ2), which approaches O(Bϵ2) for circuits with high gate depth.
Importantly, our procedure also works when the inserted operations themselves are noisy (which we have not explicitly
included above but will below), thereby demonstrating a level of robustness.

C. Robust Error Accumulation Suppression

We now present our method of robust error accumulation suppression (REAS). This procedure comprises of first
performing a calibration process by estimating the rotation error in each layer, and then inserting random Pauli gates
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in order to counteract this in a tailored manner, removing all O(ϵ) errors as we will show in Sec. IIIA. An optional
third step involves transforming all single-qubit computational gates into two-qubit ones in such a way that certain
types of decoherence errors can also be suppressed, as we will discuss in Sec. III B. Details are provided in App. A.

Calibration. The calibration step is performed by considering each layer of the circuit individually. For each chosen
layer ℓ, one repeats the computational gates of that layer K times and intersperses it with random Pauli gate strings,
which leads to1

(
1

4n

)K ∑
v⃗1,...,v⃗K

σv⃗K

⊗
q⃗∈Qℓ

e−is σℓ,q⃗ θℓ,q⃗

 K∏
k=1

σv⃗k+1:k

⊗
q⃗∈Qℓ

e−is σℓ,q⃗ θℓ,q⃗

σv⃗1 . (10)

Since the undesired shift in the rotation angle accumulates by repeating the same layer K times, the value of ϵβℓ,q⃗ can
be estimated via robust phase estimation [36]. Since each Qℓ only contains disjoint subsets, this procedure can be
applied for all ℓ simultaneously. In order to obtain an estimate with at most O(ϵ2) error, K should be taken to be
O(1/ϵ2). Note finally that the error term of O(ϵ+Bϵ2) can still be small enough to effectively perform robust phase
estimation by taking B proportional to 1/ϵ2.

Inserting Random Pauli Gates. Using the value of the rotation error shifts obtained during the calibration
procedure, one can then insert random Pauli gate strings into the calibrated layered circuit to specifically suppress the
errors in each block. Explicitly, this is achieved by shifting the rotation angle of all computational Pauli gates in the
original circuit by angles of the same magnitude as that estimated in the calibration but of the opposite sign to cancel
out the error.

It is straightforward to see that our method works to suppress errors in non-Clifford circuits since the values of
the rotation angles above are not necessarily from a discrete set. Moreover, as we will demonstrate in the coming
section, additional coherent errors on the inserted Pauli gates can also be dealt with, thereby endowing our method
with robustness that is crucial in realistic settings.

III. MAIN RESULTS

A. Suppressing the Accumulation of Coherent Errors

The REAS scheme suppresses any coherent error, both on the computational Pauli gates and on the inserted ones,

in such a way that the error on the overall circuit
∏L
ℓ=1

(⊗
q⃗∈Qℓ

e−iσℓ,q⃗θℓ,q⃗
)
decreases from O(ϵL) to O(ϵ+ ϵ2L) on

average.2

Up to now, we have analyzed REAS in the setting where one averages over the inserted random Pauli gates. Although
it might seem at first glance that the average case being close to the ideal one is not related to the difference between
the ideal and any individual gate, in App. B, we show that the former implies that the root mean square (RMS) of the
latter difference is small, thereby bounding “worst case” scenarios. In particular, we show that the RMS error (using

the diamond distance) between the error-free unitary implemented by
∏L
ℓ=1

(⊗
q⃗∈Qℓ

e−iσℓ,q⃗θℓ,q⃗
)
and any single-shot

unitary operator implemented after calibration in a given run with the random Pauli gate string inserted scales as
O(
√
ϵ+ ϵ2L) which approaches O(ϵ

√
L) in the regime L≫ 1/ϵ.

Now, we briefly explain how the REAS suppresses the error on inserted random Pauli operators. Suppose that a
single error term iϵCv⃗b′+1;b′

is chosen at a Pauli operator σv⃗b′+1;b′
of

(
1

4n

)B ∑
v⃗1,...,v⃗B

σv⃗B ∏
ℓB

 ⊗
q⃗∈QℓB

e−is σℓB,q⃗ θℓB,q⃗

B−1∏
b=1

σv⃗b+1:b

∏
ℓb

 ⊗
q⃗∈Qℓb

e−is σℓb,q⃗
θℓb,q⃗

σv⃗1 , (11)

1 To reiterate, the value of s in each term here is not the same, as it depends explicitly upon the commutation relation with the Pauli gate
string inserted in its neighboring position.

2 It is straightforward to see that if one takes the maximum size of any block to be upper bounded by a constant, this result generalizes to

reduce the error on the overall circuit
∏B

b=1

∏
ℓb

(⊗
q⃗∈Qℓb

e
−iσℓb,q⃗

θℓb,q⃗
)
from O(ϵB) to O(ϵ+ ϵ2B).
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so that the overall gate sequence is transformed into an expression of form(
1

4n

)B ∑
v⃗1,...,v⃗B

σv⃗B [· · · ]σv⃗b′+2;b′+1

∏
ℓb′+1

 ⊗
q⃗∈Qℓ

b′+1

e
−isσℓ

b′+1
,q⃗θℓ

b′+1
,q⃗

 (σv⃗b′+1;b′
iϵCv⃗b′+1;b′

)
∏
ℓb′

 ⊗
q⃗∈Qℓ

b′

e−isσℓ
b′ ,q⃗

θℓ
b′ ,q⃗

σv⃗b′;b′−1
[· · · ]σv⃗1 .

(12)

This can be rewritten to(
1

4n

)2 ∑
v⃗b′ ,v⃗b′+1

B∏
b=b′+1

∏
ℓb

⊗
q⃗∈Qℓ

e−iσℓb,q⃗
θℓb,q⃗

σv⃗b′ iϵCv⃗b′:b′+1
σv⃗b′

b′∏
b=1

∏
ℓb

⊗
q⃗∈Qℓ

e−iσℓb,q⃗
θℓb,q⃗


= [· · · ]

(
1

4n

)∑
v⃗b′

σv⃗b′

 1

4n

∑
v⃗b′+1

iϵCv⃗b′:b′+1

σv⃗b′ [· · · ] = O(ϵ2), (13)

where [· · · ] represents the terms that are not important for the following result. Since
∑
v⃗b′+1

Cv⃗b′+v⃗b′+1
is independent

of v⃗b′ and the term in iϵCv⃗b′:b′+1
that is proportional to the identity can be taken to be O(ϵ2) without loss of generality,

as shown in App. A.

B. Suppressing the Accumulation of Decoherence Errors (with Single Pauli Transformation)

The original procedure of REAS comprising calibration and then inserting random Pauli gates cannot suppress
general error due to decoherence. However, we now incorporate an additional step, which we dub “single Pauli
transformation”, that allows our method to deal with certain classes of decoherence errors, in particular those modeled
by weak system-environment interactions. See App. C for details.
Single Pauli Transformation. We modify all single-qubit computation gates e−isσlb,q⃗

θlb,q⃗ (i.e., except for the
inserted random Pauli operators) as follows

eisY It → ei
π
4XZeisZZte−i

π
4XZ

eisZIt → e−i
π
4XIei

π
4XZeisZZte−i

π
4XZei

π
4XI

eisXIt → ei
π
4 ZIei

π
4XZeisZZte−i

π
4XZe−i

π
4 ZI . (14)

This transformation makes the single-qubit Pauli rotation gate robust against decoherence errors, thereby enabling the
tolerance of the REAS procedure against such noise. As we will discuss below, this mapping allows us to suppress
decoherence errors that are up to first order in the operator norm of the interaction Hamiltonian.3

Upon invoking this single Pauli transformation, the error-suppressing properties of REAS against decoherence
errors become similar to those explained previously. In particular, this procedure suppresses decoherence error on
both the original Pauli rotation gates and the inserted random Pauli operators in such a way that the error on the

overall circuit
∏L
ℓ=1

(⊗
q⃗∈Qℓ

e−iσℓ,q⃗θℓ,q⃗
)
changes from O(ϵL) to O(ϵ+ ϵ2L) in the average case; similarly, the RMS

of the diamond distance between the error-free unitary operation implemented by
∏L
ℓ=1

(⊗
q⃗∈Qℓ

e−iσℓ,q⃗θℓ,q⃗
)
and any

single-shot unitary operator implemented after calibration in a given run with random Pauli gate string inserted scales
as O(

√
ϵ+ ϵ2L).

We model the decoherence error via introducing an interaction Hamiltonian H ′
ℓ,q⃗,sq⃗

(t) ∈ H ⊗Henv of order ϵ that

leads to the pulse Hamiltonian that implements the desired e−isq⃗σℓ,q⃗θℓ,q⃗ . Note that, since H ′
ℓ,q⃗,sq⃗

(t) can contain

arbitrary terms that lead to both coherence and incoherence errors, our statements here are a direct generalization of
those made in the previous section regarding coherent errors.

3 The ZZ rotation common to all terms can be changed to any other two-qubit Pauli rotation (e.g., ZX) as long as the s-dependence only
appears non-trivially at the two-qubit level.
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We now move on to analyze the class of decoherence errors that can be dealt with via REAS. We assume that the

decoherence noise applied to the layer
(⊗

q⃗∈Qℓ
e−isq⃗σℓ,q⃗θℓ,q⃗

)
can be expressed as

T exp

−i∫ T

0

dt′

∑
q⃗∈Qℓ

Hℓ,q⃗,sq⃗ (t
′)

+Henv +
∑
q⃗∈Qℓ

H ′
ℓ,q⃗,sq⃗

(t′)

 , (15)

where Hℓ,q⃗,sq⃗ (t
′) ∈ H is the time-dependent pulse Hamiltonian to implement the desired gate e−isq⃗σℓ,q⃗θℓ,q⃗ , H ′

ℓ,q⃗,sq⃗
(t′) ∈

H ⊗ Henv is the undesired Hamiltonian that is induced when applying Hℓ,q⃗,sq⃗ in the presence of the environment,
Henv ∈ Henv is the background Hamiltonian on environment, and T is the time ordering operator. Again, identity
operators on subspaces where the dynamics acts trivially are implied. We also assume that the undesired Hamiltonian
H ′
ℓ,q⃗,sq⃗

(t′) does not contain interaction terms involving more than two systems (either qubits in H or subsystem in

Henv); since most Hamiltonians in nature involve at most two-body interactions, this assumption seems natural.
Many relevant decoherence mechanisms, such as depolarizing, amplitude damping, and dephasing, can be expressed

by this interaction Hamiltonian models. Indeed, for single-qubit decoherence channels

Edplp (ρ) := (1− p)ρ+ p
I

2
, Eadγ (ρ) := E0ρE

†
0 + E1ρE

†
1, Edphp (ρ) := (1− p)ρ+ pZρZ, (16)

where

E0 :=

(
1 0
0
√
γ

)
and E1 :=

(
0
√
γ

0 0

)
, (17)

their action can be modeled as

Edpl
sin2(2δt)

(ρ) = trenv

[
e−iδt(X⊗Xenv+Y⊗Yenv+Z⊗Zenv)

(
ρ⊗ Ienv

2

)
eiδt(X⊗Xenv+Y⊗Yenv+Z⊗Zenv)

]
Eadsin2(δt)(ρ) = trenv

[
e−i

δt
2 (X⊗Xenv+Y⊗Yenv)(ρ⊗ |0⟩ ⟨0|env)e

i
δt
2 (X⊗Xenv+Y⊗Yenv)

]
Edph
sin2(δt)

(ρ) = trenv

[
e−iδt(Z⊗Zenv)

(
ρ⊗ Ienv

2

)
eiδt(Z⊗Zenv)

]
. (18)

As is the case regarding dynamical decoupling, note that different ways of modeling decoherence in this interaction
picture can lead to the different performances of REAS. For instance, in a similar discussion to the one shown in [37],
any decoherence error modeled by quantum channels on the system without referring to its environment cannot be
erased by REAS (as can be easily seen by considering the case where depolarizing channels act on all gates).

IV. NUMERICAL RESULTS

We now present numerical simulations that showcase the efficacy of our results. In all situations, we consider
the setting where H (qubits: S1, S2) and Henv (qubits: E1, E2) are two-qubit systems. All Pauli rotation gates and
inserted Pauli gates are affected by decoherence noise simulated by applying the global unitary e−iγH ∈ H ⊗Henv,
where H is normalized as ∥H∥2 = 1 and the parameter γ specifies the scale of noise, after each gate. The value of γ is
common across all gates, but the operator H consisting of single-qubit Pauli terms on all systems and two-qubit Pauli
terms on S1E1 and S2E2 are randomly chosen for each gate (unless specified otherwise). For simplicity, we assume
that the rotation angle can only take values in ±π2 , ±

π
4 , and ±

π
8 and do not consider parallel implementation of the

computational Pauli gates.
For the deep circuit in Sec. IVA, we compare our REAS calibration method to the theoretical prediction, as well as

with conventional calibration techniques (i.e., performing phase estimation without inserting random Pauli gates).
For the simulations shown in Secs. IVB and IVC, we chose the noise Hamiltonians in such a way that the first-order
γ term in the shift in rotation angle becomes 0 to avoid the calibration step, which turned out to require too long
computation time to give precise results. Finally, the initial state of the circuit is |0⟩⊗4

in all simulations.

A. Effectiveness of REAS in Deep Circuit

Here, we demonstrate the effectiveness of our REAS scheme in a deep circuit. We consider a circuit block of depth 3
in Fig. 1 (a) containing only two-qubit Pauli gates. The string “YZ8” refers to the Pauli rotation e−i

π
8 ZY ⊗ Ienv (note
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FIG. 1. (a) Repeated circuit.—We consider a deep circuit composed of repeated blocks Y Z8, ZY -8, Y Z-8, where, e.g., Y Z8 corresponds to

e−iπ
8
Y Z ⊗ Ienv and similar for the others. (b) REAS performance in a deep circuit.—The blocks are iterated a number of times, leading to

overall circuits of growing depth, and measure the expectation value of IZII. (c) Shift in rotation angle (10−3 rad).—Here we calculate the
shift in rotation angle, i.e., the coherent error, in theory as well as with REAS and with conventional calibration techniques, highlighting
the performance of the former.

that the order of Y and Z in the string is reversed, such that Z acts on S0 and Y acts on S1, to make it consistent
with the qiskit notation). Other strings are interpreted in the same way. In Fig. 1 (b), we verify numerically that
the theoretical prediction of the RMS between the ideal circuit and a single-shot unitary operator implemented after
calibration in a given run of the circuit with random Pauli gates inserted scales as O(

√
L).

We first perform the REAS calibration to obtain an estimate of the shift in the rotation angle of each gate in Y Z8,
ZY -8, and Y X-8. Throughout the simulation, we fix the noise parameter γ = 0.01 and introduce a bias in choosing H
of the coherent noise e−iγH ; this is done so that the term proportional to the computational Pauli operator is likely to
have a large coefficient, in order to clearly demonstrate the effect of calibration.

We then apply the inverse shift of the rotation angles applied according to the estimates obtained in the REAS
calibration, before repeating the circuit block 1, 2, 5, 10, 20, 50, 100, 200, and 500 times (so that the total circuit depth
can reach 1500 at maximum), and measuring the expectation value of the observable IZII (i.e., Z on S1). Finally,
we compute the RMS (for sampling number 50) between the ideal expectation value and that obtained in the noisy
circuit, both with and without REAS.

The graph in Fig. 1 (b) shows that the scaling of the RMS of the difference in the expectation value is nearly of

order (Iteration number)
1/2

. Although the theory only predicts that the RMS is upper bounded by a function scaling

like (Iteration number)
1/2

, which does not imply that a change in the value of RMS always follows this scaling (e.g.,
oscillations of the RMS value are possible), the value of the power calculated here is ≈ 0.501, corresponding closely
to the upper bound. In contrast, the corresponding scaling for the case without REAS grows faster (approximately
linearly) until it reaches the saturation point. The table in Fig. 1 (c) shows that the value of rotation shift caused by
the coherent error is precisely estimated by the REAS calibration with error less than 0.1× 10−3 rad. In contrast, the
estimate of this rotation shift deviates further from the theoretical prediction when using calibration without REAS.
This result implies that the usual calibration based on the phase estimation without inserting random Pauli cannot
precisely remove the effect of rotation shift and thus REAS calibration is required.

B. Suppression of the First-order Error

In Fig. 2, we demonstrate that the first-order term of the error vanishes in the regime where γ is near zero (i.e., the
weak-coupling regime), as predicted by theory. We randomly generate a circuit with a depth of 1000, which only contains
two-qubit Pauli rotations. For γ ∈ {0.0001, 0.0003, 0.001, 0.003}, we compute the average trace distance between the
state obtained after running the error-free circuit and that obtained after running a noisy circuit without/with REAS
(sampling number: 4000). The simulation in Fig. 2 shows a near quadratic dependence of the trace distance on γ
when using REAS, whereas the scaling for the case without REAS is near linear for small γ.
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FIG. 2. Suppression of First-order Error.—Here we demonstrate that in the limit γ → 0, the first order error term vanishes when REAS is
applied, in contrast to the case where it is not, as predicted by theory.

C. Effectiveness of Single Pauli Transformation

In Fig. 3, we demonstrate how incorporating the single Pauli transformation helps to reduce decoherence noise.
We randomly generated a circuit with a depth of 1000, which contains both single-qubit and two-qubit Pauli gates.
For γ ∈ {0.0002, 0.0005, 0.001, 0.005}, we then computed the average trace distance between the state obtained after
running the ideal circuit and that obtained after running the noisy circuit first without REAS, and then with REAS,
both with and without the single Pauli transformation (sampling number: 4000). The simulation shown in Fig. 3
shows that the circuit implemented with the single Pauli transformation included displays a smaller trace distance in
the small γ regime compared to the case where Pauli rotation is implemented directly without said transformation
procedure.

FIG. 3. Effectiveness of Single Pauli Transformation.—Here we demonstrate the suppression of decoherence errors by comparing three
situations: first, without REAS (blue); second, with REAS but without incorporating the single Pauli transformation procedure (orange);
and third, with REAS and single Pauli transformation (green). The behavior improves accordingly.

V. SUMMARY

To summarize, we have presented an advanced, robust method of quantum error suppression. The ability to deal
with non-Clifford circuits and incorporate both coherent and decoherence errors, both in the original circuit and
in its modification, stems from combining robust phase estimation techniques with a calibrated Pauli twirling-type
procedure, as described in Secs. II and III. To highlight the immediate applicability of our results, we present numerical
evidence for the quadratic reduction in error growth presented in Sec. IV. Since the types of errors that our method
is tailor-made to deal with go far beyond the current state-of-the-art, we expect our methods to be widely adopted
across a variety of platforms.
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Looking forward, extending our method to deal with leakage/qubit loss will be an important generalization. Secondly,
an improved technique of dealing with errors across many qubits, e.g., non-local crosstalk, is required since the
performance of our technique suffers in terms of qubit number. Lastly, actively suppressing errors in complex non-
Markovian processes remains of utmost importance, especially as the timescales over which one can access quantum
systems are ever decreasing, making non-trivial temporal correlations more prevalent [38–44].

NOTE

Upon completion of this work, we became aware of a related method that generalizes Pauli twirling techniques to
non-Clifford circuits [45].
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Appendix A: Suppression of Coherent Errors by REAS

Here, we demonstrate how the REAS protocol can deal with coherent errors. For simplicity, suppose that the gate
sequence that one wishes to implement in the computation does not involve parallel application of Pauli rotation gates,
i.e., it can be written as

L∏
j=1

e−iσjθj ∈ L(H) (A1)

using single- or two-qubit Pauli operators σ1, . . . , σL and rotation angles θ1, . . . , θN . Again, we abbreviate the tensor
product with the identity on the systems that undergo trivial dynamics. Suppose that coherent errors affect each
Pauli rotation e−isσjθj (s ∈ {+1,−1}) so that the actual noisy gate implemented is expressed as e−isσjθj [I + iϵCs,j ]
for some unitary I + iϵCs,j where ϵ > 0 and ∥Cs,j∥op ≤ 1 for all (s, j). Here, we assume that the same error occurs on
the same type of gate at any time, namely, Cs,j = Cs,k if (σj , θj) = (σk, θk), which is rather natural and required to
enable calibration.

Since each Cs,j is defined on H, it can be decomposed in terms of a linear combination of n-qubit Pauli operators as

Cs,j =:
∑

v⃗∈{0,1,2,3}n

αv⃗,j(s)σv⃗ (A2)

using complex numbers αv⃗(s) ∈ C. Importantly, note that αv⃗,j(s) can be further decomposed into a sum of
s-dependent part and s-independent part as αv⃗,j(s) =: αv⃗,j + s∆αv⃗,j , where αv⃗,j := 1

2 [αv⃗,j(1) + αv⃗,j(−1)] and
∆αv⃗,j :=

1
2 [αv⃗,j(1)− αv⃗,j(−1)]. We will frequently make use of this technique throughout this analysis.

Since the operator [I + iϵCs,j ] is unitary, it follows that[
I + iϵ

∑
v⃗

αv⃗,j(s)σv⃗

][
I − iϵ

∑
v⃗

α∗
v⃗,j(s)σv⃗

]
= I + iϵ

(∑
v⃗

(αv⃗,j(s)− α∗
v⃗,j(s))

)
+O(ϵ2) = I, (A3)

which implies that the 0th order ϵ term α
(0)
v⃗,j of αv⃗,j is real. Moreover, we can take the 0th order ϵ term α0⃗,j , namely

α
(0)

0⃗,j
, the dominant term of the coefficient of I, to be 0 without loss of generality. This is because it can be canceled

via an appropriate global phase, as follows

1− iϵα(0)

0⃗,j√
1 + (ϵα

(0)

0⃗,j
)2

[
I + iϵ

∑
v⃗

(α
(0)
v⃗,j(s) +O(ϵ))σv⃗

]
=

1√
1 + (ϵα

(0)

0⃗,j
)2

I + iϵ

O(ϵ)I +
∑
v⃗ ̸=0⃗

(
α
(0)
v⃗,j(s) +O(ϵ)

)
σv⃗




= (1−O(ϵ2))

I + iϵ

O(ϵ)I +
∑
v⃗ ̸=0⃗

(
α
(0)
v⃗,j(s) +O(ϵ)

)
σv⃗




=: I + iϵ
∑
v⃗ ̸=0⃗

α
(0)
v⃗,j(s)σv⃗ +O(ϵ2). (A4)

Thus, we assume that Cs,j is defined such that α
(0)

0⃗,j
(s) = 0 for all (s, j).

Now, we move on to the error analysis of the gate sequence obtained by inserting random Pauli gates via REAS into
Eq. (A1). This leads to

σv⃗Le
−isLσLθL

L−1∏
j=1

[
σv⃗j+1:j

e−isjσjθj
]
σv⃗1 , (A5)

where v⃗1, . . . , v⃗L are uniformly randomly chosen vectors. For simplicity, here we have assumed that a random Pauli
gate is inserted between all single Pauli rotation gates. Recall that sj ∈ {+1,−1} is defined as

sj :=

{
1 (σj and σv⃗j commutes)

−1 (σj and σv⃗j anti-commutes)
. (A6)
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When such a gate sequence is applied on an arbitrary input state ρ ∈ L(H), the result is

(
1

4n

)L ∑
v⃗1,...,v⃗L

σv⃗Le−isLσLθL

←−−
L−1∏
j=1

[
σv⃗j+1:j

e−isjσjθj
]
σv⃗1

 ρ
σv⃗1

−−→
L−1∏
j=1

[
eisjσjθjσv⃗j+1:j

]
eisLσLθLσv⃗L


=

(
1

4n

)L ∑
v⃗1,...,v⃗L

σv⃗Le−isLσLθL

←−−
L−1∏
j=1

[
σv⃗j+1

σv⃗je
−isjσjθj

]
σv⃗1

 ρ
σv⃗1

−−→
L−1∏
j=1

[
eisjσjθjσv⃗jσv⃗j+1

]
eisLσLθLσv⃗L

 . (A7)

Here, we use notation
←−∏

and
−→∏

to distinguish the order of applying the gate sequences, defined such that

←−
L∏
j=1

Mj =ML · · ·M1 and

−→
L∏
j=1

Mj =M1 · · ·ML (A8)

for linear operators M1, . . . ,ML. It is straightforward to verify that when no error terms appears, Eq. (A7) reduces to
the ideal state transformation ←−L∏

j=1

e−iσjθj

 ρ

−→L∏
j=1

eiσjθj

 , (A9)

which can be seen by moving the inner Pauli operators σv⃗j outward, making them pass through e±isjσjθj and thereby

changing e±isjσjθj to e±iσjθj , and subsequently canceling with the corresponding outer σv⃗j operator.

We now prove that, as claimed in the main text, coherent errors lead to Eq. (A7) being transformed as←−L∏
j=1

e−iσj(θj−ϵ∆θj)

 ρ

−→L∏
j=1

eiσj(θj−ϵ∆θj)

+O(ϵ+ ϵ2L), (A10)

where ϵ∆θj := tan−1(ϵ∆α
(0)
w⃗j ,j

) where σw⃗j
:= σj . Our technique of erasing errors is based on the following equations

regarding averaging over an n-qubit Pauli operator σ(
1

4n

) ∑
v⃗∈{0,1,2,3}n

σv⃗σσv⃗ =

{
I for σ = I

0 for σ ̸= I
(A11)

and (
1

4n

) ∑
v⃗∈{0,1,2,3}n

σv⃗s(σv⃗, σ
′)σσv⃗ =

{
σ′ for σ = σ′

0 for σ ̸= σ′ (A12)

where s(σv⃗, σ
′) is defined as

s(σv⃗, σ
′) :=

{
1 (σv⃗ and σ′ commutes)

−1 (σv⃗ and σ′ ant-commutes)
. (A13)

With this, the error term iϵCsj′ ,j′ transforms as

1

4n

∑
v⃗j′

σv⃗j′ iϵCsj′ ,j′σv⃗j′ =
1

4n

∑
v⃗j′

σv⃗j′

[∑
u⃗

iϵ(αu⃗,j′ + sj′∆αu⃗,j′)σu⃗

]
σv⃗j′ = O(ϵ2)I + iϵ∆αw⃗j′ ,j

′σj′ (A14)

where σw⃗j′
= σj′ by definition. This expression can be simplified by absorbing the first-order ϵ part in iϵsj′∆αw⃗j′ ,j

′σj′
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to a shift in the rotation angle of e−isj′σj′θj′ as follows

e−isj′σj′θj′ [I + iϵCsj′ ,j′ ] =: g
(
e−isj′σj′θj′

)
= e−isj′σj′θj′ eiϵsj′∆θj′σj′

1− isj′ϵ∆α(0)
w⃗j′ ,j

′√
1 + (ϵ∆α

(0)
w⃗j′ ,j

′)2

I + iϵ
∑
u̸⃗=0⃗

(αu⃗,j′ + sj′∆αu⃗,j′)σu⃗ +O(ϵ2)



= e−isj′σj′ (θj′−ϵ∆θj′ )
[
1−O(ϵ2)

] I + iϵ
∑

u⃗/∈{0⃗,w⃗j′}

(αu⃗,j′ + sj′∆αu⃗,j′)σu⃗ + iϵαw⃗j′ ,j
′σj′ +O(ϵ2)


= e−isj′σj′ (θj′−ϵ∆θj′ )

I + iϵ
∑

u⃗/∈{0⃗,w⃗j′}

(αu⃗,j′ + sj′∆αu⃗,j′)σu⃗ + iϵαw⃗j′ ,j
′σj′ +O(ϵ2)


=: e−isj′σj′ (θj′−ϵ∆θj′ )[I + iϵDsj′ ,j

′ ] =: g′
(
e−isj′σj′ (θj′−ϵ∆θj′ )

)
. (A15)

Thus, the error term iϵDsj′ ,j
′ no longer contains the first-order ϵ term proportional to sj′σj′ . Using this result, Eq. (A7)

with coherent errors can be rewritten as(
1

4n

)L ∑
v⃗1,...,v⃗L

g(σv⃗L)g(e−isLσLθL)

←−−
L−1∏
j=1

[
g(σv⃗j+1:j

)g(e−isjσjθj )
]
g(σv⃗1)

 ρ [· · · ]
=

(
1

4n

)L ∑
v⃗1,...,v⃗L

g(σv⃗L)g′(e−isLσL(θL−ϵ∆θL))

←−−
L−1∏
j=1

[
g(σv⃗j+1:j

)g′(e−isjσj(θj−∆θj))
]
g(σv⃗1)

 ρ [· · · ] (A16)

where the error function g on inserted random Pauli operators σv⃗ is defined as g(σv⃗) =: σv⃗[i+ iϵC̃v⃗] such that iϵC̃v⃗
has no O(ϵ) term proportional to I. Here, the notation [. . .] on the right of ρ represents the Hermitian conjugate of
the corresponding product on the left; we will continue to use similar notation below.
We move to analyze the suppression of errors. Consider a single error term on a particular Pauli rotation gate

e−isj′σj′θj′ in the computation, which leads to an expression of the form4(
1

4n

)L ∑
v⃗1,...,v⃗L

[
σv⃗L [· · · ]σv⃗j′+1,j′

(e−isj′σj′ (θj′−ϵ∆θj′ )iϵDsj′ ,j
′)σv⃗j′−1:j′

[· · · ]σv⃗1
]
ρ [σv⃗1 [· · · ]σv⃗L ]

=

(
1

4n

)L ∑
v⃗1,...,v⃗L

[
σv⃗L [· · · ]σv⃗j′+1

σv⃗j′ (e
−isj′σj′ (θj′−ϵ∆θj′ )iϵDsj′ ,j

′)σv⃗j′σv⃗j′−1
[· · · ]σv⃗1

]
ρ [σv⃗1 [· · · ]σv⃗L ] . (A17)

All pairs of inserted Pauli operators σv⃗j other than σv⃗j′ that sandwich iϵDsj′ ,j
′ can pass through the operator

e±isjσj(θj−ϵ∆θj) and cancel with each other. Thus, Eq. (A17) can be rewritten as

1

4

∑
v⃗j′


←−−−L∏
j=j′+1

e−iσj(θj−ϵ∆θj)

σv⃗j′ e
−isj′σj′ (θj′−ϵ∆θj′ )iϵDsj′ ,j

′σv⃗j′


←−−
j′−1∏
j=1

e−iσj(θj−ϵ∆θj)


 ρ
−→L∏
j=1

eisjσj(θj−ϵ∆θj)



=


←−−−L∏
j=j′+1

e−iσjθj

 e−iσj′ (θj′−ϵ∆θj′ )

 1

4n

∑
v⃗j′

σv⃗j′ iϵDsj′ ,j
′σv⃗j′



←−−
j′−1∏
j=1

e−iσj(θj−ϵ∆θj)


 ρ
−→L∏
j=1

eisjσj(θj−ϵ∆θj)



=


←−−−L∏
j=j′+1

e−iσjθj

 e−iσj′ (θj′−ϵ∆θj′ )
(
O(ϵ2)I +O(ϵ2)σw⃗j′

)
←−−
j′−1∏
j=1

e−iσj(θj−ϵ∆θj)


 ρ
−→L∏
j=1

eisjσj(θj−ϵ∆θj)


=O(ϵ2). (A18)

4 We will only explicitly show the calculation for the error term iϵDsj′ ,j
′ in question appearing on the left of ρ; since the term on the right

is simply its Hermitian conjugate, the analysis there is be similar.
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Next, we consider the case where a single error term in Eq. (A16) occurs on one of the inserted Pauli operators
σv⃗j′+1:j′

. This leads to Eq. (A16) being expressed as(
1

4n

)L ∑
v⃗1,...,v⃗L

[
σv⃗L [· · · ]σv⃗j′+2,j′+1

e−isj′+1σj′+1(θj′+1−ϵ∆θj′+1)(σv⃗j′+1:j′
iϵC̃v⃗j′+1:j′

)e−isj′σj′ (θj′−ϵ∆θj′ )σv⃗j′:j′−1
[· · · ]σv⃗1

]
ρ[· · · ]

=

(
1

4n

)L ∑
v⃗1,...,v⃗L

[
σv⃗L [· · · ]σv⃗j′+2

σv⃗j′+1
e−isj′+1σj′+1(θj′+1−ϵ∆θj′+1)(σv⃗j′+1

σv⃗j′ iϵC̃v⃗j′+1:j′
)e−isj′σj′ (θj′−ϵ∆θj′ )σv⃗j′σv⃗j′−1

[· · · ]σv⃗1
]
ρ[· · · ]

=

(
1

4n

)2 ∑
v⃗j′+1,v⃗j′

 L∏
j=j′+1

e−iσj(θj−ϵ∆θj)

σv⃗j′ iϵC̃v⃗j′+1:j′
σv⃗j′

 j′∏
j=1

e−iσj(θj−ϵ∆θj)

 ρ[· · · ]

=

 L∏
j=j′+1

e−iσj(θj−ϵ∆θj)

 1

4n

∑
v⃗j′

σv⃗j′

 1

4n

∑
v⃗j′+1

C̃v⃗j′+1:j′

σv⃗j′


 j′∏
j=1

e−iσj(θj−ϵ∆θj)

 ρ[· · · ], (A19)

which is also O(ϵ2) since
∑
v⃗j′+1

C̃v⃗j′+1:j′
=
∑
u⃗ C̃u⃗ is independent of v⃗j′ and has only O(ϵ2) term proportional to I.

Finally, let us consider how many first- and second-order ϵ terms can possibly appear in Eq. (A16). The first-order ϵ
terms can only appear in the expansion of Eq. (A16) when a single error term is chosen at either σv⃗1 or σv⃗L . Thus,
the first-order ϵ terms in Eq. (A16) do not scale in terms of L and behave like O(ϵ). The second-order ϵ terms can
originate from any term in the expansion of Eq. (A16) where a single error term occurs at a single Pauli rotation in the
computation e±isjσj(θj−ϵ∆θj) or at an inserted Pauli operator σv⃗j:j+1

; the sum of such terms is O(ϵ2L). Technically
speaking, a second-order ϵ term can also possibly appear when two error terms occur in Eq. (A16), but for such
cases to have a second-order ϵ term, the errors must appear in close locations; this means that such cases are largely
irrelevant in practice. For example, when the error occurs at e±isjσj(θj−ϵ∆θj) and σv⃗k:k+1

with either j − k ≥ 2 or
k− j ≥ 1, it can be easily shown that the error terms are averaged over random Pauli operators and therefore no more
second-order ϵ2 terms remains. Thus, the total sum of these terms in the expansion of Eq. (A16) will also be O(ϵ2L).

In general, ϵn terms in Eq. (A16) can be shown to be O(ϵnL⌊n2 ⌋), where ⌊a⌋ denotes the largest integer not exceeding
a. This follows from the fact that the first-order ϵ term in the error can remain only if there exists another error term
in a nearby gate. Using this fact, the claim made in Eq. (A10) is shown.

Appendix B: Root Mean Squared Error Bounds

To obtain an upper bound of the RMS of the error of expectation values in terms of an arbitrary observable M , the
following statement can be used.

Lemma 1. For an arbitrary unitary operation defined by U(ρ) := UρU† with a unitary operator U and a density
operator ρ on a Hilbert space H, if a set of deterministic quantum operations (completely-positive trace-preserving
maps) Fj : L(H)→ L(H) and a probability distribution {pj} satisfies

∥U −
∑
j

pjFj∥⋄ ≤ ∆

for some ∆ > 0, the variance of the averaged operation
∑
j pjFj is upper bounded by

sup
dim(H′)

|ψ⟩;∥|ψ⟩∥=1

∑
j

pj∥U ⊗ I(|ψ⟩ ⟨ψ|)−Fj ⊗ I(|ψ⟩ ⟨ψ|)∥21 ≤ 2∆, (B1)

where I is the identity operation on a Hilbert space H′ and |ψ⟩ is a pure state on H⊗H′.

The proof is given in App. B of Ref. [46]. For our case, U is the error-free unitary that one desires to implement,
j := (v⃗1, . . . , v⃗N ) is the tuple of all random vectors chosen in the REAS scheme, and pj and Fj are the probability
that j and the quantum operation on H which is applied on the state (including the final partial trace of Henv) when
j is chosen, respectively.
Consider Eshifted to correspond to a gate implemented with a shift in the rotation angle, i.e., the r.h.s. of Eq. (9).

Since the result regarding such coherent errors implies that ∥Eshifted − E ′∥⋄ = C(ϵ + Nϵ2) for constant C > 0 and
E ′ =

∑
j pjFj , where pj := (1/4)nN and Fj(ρ) := trenv[E ′j(ρ⊗ ρenv)], Lem. 1 leads to the following.
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Corollary 1. For an arbitrary observable A on H such that ∥A∥op ≤ 1, the following equation holds:

sup
|ψ⟩;∥|ψ⟩∥=1

∑
j

pj [tr{AEshifted(|ψ⟩ ⟨ψ|)} − tr{AFj(|ψ⟩ ⟨ψ|)}]2 ≤ 2C(ϵ+Nϵ2) (B2)

where j := (v⃗1, . . . , v⃗N ), pj = (1/4)nN , and Fj(ρ) := trenv[E ′j(ρ⊗ ρenv)].

This means that the RMS of the difference between the error of expectation value is bounded above by
√

2C(ϵ+Nϵ2)

which approaches to
√
2Cϵ
√
N in the regime N ≫ 1/ϵ.

Appendix C: Class of Decoherence Errors that can be Suppressed

We now move to demonstrate the more general class of decoherence errors that can be suppressed when our REAS
method is supplemented by the single Pauli transformation introduced in Sec. III B. Specifically, we show that this
protocol can suppress errors that are first-order in ϵ for a particular class of open system-environment dynamics, which
includes depolarizing, amplitude-damping, and decoherence models. We assume that the interaction Hamiltonian
involves at most two-body interactions.

In attempting to extend the error-suppressing method for the case of coherent errors to the open setting of decoherence,
one immediately runs into problem that some errors terms on the computational Pauli gates e−isjσjθj cannot be dealt
with. In particular, any term of the form sjσj ⊗Menv, where Menv ≠ Ienv ∈ Henv, cannot be absorbed into the shift of
the rotation angle θj , since σj is coupled with Menv, and therefore cannot be erased by averaging over random inserted
Pauli operators as in Eqs. (A11) and (A12). This inability to suppress such terms can introduce unwanted O(ϵL)
errors in Eq. (A10), since such first-order ϵ terms can appear in all Pauli computation gates throughout the circuit.

We circumvent this issue by modifying the computational gate sequence implementing e−isjσjθj in such a way that
the error terms proportional to sjσj ⊗Menv for Menv ≠ I is at most O(ϵ2). This single Pauli transformation consists
of decomposing any e−isσθ into (a) a two-qubit Pauli gate dependent on the rotation direction s ∈ {+1,−1} and (b)
another Pauli gate (which can be either a one- or two-qubit Pauli gate) that is independent of s. Intuitively, the trick
works to suppress error terms that are first-order in ϵ since these only appear when an error occurs on a single gate in
the computation e−isjσjθj and: (a) the s-dependent two-qubit Pauli gate does not produce harmful first-order ϵ terms;
and (b) the other s-independent Pauli gate does not produce any error term that depends upon s.
First, we show that any gate e−isσv⃗0

θ corresponding to a two-qubit Pauli operator involves only O(ϵ2) terms
proportional to sσv⃗0 ⊗Menv for Menv ̸= I. Note that we always take the Hamiltonian to be traceless without loss of
generality (since any trace part only contributes to a global phase).

Lemma 2. Consider a time interval t ∈ [0, T ], any two-qubit Pauli operator σv⃗0 ∈ L(H), a time-dependent interaction
Hamiltonian ϵH ′(t) ∈ L(H⊗Henv) which contains at most two-body terms and has operator norm O(ϵ), a background

Hamiltonian Henv of the environment, and a function Ω(t) such that
∫ T
0
d τΩ(τ) = θ. In this setting, the total

Hamiltonian sΩ(t)σv⃗0 ⊗ Ienv + I ⊗Henv + ϵH ′(t) gives rise to the unitary operator

T exp

[
−i
∫ t

0

dτ(sΩ(t)σv⃗0 ⊗ Ienv + I ⊗Henv + ϵH ′(t))

]
=:
(
e−isσv⃗0

θ ⊗ e−iHenvT
)
[I + iϵCv⃗0 ]

=:
(
e−isσv⃗0

θ ⊗ e−iHenvT
)I + iϵ

∑
w⃗∈{0,1,2,3}n

σw⃗ ⊗Dv⃗0;w⃗(s)

 ,
(C1)

where ϵDv⃗0;v⃗0(s) = ϵαI +O(ϵ2) for some α.

Note that the assumption that the operator norm of the interaction Hamiltonian is O(ϵ) is consistent with the
assumption that the error term Cv⃗0 has operator norm of the same order.

Proof: For general time-dependent Hamiltonians H1(t) and H2(t), the Hamiltonian dynamics generated by H1+H2

can be written as

T exp

[
−i
∫ t

0

dτ{H1(τ) +H2(τ)}
]
= U1(t)T exp

[
−i
∫ t

0

dτU1(τ)
†H2(τ)U1(τ)

]
, (C2)

where

U1(t) := T exp

[
−i
∫ t

0

dτH1(τ)

]
. (C3)
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Substituting H1 ← sΩσv⃗0 +Henv and H2 ← ϵH ′ into the above expression and taking the upper limit of the integration
up to time T leads to

T exp

[
−i
∫ T

0

dτ(sΩ(τ)σv⃗0 ⊗ Ienv + I ⊗Henv + ϵH ′(τ))

]
=
(
e−isθσv⃗0 ⊗ e−iHenvT

)
T exp

[
−iϵ

∫ T

0

dτU(τ)†H ′(τ)U(τ)

]

=
(
e−isθσv⃗0 ⊗ e−iHenvT

) [
I − iϵ

∫ T

0

dτU(τ)†H ′(τ)U(τ) +O(ϵ2)

]
, (C4)

where we have defined

U(t) := e−isω(t)σv⃗0 ⊗ e−iHenvt ω(t) :=

∫ t

0

dτΩ(τ). (C5)

Now, by decomposing the interaction Hamiltonian H ′(t) as

H ′(t) :=
∑
w⃗

σw⃗ ⊗H ′
w⃗(t), (C6)

Eq. (C4) can be rewritten as

(
e−isθσv⃗0 ⊗ e−iHenvT

) [
I − iϵ

∫ T

0

dτU(τ)†

(∑
w⃗

σw⃗ ⊗H ′
w⃗(t)

)
U(τ) +O(ϵ2)

]

=
(
e−isθσv⃗0 ⊗ e−iHenvT

) [
I − iϵ

∫ T

0

dτ

(∑
w⃗

(eisω(t)σv⃗0σw⃗e
−isω(t)σv⃗0 )⊗ (eiHenvtH ′

w⃗(t)e
−iHenvt)

)
+O(ϵ2)

]
. (C7)

Lastly, note that eisω(t)σv⃗0σw⃗e
−isω(t)σv⃗0 contains a σv⃗0 component if and only if w⃗ = v⃗0, which can be verified using

tr
[
σv⃗0(e

isω(t)σv⃗0σw⃗e
−isω(t)σv⃗0 )

]
= tr [σv⃗0σw⃗] . (C8)

This finally leads us to be able to write Dv⃗0;v⃗0 [see Eq. (C1)] as

Dv⃗0;v⃗0 = −
∫ T

0

dτ(eiHenvtH ′
v⃗0
(t)e−iHenvt) +O(ϵ2). (C9)

Here, H ′
v⃗0
(t) is proportional to the identity only in the case where σv⃗0 is a two-qubit Pauli gate. This follows by

assumption, since the total term σv⃗0 ⊗ H ′
v⃗0
(t) being of weight at most two implies that H ′

v⃗0
(t) must be of weight

zero; this logic breaks down for single-qubit σv⃗0 , as will discuss below. Thus ϵDv⃗0;v⃗0 = ϵαIenv +O(ϵ2) for some α, as
required.
From this lemma, one can see that any two-qubit Pauli gate does not involve any first-order ϵ terms which cannot

be dealt with by the REAS method. However, crucially, the same logic does not hold in the case where σv⃗0 is a
single-qubit Pauli operator, which can be seen by considering the following counterexample:

e−i(sX⊗Ienv+ϵsX⊗Xenv)t = (e−isXt ⊗ Ienv)e−iϵs(X⊗Xenv)t = (e−isXt ⊗ Ienv)[I − iϵst(X ⊗Xenv) +O(ϵ2)] (C10)

which has a first-order ϵ term proportional to s(X ⊗Xenv). Therefore, we simply modify any single-qubit Pauli gates
into two-qubit ones by making use of the single Pauli transformation defined in Eq. (14). In this way, we can remove
any first-order ϵ terms, as formalized below.

Theorem 1. For any interaction Hamiltonian with an operator norm O(ϵ) that contains at most two-body terms, the
gate sequences

eisY It → ei
π
4XZeisZZte−i

π
4XZ

eisZIt → e−i
π
4XIei

π
4XZeisZZte−i

π
4XZei

π
4XI

eisXIt → ei
π
4 ZIei

π
4XZeisZZte−i

π
4XZe−i

π
4 ZI . (C11)
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implement single qubit Pauli gates e−isσv⃗0 without giving rise to any first-order ϵ error terms of form sσv⃗0 ⊗Menv.
More precisely, any noisy gate e−isσv⃗0 leads to

(e−isσv⃗0 ⊗ Uenv)

[
I + iϵ

∑
w⃗

σw⃗ ⊗ (D
′
v⃗0;w⃗ + s∆D′

v⃗0;w⃗
)

]
(C12)

for some unitary Uenv ∈ Henv, for which ϵ∆D′
v⃗0;v⃗0

= ϵαI +O(ϵ2) for some α.

Note that in Eq. (C11), the only s-dependency on the r.h.s. occurs through the term eisZZt in the middle. It is
straightforward to see that the proof of Thm. 1 can be generalized to the case where any other two-qubit Pauli gate is
used to incorporate the s-dependency, e.g., eisZXt, as long as the overall gate sequences lead to the correct single Pauli
rotation gates.
Proof: We explicitly show the proof for only the last equation of Eq. (C11); the logic can be easily generalized to

demonstrate the other two. First, note that e±i
π
4 σ for all Pauli operators σ are Clifford operators acting as

ei
π
4 σσ′e−i

π
4 σ =

{
σ′ σ and σ′ commutes
i
2 [σ, σ

′] σ and σ′ anti-commutes
. (C13)

Combining this with the identity Ue−iHtU† = e−iUHU
†t for unitary U and Hamiltonian H, it can be easily checked

that

eisXIt = ei
π
4 ZIei

π
4XZeisZZte−i

π
4XZe−i

π
4 ZI (C14)

in the error-free situation.
Now, suppose that eis(ZZ⊗I)t (i.e., I is taken to act on the rest of H) leads to an s-dependent error of the form

eis(ZZ⊗I)t → (eis(ZZ⊗I)t ⊗ Uenv)

[
I + iϵ

∑
w⃗

σw⃗ ⊗ (Dw⃗ + s∆Dw⃗)

]
(C15)

for some unitary Uenv. For the s-independent gates, the errors induced are of the form

Gj → (Gj ⊗ Uenv,j)

[
I + iϵ

∑
w⃗

σw⃗ ⊗ Cw⃗,j

]
(C16)

where G1, G2, G3, and G4 refers to ei
π
4 (ZI⊗I), ei

π
4 (XZ⊗I), e−i

π
4 (XZ⊗I), and e−i

π
4 (ZI⊗I), respectively. Then, the

0th-order ϵ term in the noisy version of the sequence ei
π
4 ZIei

π
4XZeisZZte−i

π
4XZe−i

π
4 ZI that implements the desired

single Pauli rotation eisXIt can be written as

eis(XI⊗I)t ⊗ Ũ , (C17)

where

Ũ := Uenv,1Uenv,2UenvUenv,3Uenv,4. (C18)

We now move to analyze the first-order ϵ error term. Such a term in the noisy version of ei
π
4 ZIei

π
4XZeisZZte−i

π
4XZe−i

π
4 ZI

appears when an error occurs at a single gate in the sequence. Suppose for now that said error occurs at eis(ZZ⊗I)t;
then the term of interest is of the form

(G1 ⊗ Uenv,1)(G2 ⊗ Uenv,2)(e
is(ZZ⊗I)t ⊗ Uenv)

[
iϵ
∑
w⃗

σw⃗ ⊗ (Dw⃗ + s∆Dw⃗)

]
(G3 ⊗ Uenv,3)(G4 ⊗ Uenv,4). (C19)

This expression can be rewritten as

iϵ
∑
w⃗

(
G1G2e

is(ZZ⊗I)tG3G4 ·G†
4G

†
3σw⃗G3G4

)
⊗ (Uenv,1Uenv,2Uenv(Dw⃗ + s∆Dw⃗)Uenv,3Uenv,4)

= iϵ
∑
w⃗

(
eis(XI⊗I)t ·G1G2σw⃗G3G4

)
⊗ (Uenv,1Uenv,2Uenv(Dw⃗ + s∆Dw⃗)Uenv,3Uenv,4)

= (eis(XI⊗I)t ⊗ Ũ)

[
iϵ
∑
w⃗

(G1G2σw⃗G3G4)⊗ U†
env,4U

†
env,3(Dw⃗ + s∆Dw⃗)Uenv,3Uenv,4

]
, (C20)
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using the fact that G†
3 = G2 and G†

4 = G1. Since G1G2σw⃗0
G3G4 = XI ⊗ I for σw⃗0

= (ZZ ⊗ I), the term with
s(XI ⊗ I) on the system part in the error term can be expressed as

iϵs(XI ⊗ I)⊗ (U†
env,4U

†
env,3∆Dw⃗0

Uenv,3Uenv,4) (C21)

Since ϵ∆Dw⃗0
= ϵαI +O(ϵ2) by Lem. 2, Eq. (C21) does not have the first-order ϵ term where the environment part is

not proportional to the identity.
Next, we consider the case where an error term occurs at one of G1, . . . , G4. We only explicitly show the proof for

the case where error term is chosen at G1; the other cases follow similarly. The corresponding term is expressed as

(G1 ⊗ Uenv,1)

[
iϵ
∑
w⃗

σw⃗ ⊗ Cw⃗,1

]
(G2 ⊗ Uenv,2)(e

is(ZZ⊗I)t ⊗ Uenv)(G3 ⊗ Uenv,3)(G4 ⊗ Uenv,4)

= iϵ
∑
w⃗

(G1σw⃗G2e
is(ZZ⊗I)tG3G4)⊗ (Uenv,1Cw⃗,1Uenv,2UenvUenv,3Uenv,4)

= (eis(XI⊗I)t ⊗ Ũ)

[
iϵ
∑
w⃗

(G2e
is(ZZ⊗I)tG3G4)

†σw⃗(G2e
is(ZZ⊗I)tG3G4) . . .

. . .⊗ (Uenv,2UenvUenv,3Uenv,4)
†Cw⃗,1(Uenv,2UenvUenv,3Uenv,4)

]
, (C22)

which displays no s-dependence, and thus cannot correspond to any term with s(XI ⊗ I) on the system part.
Therefore, in total, the noisy version of the sequence G1G2e

isZZtG3G4 is written as

(eis(XI⊗I)t ⊗ Ũ)

[
I + iϵ

∑
w⃗

σw⃗ ⊗ (D
′
w⃗ + s∆D′

w⃗)

]
(C23)

where ϵ∆D′
w⃗0

= ϵαI +O(ϵ2) for σw⃗0
:= XI ⊗ I and some α, as required.

Finally, combining Lem. 2 and Thm. 1, we can show that for decoherence errors on all Pauli rotation gates e−isσv⃗0
θ

can be dealt with by implementing the gates in such a way that their noisy version is written as

e−isσv⃗0
θ → (e−isσv⃗0

θ ⊗ U)

[
I + iϵ

∑
w⃗

σw⃗ ⊗ (D
′
w⃗ + s∆D′

w⃗)

]
(C24)

for (v⃗0, θ)-dependent unitary U and linear operators D
′
w⃗ and ∆D′

w⃗, where ϵ∆D
′
v⃗0

= ϵαI + O(ϵ2) for some α. This

means that the first-order ϵ error term of e−isσv⃗0
θ is classified into the cases

(a) I ⊗M

(b) σw⃗ ⊗M for w⃗ ̸= 0⃗

(c) sσw⃗ ⊗M for w⃗ ̸= v⃗0

(d) αsσw⃗ ⊗ Ienv,

where M is any linear operator and α is arbitrary. Terms of type (a) can be avoided by absorbing them into the

definition of U (namely, change U → UeiϵM
(0)

where M (0) is the 0th-order ϵ term of M). Terms of types (b) and
(c) can be erased by averaging over random Pauli operators in a similar way to coherent errors described in App. A.
Finally, terms of the form (d) can be absorbed into a shift in the rotation angle. Therefore, we have demonstrated that
our proposed REAS scheme can deal with decoherence errors appearing as an O(ϵ) interaction Hamiltonian with at
most two-body interaction in a similar way to how they deal with coherent errors.
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