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Efficiently Cooling Quantum Systems with Finite Resources:
Insights from Thermodynamic Geometry
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Landauer’s universal limit on heat dissipation during information erasure becomes increasingly crucial as
computing devices shrink: minimising heat-induced errors demands optimal pure-state preparation. For this,
however, Nernst’s third law posits an infinite-resource requirement: either energy, time, or control complex-
ity must diverge. Here, we address the practical challenge of efficiently cooling quantum systems using finite
resources. We investigate the ensuing resource trade-offs and present efficient protocols for finite distinct en-
ergy gaps in settings pertaining to coherent or incoherent control, corresponding to quantum batteries and heat
engines, respectively. Expressing energy bounds through thermodynamic length, our findings illuminate the op-
timal distribution of energy gaps, detailing the resource limitations of preparing pure states in practical settings.

I. INTRODUCTION

Arguably, one of the most essential tasks in quantum sci-
ence is the preparation of pure quantum states — equivalent
to cooling quantum systems or erasing information. This is a
critical prerequisite for quantum computation, where the out-
put state from a calculation must be erased before it can be
reused as an input for the next [1]. Failure to achieve suffi-
ciently pure input states directly contributes to computational
errors. Furthermore, the necessity for pure states extends to
precise timekeeping [2, 3] and accurate measurements [4].
Without adequate purity, possibly due to limited resources
or control, the frequency of gate and measurement errors in-
creases, potentially relegating any anticipated ‘quantum ad-
vantage’ to mere theoretical conjecture, as illustrated in Fig. 1.

In this sense, thermodynamics links the degree of control
over a system with one’s capacity to perform useful tasks.
In particular, Landauer formalised a profound connection be-
tween physics and information by establishing that a mini-
mum amount of heat must be dissipated when erasing infor-
mation encoded in any physical system [5]. This universal
limit applies to classical and quantum theory and gains promi-
nence as computing devices are miniaturised, rendering them
more susceptible to heat-induced errors. Thus, manipulating
information with minimal energetic cost is paramount for de-
veloping robust and efficient next-generation devices.

Efforts to saturate the Landauer bound involve engineering
quasistatic interactions between information-carrying systems
and controllable machines. However, uncovering the neces-
sary conditions for Landauer-cost erasure has been impeded
by inequivalent assumptions and definitions across experi-
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FIG. 1. Impact of Imperfect Cooling. A quantum computation be-
gins with a register of n pure states |0)®™ (not shown), to which
gates (e.g., G € {H, X,Y}) and measurements are applied, yielding
outcomes {z; }i—;. Inaccessibility of pure states induces preparation
errors leading to noisy initial states g; # |0), timekeeping errors af-

fecting the gates G — G, and measurement errors x; — Z;.

mental platforms. A breakthrough by Reeb and Wolf refor-
mulated the Landauer limit universally in the context of quan-
tum information, providing platform-agnostic insights [6].
Their work demonstrated the need for an infinitely large en-
ergy gap in an infinite-dimensional machine to achieve per-
fect Landauer-cost erasure. Such progress notwithstanding,
such infinite resources are not practically accessible, leading
to the pragmatic problem of optimising cooling with finite re-
sources [7]. When resources are limited, various factors influ-
ence the eventual purity of the system and the costs involved,
including the energy-level structure of the cooling machines
and the complexity of their interactions with the target [8].

Here, we unveil a three-way trade-off among crucial re-
sources — energy, time, and control complexity. We ex-
plore this relationship in the regime where finite resources
dictate the attainable temperature and cooling rate. Our in-
vestigation leverages the geometric technique of thermody-
namic length [9-12] to yield insights into the optimal energy
structure of cooling machines for schemes using fixed control
complexity and large yet finite time, thus contributing to the
understanding of resource limitations in preparing pure states.
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II. THERMODYNAMIC FRAMEWORK

Setting.—We consider the task of cooling a target quantum
system S via unitary interactions with another system M,
composed of N subsystems { M, ..., My} called machines.
We describe the overall cooling procedure using a Markovian
collision model [13—18]. Here, the target unitarily interacts
with a fresh machine at each time, reflecting the property of
memorylessness and the rapid rethermalisation of machines
between control operations (see Fig. 2).

All systems X € {S,My,..., My} have an associated
Hilbert space Hx, on which states oy are represented as
positive semidefinite, unit-trace operators. Each system
has a Hamiltonian whose spectral decomposition fixes its
energy structure, Hy := S X" EQi)i|. We consider
finite-dimensional systems dyx := dim(Hy) < oo, and
assume that energy eigenvalues are ordered non-decreasingly
E{TY > EY, with B := 0. With respect to any Hamil-
tonian H, the thermal (Gibbs) state at inverse temperature
B = (ksT)"Vis 7(3,H) := Z7Y(B)exp (—BH), where
Z(B) = trlexp(—BH)] is the partition function; when
unambiguous, we will simply write 7(3). The thermal state
uniquely maximises entropy S(o) := —tr[plog p] for fixed
average energy E(o) := tr[Hp]. Consequently, it provides a
state description with minimal information (beyond average
energy), and is thus a suitable initial machine state for cooling
schemes (formalised below).

Boundary Conditions.—We consider procedures that take the
target system from an initial state o to a final one o, whilst
mapping the collection of machines from an initial thermal
state 7,,(3) to a final state o', via the global evolution

Q/SM =U(os ® TM(ﬁ))UT~ (1

Note that cooling a system can have several inequivalent
meanings. For equilibrium processes, it could mean reducing
the temperature of a thermal state; in non-equilibrium set-
tings, it could mean increasing the ground-state population
or purity of the target, or decreasing its entropy or average
energy. The strongest notion of cooling derives from the
preorder on states induced by majorisation: We say that a
state o is colder than o iff o > o. Since all meaningful
notions of temperature are Schur-convex/concave functions
of the vector of non-decreasing energy eigenvalues, any other
such quantifier would agree that g is colder than o [19].
Although all qualitative results presented here hold true in
this strong sense, for the sake of simplicity, we focus on
processes that take the target system from a Gibbs state with
some initial 8 to one with final value 5 := A8 with A > 1.

Structural and Control Resources.—Various factors deter-
mine a protocol’s performance, including the dimensions
dyx and Hamiltonians Hy of all systems, the interaction
range k (denoting the number of systems involved in each
interaction), the number of machines N, and the dissipated
heat AE,, := tr[H,(0,, — o)), which sets a lower bound
for the energetic cost of any implementation. We distinguish
between structural resources, such as dyx and Hy, that are
fixed independently of the procedure, and control resources
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FIG. 2. Framework. A system S is cooled via sequential interac-
tions with a system M comprising N machines. The interaction
is described by a collision model that is ensured to be Markovian
by discarding used machines between steps. In the coherent-control
setting (top panel), arbitrary unitaries U; can be implemented be-
tween S and the machines, which are each initially in thermal states
Tar; (B, Hur,). In the incoherent-control setting (bottom panel), the
cooling system M is split into a hot (H) and cold (C) system, at
inverse temperatures Sy and f3, respectively. Again, each machine
is endowed with its own Hamiltonian Hx, for X € {C, H}; in the
incoherent-control setting, the unitaries are restricted to be energy
conserving, i.e., [Us, Hs + Hc, + Hy,] = 0. Moreover, we allow
repeated interactions between the target and copies of each hot and
cold machine, which we refer to as a stage (grey dashed outline). In
both settings, the energy cost is associated to the change in energy of
the appropriate cooling system, i.e., AEx for X € {M,C, H}.

linked to the protocol’s execution, such as the interaction
range k, total duration (represented by N for fixed k), and the
dissipated heat AF,,.

Type of Control—We consider two extremal control
paradigms: coherent and incoherent. Coherent control per-
mits drawing upon a work source to implement any system-
machine unitary. In contrast, incoherent control relies upon
energy-conserving unitaries between the target system and
machines at different temperatures [8, 20, 21]. The former
corresponds to the highest level of control in a thermodynamic
setting, whereas the latter assumes less control, only requiring
interaction Hamiltonians to be switched on and off to induce
transitions. The settings of heat-bath algorithmic cooling [22—
28] and of autonomous cooling [29-35] are contained within
the coherent and incoherent control paradigms, respectively.
Cooling Schemes.—We now define the concept of a cooling
scheme, encompassing all aforementioned dependencies.

Definition 1. A cooling scheme is defined by the tuple:
(#B,.7,€,7). Here, A denotes the boundary conditions of
the problem, namely, the initial and final temperature of the
target system. The structural resources . comprise (3, Hy,
and d, i.e., the initial temperature, Hamiltonians, and dimen-
sions of all systems. The control resources € encompass the
total number N of machines, the interaction range k, and the
energy cost AFE,,. Finally, the type .7 indicates whether the
procedure operates within the coherent or incoherent setting.



Two remarks are in order. First, not all tuples correspond to
physically implementable cooling schemes, given that for ei-
ther type 7 certain combinations of structural .#” and/or con-
trol resources ¥ may render certain boundary conditions %
unattainable. Notably, Nernst’s third law of thermodynam-
ics and Landauer’s bound exemplify instances where particu-
lar resource configurations preclude specific boundary condi-
tions. Concretely, Nernst’s law states that infinite resources
are required to prepare a pure state [36-38]; in our con-
text, an infinitely large energy gap in the machine is neces-
sary [6, 8, 20]. Similarly, Landauer’s bound establishes that
the entropy of the target system cannot be reduced by AS =
S(os) — S(0) via interactions with a thermal machine with-
out incurring an energetic cost of at least' BAE,, [1, 5, 6, 39].
Delineating the boundary of achievable cooling procedures
for different resource configurations represents a significant
open problem [7, 8].% Here, we focus on achievable schemes,
optimising over specific resources to attain effective cooling
procedures. Second, a cooling scheme does not correspond
to a unique sequence of applied operations: Different control
sequences may yield identical thermodynamic behaviour. We
focus on protocols that impact the thermodynamics, neglect-
ing coherences and correlations potentially introduced by cer-
tain operations to ensure maximal resource efficiency [40—42].

III. THERMODYNAMIC GEOMETRY

We now analyse the impact of structural resources for fixed
control complexity in the finite-resource regime. Here struc-
tural complexity is determined by the energy-level structure of
machines and control complexity quantifies the number of in-
volved systems in each collision. As demonstrated in Ref. [8],
infinite resources permit perfect cooling of the target system
to its ground state with Landauer’s energy cost; in particular,
a machine of infinite structural complexity, i.e., with a diverg-
ing number of distinct energy gaps, is necessary. Given our
restriction to finite resources, we aim to bound the cooling ef-
fectiveness and energy costs for Markovian collision models.

We seek the optimal energy-level structure of machines and
interactions to minimise the energy cost of a cooling scheme
characterised by fixed control complexity and finite duration.
Specifically, we assume the ability to implement N unitary
interactions, each of fixed complexity, between the target sys-
tem and fresh machines. Recall that the objective is to take the
target from an initial state 75(3, H) to a state 75 (3¢ := A3, H)
with lower temperature, i.e., A\ > 1. By fixed complexity, we
refer to the use of (finitely many) k-partite unitaries involving
the target and k — 1 fresh machines in each step (for finite k).
We quantify the duration of the protocol via the number of op-
eration steps IV. Our first goal is to identify the optimal set of
machine Hamiltonians { Hy, }; that minimises the dissipated

! Throughout, we denote the decrease of a quantity by A.
2 Although Ref. [18] explored the relationship between control complexity
and time in the finite-resource regime, it did not consider energy cost.

heat throughout the protocol. To achieve this objective, we
leverage the concept of thermodynamic length [9, 11, 43, 44].

To this end, consider a path in Hamiltonian space H (t) pa-
rameterised by ¢ € [0, 1]. The thermodynamic length associ-
ated to such a path is given by”

L:= /01 \/covt (H(t),H(t)) dt. (2)

where H(t) := ,H (t) and
covi(A, B) :=tr [T (A)B] — tr [0A] tr [pB], 3)

with J,(A) = [o (8, H(t))" " Ar(8, H(t))" dz. The
length squared £? is related to the dissipated heat or excess
work when slowly driving H (¢) whilst in contact with a bath
at inverse temperature J [10-12]. The minimal length con-
necting two endpoints then corresponds to the minimal dissi-
pation along a path in the Hamiltonian space and is found by
the solving the geodesic equations; for the form (2), an ana-
lytic solution is known [45].

We aim to exploit the framework of thermodynamic geom-
etry, typically employed in slowly driven systems [46-50], to
bring new insights to our question of interest: Given the abil-
ity to apply N unitary interactions (of fixed complexity k) be-
tween system and machines, what is the optimal energy-level
distribution of the machines for cooling the target system?

IV. COHERENT CONTROL

In the coherent-control setting, given infinite resources, the
Landauer bound sets the ultimate limit on cooling. Our first
focus is to examine the role of finite structural complexity in
said scenarios. Specifically, we strive to identify the structural
complexity that minimises the energy cost when the system is
cooled via a sequence of N < oo bipartite (k =2) interactions.

Theorem 1. In the coherent-control setting, given a qudit sys-
tem with Hamiltonian H, the minimum energy cost of cool-
ing from a thermal state 75(08, H) to 7s(\B, H) using swaps
between the system and a fresh qudit machine with arbitrary
Hamiltonian at each of the N steps, is given by

BAE, = AS, + %(c*f +O(N7?), 4)
where L* is the minimal thermodynamic length [44, 45]:
L* = 2arccos (tr {\/Ts(ﬁ, H)\/Ts(\B, H)] )
— 2arccos (Z(ﬂ(l i /\)/2)> . 5)

Z(B)Z2(AB)

3 This length corresponds to discrete processes, which can be directly con-
nected to the discrete-time Markovian collision models considered here;
see the review article [44] for a characterisation of thermodynamic length
for generic dynamical processes.



Sketch of proof. The proof, fully detailed in Appendix A, is
based on the equality form of Landauer’s bound [6]:

BAE, = ASs+1(S: M), +D(d,llmu(B), (6

which holds for any transformation described by
Eq. (1) such that the entropy of the target changes
from S(gs) to S(os) = S(es) — ASs. Here,
I(X:Y)pxy = S(0x)+S(0y)—S(0xy) is the quantum mu-
tual information and D(ox | 0y) := tr[ox(log ox — log oy)]
is the quantum relative entropy. The proof then proceeds
in two steps: First, the bipartite interactions are chosen
to be swaps between the qudit system and each of a se-
quence of qudit machines with increasing energy gaps,
such that no correlations are built up between S and M as
the system is cooled, i.e., I(S : M)Q/SM = 0. Then, the
relative-entropy term is minimised; for the sequence of swap
operations considered, the relative entropy has the tight lower

bound % (£*)?+O(N~2), and we thus assert the claim. [

To summarise, having fixed the parameters dy < oo,
N < o0, and k = 2, but not the structural complexity, i.e., the
machine Hamiltonians { H M, }i, of a coherent-control cooling
scheme, we have optimised the remaining control-resource
parameter, namely the energy cost AF,,. In the case of qubit
target and machines, we show that such swaps indeed consti-
tute the optimal interaction (see Appendix A 1) and derive the
Hamiltonian that saturates Eq. (4) (see Appendix A 2), thereby
providing the optimal cooling scheme with respect to heat dis-
sipation in the case of qubits. In Fig. 3, we compare this op-
timal protocol with other known coherent cooling schemes to
demonstrate its effectiveness. Although the optimal energy
structure in the case of swaps for higher dimensions is given
by Eq. (5), determining the optimal operation in general re-
mains an open problem.

Moreover, two comments regarding optimality are in order.
First, we are assuming that the cooling procedure is Marko-
vian, i.e., that the machines are completely refreshed between
steps of controlled evolution. In this setting, creating cor-
relations costs energy [40—42], which implies that the opti-
mal scheme should minimise the correlations built up between
system and machines [51, 52]. However, in a non-Markovian
setting, correlations could potentially be used in later steps to
lower the energy cost or improve performance [18, 53, 54].
Second, there is a non-zero energy cost for creating coher-
ences [55]. Since we assume an initial state that is diagonal
in the energy eigenbasis, this implies that the optimal cooling
scheme must only permute populations of energy eigenstates,
but for general initial states this need not be the case.

V. INCOHERENT CONTROL

We now consider the same question within the incoherent-
control setting. In contrast to the coherent-control setting,
all heat and entropy flows now occur solely by coupling the
target system to a hot (H) and cold (C') machine, leading to
an energy-conserving transformation overall. Beginning with
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FIG. 3. Cooling with Coherent Control. Here we plot the dissipa-
tion when coherently cooling a qubit target with energy gap Es = 1
from 8 = 107 % to Bt = 10 (i.e., A = 10°) via a sequence of bi-
partite interactions with N machine qubits. We compare three dif-
ferent cooling procedures that depend on the energy-level structure
{H M; }s: TL corresponds to the optimal protocol deduced from the
thermodynamic length (see Theorem 1); RW corresponds to the pro-
tocol from Ref. [6] where machine energy gaps change linearly; SSP
corresponds to the protocol from Ref. [56] where the machine qubits’
excited state populations change linearly.

0son = Ts(B) @ 7o(B) @ Tu(Bu), where B < f3, the con-
sidered evolution leads to the output state o', = UgscrnUT,
where [(7 ,Hs+ Ho + H] = 0 encodes energy conservation.
In this setting, the Landauer bound is unattainable; instead,
the ultimate limit is given by the Carnot-Landauer bound [8]

AFP +nAE, <0, (7
which follows from the equality form
AFP +nAE, = —B7YASs + AS. + AS, (8)
+ D(ecl17e(8)) + D¢y |I7u (Bx))]-

Here, we have introduced the free energy F% (o) := tr [Hy 0] —
B715(0) and the Carnot efficiency n := 1 — 35 /3 € [0, 1].

In a similar vein to the coherent-control scenario, we wish
to bound the right-hand side of Eq. (8) for any finite-resource
implementation, and ideally identify a protocol that saturates
this bound. However, a number of problems immediately
arise in the incoherent-control scenario, since one is restricted
to the orbit of energy-conserving unitaries, i.e., U such that
[ﬁ,Hs + H. + Hy] = 0. This constraint implies that
the relative-entropy terms cannot be bounded simply by the
thermodynamic length, which was possible in the coherent-
control setting because the full swap led to a straightforward
expression in terms of a sequence of relative-entropy terms
applied to the chain of machines. Here, such a swap is pro-
hibited by energy conservation. We now present an attainable
energy bound for finite-resource cooling with incoherent con-
trol, which is generally optimal for qubits, and optimal for
qudits within the considered class of interactions, in analogy
to Theorem 1 in the coherent-control setting.

Theorem 2. In the incoherent-control setting, given a qu-
dit system with Hamiltonian H, the minimum energy cost for



cooling from a thermal state 75(3, H) to 7s(\B, H), by using
particular tripartite (energy-conserving) interactions between
the system and two fresh qudit machines at inverse tempera-
ture 3 (cold) and By < B (hot), respectively, with arbitrary
Hamiltonians in the limit of infinite steps but with N < oo dis-
tinct energy gaps, is given by

B _ _ﬁ *\2 -2
AFY +nAEy = —5 (L) +O(NT?). )

Sketch of proof. The proof, presented in Appendix B, is
fundamentally different to its coherent-control counterpart.
In the constructive direction, we propose a cooling scheme
comprising interactions that exchange populations amongst
leVels ‘sz + 1a i>SCH Ans |Z + 1ai7i + 1>SCH~ The energy-
conserving nature allows us to calculate the energy cost per
population transfer, which is related to the relative entropy
between the initial and final states of the virtual-qubit sub-
spaces of the hot-and-cold machine that permit cooling. We
finally bound this quantity by the thermodynamic length. [

For qudits, it is not clear that the form of energy-conserving
interactions considered here are optimal; nonetheless, within
this family, we present a cooling scheme that attains the en-
ergy cost of Eq. (9) and saturates the Carnot-Landauer bound
in the limit of infinitely many distinct energy gaps, i.e., di-
verging control complexity. In the special case of cooling a
qubit target with (hot and cold) qubit machines, we show that
the 3-cycle |010) oy <> |101)gcy is indeed optimal. This is
because for any fixed set of energy gaps, the family of energy-
conserving unitaries on three qubits that permit cooling with-
out creating coherences or correlations must be of this form,
and thus we can cover the entire orbit of unitaries in ques-
tion. Such operations can be considered as a virtual swap
between the target and the virfual qubit subspace of the ma-
chine spanned by {|01)cy, |10)cx }. In general, since such a
subspace has norm strictly less than one, each such virtual
swap will lead to the system qubit being at strictly higher
temperature than the virtual qubit. However, in the limit of
infinitely many repetitions, the temperature of the system’s
qubit subspace of interest converges to the virtual tempera-
ture of the machine-qubit subspace [20, 21]. As we are inter-
ested in finite resources, we assume that one performs a finite
but sufficiently large number of virtual swaps so that the error
is within specified tolerances. The relative entropy term that
governs the finite-cooling behaviour here (and which leads to
the thermodynamic-length term) concerns the initial and fi-
nal thermal states of the machine at the corresponding virtual
temperature defined by the qubit subspace in question. Imple-
menting the protocol that swaps the target successively with
appropriately chosen virtual qubits of the machine in each
stage minimises the thermodynamic length and therefore pro-
vides the optimal incoherent cooling procedure.

VI. THE ROLE OF CORRELATIONS IN THE
INCOHERENT COOLING SETTING

The constraint of energy conservation fundamentally dis-
tinguishes the paradigms of coherent and incoherent control.
In the latter setting, the virtual subspaces spanned by the hot-
and-cold machines significantly influence the performance of
a cooling scheme, rather than the state of the machine per se.
This suggests that correlations play a dominant role in the
incoherent-control setting; we now formalise this intuition.

Theorem 3. For any incoherent-control cooling scheme, the
sum of free energy differences AF 5 (with respect to the in-
verse temperature 3) is bounded by the sum of generated cor-
relations Al,,

> AR <-3p7'Y AL, (10)

X € {s,C, H} @

where o« € {SC,SH,CH}, and I, == I(X:Y) is the

quantum mutual information.

oXY

A proof is given in Appendix C. This bound has interesting
implications. For instance, a priori, in the incoherent control
setting, the only claim that one can deduce regarding the free
energy change of the hot machine is that AF,? < 0, which
follows from the fact that both the system and cold machine
begin in thermal states at inverse temperature 5. However,
using the relation BAFY = D(o'. ||7x(8)) for X € {S,C},
we can derive the tighter bound

BAFS < —%ZAIQ — D(o|I7s(B)) — D(oglITe(B)) <0,
" (11)

where the second inequality follows from the non-negativity
of both the mutual information and the relative entropy.

VII. CONCLUDING DISCUSSION

Efficiently cooling quantum systems in practice requires
optimising machines and interactions over a complicated set
of resource constraints. Here, we have made a multifaceted
initial foray into the problem. We first formalised the notion
of a cooling scheme in terms of a universal definition that cap-
tures all relevant dependencies and permits a fair comparison
amongst different procedures in arbitrary settings. Second, for
the case of fixed control complexity, we demonstrated simple
protocols that asymptotically saturate the ultimate bounds and
dissipate minimal heat in the regime of many (but nonethe-
less finite) machines, both for coherent and incoherent con-
trol. Furthermore, we demonstrated the optimality of these
protocols in the case of qubits. Our main technical contri-
bution links the geometric concept of thermodynamic length
with Markovian collision models, providing a new link be-
tween methods employed in quantum thermodynamics and in-
formation theory. Finally, we analysed the crucial role of cor-
relations in the incoherent-control setting, deriving a bound
on free-energy differences in terms of correlations.



Looking forwards, deriving optimal cooling schemes for
higher-dimensional systems, as well as the protocols that sat-
urate the correlation bounds in the incoherent-control set-
ting, remain important open problems. Yet, like other higher-
dimensional problems at the intersection of thermodynamics
and information theory (e.g., that of symmetrically thermal-
ising unitaries [42]), general solutions and optimality proofs
may be difficult to obtain due to the large parameter spaces in-
volved. In light of this observation, more pragmatic platform-
specific approaches may be called for, and we hence envis-
age future attempts to address such questions to be tailored to
more particular (experimental) setups.
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APPENDICES
Appendix A: Optimal and efficient cooling with coherent control (Proof of Theorem 1)

Proof. (Theorem 1). Let S be a qudit of dimension d with a local Hamiltonian H and let M be a system of dimension d,, = d"
with Hamiltonian H,, = ¥ 15" Ve H,, @15V where H,,, = S>* | E{")|i,Xi,|. The joint system consisting of
S and M begins in the state 75(8) ® 7,,(5) and undergoes a unitary process U, i.e.,

s = Ulrs(B8) @ 7 (B)IUT. (A1)

Our goal is to perform the transformation 75(3) — 75(8¢), where 8¢ > (3 (cooling). The energy cost of the transformation
specified by U is given by AE = AEs + AE,, with AEy := tr[H (0}, — 7x(B))]. Since AFEjs is fixed by the boundary
conditions, we focus on quantifying AFE,,.

To prove the constructive direction of Theorem 1, we choose the unitary transformation

U=S,S,...Sy, (A2)

where S,, is a unitary operator swapping the machine subsystem M,, with the target S. In Appendix A 1, we will demonstrate
that, for any cooling scheme that is implemented via a Markovian collision model, such a sequence of swap operations is optimal
whenever all systems involved are qubits. The above transformation maps 75 (3) ® 7, () to 75(8) ® o}, where

™ (B) = Ty (B) @ Ty B)@...® Ty (B), Qéw = T, (B) ® T,y B)®...® Ty (B), (A3)
and we have defined 7,,, () := 75(3). The energy cost of any globally unitary cooling scheme with a thermal machine is [6]
BAE, = ASs +1(S: M), + D(0)|I7(8))- (A4)

Due to our specific choice of U we have I(S: M), = 0 and furthermore D(¢), [|7:(8)) = 25:1 D(7ar,, (B) | 7oz, (B))-
The two thermal states 7, , (3) and 7y, (3) are related via

Ty, (5) = Tmy, (ﬁ) - Bjn[An(AHMn)]a (AS)
where we have introduced
AHy, = Hu, , — Hu,, (A6)
Ap(X) =X —tr[ry, (B)X], (A7)
and the operator Jy,[-] := Jr,, (g)[-] with J,[A] := fol 0'~% Ap® dz. We now observe that for any density matrix ¢ and traceless
operator # one can perturbatively expand the relative entropy as
2
€
D(o+eflo) = 5tr [6.7,1(6)] + O(e*), (A8)
where 7! is an operator formally defined as 7, ! = [, (o+z 1) A(o+a 1)~ " dz, such that it satisfies .7, 5 TLlA] =
By performing the perturbative expansion from Eq (A8) on D(7a, (8)I7as, ., (B)) and invoking Eq. (A5), we obtain
2
D7y ()72, (B)) = e[ AHL, A, ] (A9)

With this, we can now write

N
D(onllmu(B)) = Z D(7u,, (B) ||7'Mn+1 (8))

n=1
32 N1y
S NTRTAPETS
2 1
:%/ r [T L de+ O(N2)
62 1 . .
= oN covy (Hy, Hy) dt + O(N~?)
B2 :
> 2+ O(N7?), (A10)
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where we have defined H,,, via AH,, = %H a, + O(N~2) in the second line. In the third line we used the fact that N > 1
and introduced a parameter ¢ with d¢ = 1/N which allowed us to replace the summation with an integral up to an error of
O(N72). In the fourth line we introduced cov,(A, B) := tr[J;(A)B] — tr[0A] tr[oB]. Finally, in the last line we introduced
the thermodynamic length, i.e.,

1
L ::/ cov, (Hy, Hy) dt. (A11)

0
The inequality in Eq. (A 10) is saturable, i.e., there exists a protocol that achieves equality. To derive this, we first parameterise

d
Hy=Ho+ Y &(t)Xi, (A12)
=1

where {X;}%_, is an operator basis in the d-dimensional Hilbert space. The optimal trajectory {&;(¢)}%_, minimising the
thermodynamic length £ can be found by solving the Euler-Lagrange equations:

oL doL
E-mg o isle (A13)
Consequently the energy change of the machine M in the optimal protocol is given by
_ A ﬁ2 *\2 —2
BAE, = ASs + ﬁ(ﬁ )*+ O(N™7), (Al14)

where £* is the thermodynamic length computed for the optimal trajectory (geodesics) {7 (¢) }&_,, i.e., the solution to Eq. (A13).
O

1. Optimality of the sequence of swap operations for cooling a qubit target via a Markovian collision model with qubit machines

Above we have provided a constructive cooling scheme that results in an energy cost given by Eq. (A14) for arbitrary
systems and thermal machines. In the case where the system-machine interactions consist of a sequence of swap gates, the
thermodynamic-length trajectory defined as the solution to Eq. (A13) is optimal. To prove optimality in general we must now
argue that the sequence of swap operations assumed at the outset in Eq. (A2) is indeed optimal in terms of heat dissipation
amongst all possible unitary transformations that achieve a desired amount of cooling.

Concretely, the question is: For a given initial and final state of the target system, related by a unitary evolution with a
thermal machine state, what is the transformation that achieves the desired transformation whilst dissipating the least heat?
More formally, consider a target system initially in the state ps. The task in any single step of the cooling procedure is to
transform it to some final state o/, according to

o = try, [U(os @ Tar (B, Hy))UT] . (A15)
We aim to do so in such a way as to minimise the dissipated heat

AEy = tr [Ha(ehy = 7a(8, Har))l (A16)
where

oy = trg [U(os ® ar (B, Ha))U'] . (A17)

We seek the combination of U and H,, that achieves a given transformation ps — o', according to Eq. (A15) and that minimises
Eq. (A16). This can be formally cast as the following optimisation problem:

given: 0s, 0, B
minimise: tr [HM{trS [U(gs ® Ty (8, HM))UT] — (B, HM)}]
subject to: o =tr,, [U(QS ® T (B, HM))UT] ) (A18)

The free variables here are U and H,,, thereby constituting a double optimisation problem. Although the cost function to be
minimised is linear in U, it is manifestly nonlinear in H,,, which appears once as a linear factor and once implicitly as an
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FIG. 4. Comparison of the thermodynamic-length protocol with numerical optimisation. We plot the dissipation SAFE; — ASs as a function
of the number of machine qubits IV for (a) qubit, (b) qutrit and (c) ququart target systems. While our numerical SQP approach is not guaranteed
to yield the optimal solution, we readily see that the values obtained are very close to those of the thermodynamic-length protocol.

exponential term via 7,, (5, H,,). Such a highly nonlinear form means that many standard optimisation methods, such as those
used for linear or quadratic problems, are not suitable.

In order to proceed further, note that we can recast the optimisation problem (A18) into a simpler vectorised form as fol-
lows. Let &y := (wo,...,wd,,—1) be the 1 x d,, row vector of energy eigenvalues and s, = (Vo,...,Vdgdy—1) =
(N0L0s AL -« sy ANofhdpy—1> AL, -+ » Adg—1fdp—1) =: Xs ® i, be the dgd,, x 1 column vector of initial global state spec-
trum, where Xy == (Ao, ..., Ads—1) and jiy = (Ko, - - ., pd,, —1) describe the initial spectra of the system and machine states,
respectively. We also define T’ to be the d,, X dsd,, (fixed) matrix that corresponds to tracing out the system degrees of freedom,
and T, to be the dg X dsd,, (fixed) matrix that corresponds to tracing out the machine degrees of freedom. The matrix A, where
A, = U, |2, is a special form of doubly stochastic dsd,, X dsd,, matrix that corresponds to the action of a unitary operation

that acts sequentially on the target system and each of the machine subsystems. With this, the optimisation problem (A 18) takes
the form:

given Xs, X/bw
minimise Oar - (Ts - A~ Usayr — Psar)
subject to No=Ty - A Fgny. (A19)

This non-linear optimisation problem can be heuristically solved using a sequential quadratic programming (SQP) algorithm.
Although this approach is not guaranteed to yield the global optimum, in many cases it provides a very good solution, as we
highlight in Fig. 4. Notably, our numerical analysis suggests that the thermodynamic-length protocol may indeed be optimal for
general d-dimensional systems: We observe that as IV increases and thus first-order corrections in Eq. (4) become dominant, the
dissipation obtained in the protocol found by numerical optimisation converges to that found using the thermodynamic-length
approach.

In the special case of a qubit target interacting with qubit machines, we can nonetheless analytically prove optimality of the
sequence of swap operations, as we now demonstrate.

Qubit-qubit case.—One of the key difficulties in analytically solving this optimisation problem lies in characterising the
conditions for which a given transformation g5 — o, is possible. Fortunately, for the case of a qubit target interacting with qubit
machines ds = d,, = 2, we can precisely characterise such states via the following lemma.

Lemma 1 (Refs. [20, 21]). For given qubit states os and o,,; such that 05 < o, all achievable marginals from a global unitary
evolution U satisfy

1
5 < trsm(Ules ® 0, UT] < o (A20)

Since any pair of qubit states admits a majorisation relation between them, the above condition fully characterises the set of

achievable transformations. Thus, a qubit-to-qubit transformation ps = diag(A, 1 — A) — o}, = diag(A',1—X'), where X > A,
is possible via Eq. (A 15) if and only if

0% < (B, Hy). (A21)
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There is an entire family of thermal states that majorise o5, namely any that have ground-state population larger than that of
the final state; from any of these, one can achieve the desired o/,. Given that the target system and machine begin at the same
temperature and both of their ground-state energies are set to zero without loss of generality, said family of thermal states is
characterised by w,, > wg, where wy denotes the energy gap of the system with Hamiltonian H .

The question is now reduced to: What is the optimal global operation (in the sense of minimising the dissipated heat) to
apply to a thermal machine state of this form in order to achieve the desired transformation? Since creating correlations and
coherences both incur energy costs [40—42], we must consider the parameterised family of probabilistic swap operations, i.e.,

U=4q¢S+(1—-qg), (A22)

where ¢ € [0,1] and S and 1 denote the swap and identity operators, respectively. This is the most general form of operations
between diagonal states that do not create any correlations or coherences in the marginals. In terms of the vectorised formulation
of the problem [see (A19)], this family of operations corresponds to the matrix

1 0 0 0
01— 0

A= ¢ 4 . (A23)
0 g 1—q0

0 O 0 1

Let the initial state of the target system correspond to Xg = (A, 1 — A) and that of the machine to fi,, = (p,1 — u), where
p = (14 e P«rm)~1 The general form of the global vector s, after the probabilistic swap operation is

A
B 1— AL — ) +q(1—\
o (1 =AM = p) +q(1 = Np (A24)
A1 =) + (1= g)(1 = A)p
(1=MA—=p)
The final ground-state population of the target A’ = 7y + 77 is thus
N =qu+(1-qg)\ (A25)

The dissipated heat is given by the machine energy gap multiplied by the change in the excited-state population of the machine

AEy = wy(p— ﬂ/) =wylp = A — g N1 —p) — (1 = q)(1 = Np] = wulg(p — N)] =: wiAp, (A26)

where Ap represents the population exchanged via the transformation. Note that this quantity, which is a function of both the
probability of swapping ¢ and the machine energy gap (implicitly via ), is fixed by the given initial and final states of the target
system. Thus, minimising the energy cost per population exchange for a given transformation ps — g’;, amounts to minimising
wy, - In other words, the transformation should be implemented using the smallest energy gap in the machine; based on Eq. (A20),
the smallest gap that permits the desired transformation is precisely 7., (3, w.) = 7s(B¢, ws). This gives us the optimal initial
state of the machine. It is straightforward to see that the desired transformation of the target system is then obtained via the
unitary that performs a complete swap, i.e., ¢ = 1.

2. Coherent-control scenario (explicit geodesic solution for the case of a qubit target system)

We now present the explicit geodesic solution for the case where the system is a qubit (i.e., ds = 2). In this case we can
parameterise the Hamiltonian from Eq. (A12) as H; = Hy + & X, where & € [0, 1] is a continuous function of ¢ and X is a
Hermitian operator. Without loss of generality we can assume Hj and X to be of the form

Hy=0 and X = lg ﬂ , (A27)

which greatly simplifies the analysis. Our goal is to find a family of functions £; that minimises the thermodynamic-length
functional £ from Eq. (A11). More specifically, using the parameterisation from Eq. (A27), the thermodynamic length £ can be

written as
1
= [ Vémiega, (A28)
0
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where m(gt) is a metric given by m(&) = tr[X2n(&)] — w[Xm(&)] = €% (1+eP4)72, where (&) =
e BAHo+& X / trfe™”? (Ho+& X )]. The optimal path can now be found by solving the Euler-Lagrange equation
oL _doL (A29)
06 dt &,

This leads to an equation of the form &+ Fté? = 0, where I'; is a Christoffel symbol. In our case, we can explicitly write

1 om(&)
Iy = . (A30)
" om(&) 0&
Using our expression for the metric we can solve the above equation for I';, which leads to I';y = —% tanh(%). With this, we
can now solve Eq. (A29) for &, which yields
t
& = 2arcsinh [tan (W)] , (A31)

where c;, c2 € R are constants that depend on the boundary conditions of the cooling scheme, i.e., the initial and final temper-
ature of the target system. For concreteness, suppose we choose 8 and S¢ such that the initial state of the system is given by
0s = diag(1 — p, p) and the final one by ¢/, = diag(1 — ¢, q), where p, ¢ € [0, 1]. Due to our discretisation, the time parameter is
given by t = i/, where i labels the machine qubit M; and N is the total number of machine qubits. In this case, the boundary

conditions for the trajectory §; are § = — 4 log [ﬁ} and §; = —5 log [l%q}.

Appendix B: Incoherent-control scenario (Proof of Theorem 2)

We now move to analyse the previously discussed question with respect to the incoherent-control setting. In contrast to that of
coherent control, here all heat and entropy flows occur due to the coupling of the target system to a hot (H) and cold (C) machine,
leading to an energy-conserving transformation overall. Begmmng with the joint state pscny = 7s(8) ® 7¢(8) ® 71 (By), where
Bu < B, the induced evolution leads to the output state o, = =U 0scuUT, U, where [U Hs+ H. + H,] encodes the conservation
of energy.

The efficient incoherent cooling scheme that we present is formalised in Theorem 2 of the main text, which provides a bound
for the heat drawn from the hot bath. Additionally, we can make a similar statement for the heat dissipated into the cold bath.
The restated theorem below encompasses both results.

Theorem 4. In the incoherent-control setting, the minimum energy cost for cooling a qudit system with Hamiltonian H from
a thermal state 75(08, H) to 7s(A\B, H), by using particular tripartite (energy-conserving) interactions between the system and
two fresh qudit machines at inverse temperature (3 (cold) and B, < [ (hot), respectively, and with arbitrary Hamiltonians with
N < oo distinct energy gaps but in the limit of infinite steps, is given by

(v+1)p?

BAE. = —(y+1)AS; + o

(L*)? +vBAEs + O(N~?), (B1)

where v 1= [fﬁ, and L* is the thermodynamic length computed for the optimal trajectory (geodesics) {5 (t)}X_, which is the

solution to Eq. (A13). Since the protocol considered is energy conserving, one can write AE in Eq. (B1) in terms of the energy
changes of S and H, i.e., AE. = —AFEs — AFEy, from which it follows that

AFP? 4+ nAE, = —%(c*f + O(N7?), (B2)

where AFY .= AE, — B7YASy andn:=1— By /B = (v +1)"L. For qubit target systems interacting with qubit hot and cold
machines, the interactions considered are optimal in general.

As a side remark, note that when v — 0, i.e., in the limit of an infinite-temperature hot bath, the result above [namely Eq. (B1)]
reduces to that of the coherent-control setting [i.e., Eq. (4)]. This reflects the intuition that an infinitely hot bath can be considered
to be a source of infinite work. However, even in this limit, there is a crucial distinction between the two settings: it is also
important to consider the rate at which the target state is cooled; as v — 0, the cooling speed in the incoherent protocol also
goes to zero.
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Proof. We begin with a family of machine Hamiltonians and energy-conserving unitaries that can cool the target system. For
the described protocol, we explicitly calculate the energy drawn from the hot bath (and that dissipated into the cold bath), which
we then bound in terms of the thermodynamic length. We subsequently demonstrate optimality when all systems are qubits.

In the incoherent-control scenario, no energy-conserving unitary with another single thermal machine can lead to cooling
the target [21]. Hence, interactions between at least three systems need to be considered. In general, any incoherent-control
unitary U must satisfy the condition of energy conservation [U Hs + Ho + Hy] = 0. In order to satisfy this condition,
the interaction Hamiltonian that generates this unitary must commute with the local Hamiltonians. In other words, U can be
decomposed into unitaries U= XU, de ) @ 1,eq that only act non-trivially in the degenerate subspaces of the total Hamiltonian
H := H; + H. + H,. Additionally, for the task of cooling the target, it is worth noting that the local Hamiltonians cannot
be chosen arbitrarily. For instance, in the qubit case, choosing the energy gaps Fs and F. constrains the energy gap of the
hot machine to fulfill £, = |E. — Eg|. Otherwise, there is no non-trivial unitary that commutes with the sum of the local
Hamiltonians, since there would be no degenerate subspace.

We then consider the following energy structures, where the Hamiltonians of the cold and hot baths are scaled versions of that
of the target system,

He =((v+DM—")Hs and Hpg =(y+1) (A, —1) Hs. (B3)

For such a structure of machine Hamiltonians, we will consider the specific class of energy-conserving unitaries that can be
generated via interaction Hamiltonians of the form

d—2
Hing =Y (Ji i+ 1, )i+ 1,4, i+ 1+ [+ 1, 4, d 4 1), i + 1, ]). (B4)
=0

The unitaries generated from such interactions act non-trivially on d — 1 distinct two-dimensional orthogonal subspaces, where
the ™ such subspace is spanned by the vectors {|i, i + 1, i)scx, |i + 1, 4, i + 1)scr }. This operation represents an exchange
between the subspace of the target system spanned by {|i)s,|i + 1)s} and the virtual subspace of the machine spanned by
{li4+ 1, ©)em, i, ¢ + L) }. Since such subspaces contain total populations strictly less than one, these exchanges with the

virtual machine qubits must be repeated infinitely many times in principle, in order for the excited population p(lJrl ) to be

swapped with that of the lower-energy eigenstate of the system p( 2 [20, 21]. Nonetheless, for a large number of repetitions, the
approximation holds true. We refer to a number of repeated swaps between the system and a sequence of identical virtual qubits

of the machine as a stage. In this case, the exchange leads to a population increase of Ap(l) = p(ci;rl’i) — p(si) in the energy level

Eg). This, in turn, allows us to proceed without tracking the full state evolution of the machines when calculating the energy
costs associated with both hot and cold machines at each stage n, which only depends upon the initial and final states of the
target system rather than the more complicated machine states.

As aresult, the energy change of each system and within each subspace at stage n of the cooling procedure is thus

AES = —w Apl, AE., =wl) Ap, AEY = —wd Ap, (BS)

where w{ := EY™ — B with { E{”}9 are the energy eigenvalues of system X sorted in non-decreasing order, and Ap{)’
is the population exchange between energy levels 1 and ¢ + 1 of the system at stage n. Combining Egs. (B3) and (B5) yields

AED =((v+1) A — 7) AEY and AE; = (v+1) (A —1)AEY. (B6)

Now, using the fact that the total energy cost associated with each system can be calculated by summing the energy changes in

each subspace, i.e., AEy, = Zf 01 AES), at each step, it follows (from energy conservation) that one can calculate both the

energy drawn from the hot bath and the heat dissipated into the cold bath for any such cooling procedure in terms of the energy
change of the target system itself, i.e., AE;, = (y+ 1)\, — 7) AEs, and AE,, = (y+ 1) (A, — 1) AES, .

Thus, we need to determine the final state of the target system after each stage n. Based on the type of interaction specified
in Eq. (B4), we can show that this final state depends on the virtual Gibbs ratios of the virtual machine qubits that non-trivially

(i+1,4)

interact with the target system. The virtual Gibbs ratio associated with subspace 7 at stage n is given by g’ := pﬁ"ﬁ’;) =
P

CnHp

(H_ ’l) denotes the population in the subspace associated with |i 4+ 1,4)¢_», . As the number of

repeated interactions between the 7" subspace of the target and that of the machine increases the virtual Gibbs ratio associated
G

e P Anws) , where for instance p,

with the target subspace ¢ at stage n will converge accordingly, i.e., — e P w5 Itis finally straightforward to see that

the thermal state 7(3, A\, Hs) satisfies this condition, namely that the Gibbs ratio between each pair of neighbouring energy
levels in each stage is given by e “#*»“s’ Tt is worth mentioning here that in this protocol, rather than the individual states of
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both hot and cold machines per se, it is the virtual qubits of the total machine that play the most significant role in the reachable
states of the target system and the corresponding energy cost.

For the sake of notational simplicity, we will denote thermal states as 7,,(8) := 7(8, \,Hs), with the boundary points
T~(B) == 1(8, A\¢Hs) and 7,(8) := 7(8, Hs). With this, the energy dissipated into the cold machine can be calculated as

Mz

AEC = — Cn — Z /7 + )AEsn

3
I
=

WE

(v + DA = ) [Hs {70(8) — 7a—1(8)}]

n=1

= (4 )Y e[ He {70(B) — muca(B))] + e [He {7(8) — 7(8))]

n=1

+

(v+1) «
_ Z{D ot (B) () = S (n(ﬁ))+5(7n1(6))}+vtr[Hs{Tf(B)—To(B)}]

1

n

+ ™

I
] =

1)

n

(v

D (aes(8) | a(8)) — (”; YAS. + 4 AE, B7)
1

where we have made use of D (¢||7(8)) = =8 [E(7(8)) — E(0)] + S(7(8)) — S(p) in the third line.
Similarly, the energy drawn from the hot bath can be calculated as

N
AE, =Y t[H,, (1a(8) ~ ras(5)
" N
(0 + 13 [ 1) Ho {7u(8) — 70 ()]
I
= (14 Y {Dhn He {5 = 5aa (B | = (1) A (5(8) = ()
N
= S D a3 7(8) + 8 (raca (8)) = S (ra3) | = (1) wlHe {e(5) = )
N
= S D (B8 + 8 (r3)) = S (raa(3) | = (1) [ {e(5) = )
N
= Y D ®m )] - (40wl () - n (@] - § 83 - S} @)

Using the definition of free energy, F% (o) := Ex (o) — 8715(0), Eq. (B8) can be written as

N
AF] +nABy, = —=B7" Y D(ma1(B)Im(8)), (BY)

n=1

where 7 = (v + 1)1 is the Carnot efficiency.

Using the same methods as in Appendix A, the relative entropy terms in both Egs. (B7) and (B8) can be bounded in terms of
the thermodynamic length, leading to the expressions stated in Eqs. (B1) and (B2), respectively, as required.

This provides a protocol for cooling a qudit target with qudit hot and cold machines, for which the energy cost can be calcu-
lated exactly. For the specific machine Hamiltonians and interactions considered [see Eqs. (B3) and (B4)], the thermodynamic
length expression is optimal in terms of heat dissipation; this therefore completes the first part of the proof. However, global
optimality here is not guaranteed since the family of unitaries from which the protocol is derived only corresponds to a subset
of energy-conserving ones. Nonetheless, in the qubit case, the analysis simplifies and the class of unitaries considered indeed
covers the full orbit of energy-conserving ones (that do not create coherences, which could only be detrimental). Thus, to
complete the proof, we can now finally argue for the general optimality of said cooling procedure when all systems are qubits.
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Three qubit case.—Recall that in the coherent-control setting, the state of lowest achievable temperature is obtained by
swapping each qubit system with successively colder machine qubits. However, such swaps are prohibited in the incoherent
setting as they are not energy conserving. Nonetheless, as mentioned above, here one can swap the system with virtual qubits of
the hot-and-cold machines. Since any such subspace has norm strictly less than one, each such swap will lead to the system qubit
being at strictly higher temperature than that of the virtual machine qubit. However, in the limit of infinitely many repetitions, the
temperature of the system-qubit subspace of interest converges to the virtual temperature of the machine-qubit subspace [20, 21].
As we are interested in finite resources, we assume a finite but sufficiently large number of swaps such that the error is acceptable.

With this in mind, following a similar logic to that presented regarding the coherent-control setting, we assume that the local
energy gaps of all qubit systems during interaction stage n are given by

Es=E, Ec, =M\E and Ep, = (A, — 1) E, (B10)

where E € RT. In order to make it possible for the target system to be cooled, the condition E¢, > Fs must be satisfied [21].
In this case, at each stage n, the degenerate subspace is spanned by the vectors {|010), |101)}, where we write |ijk) =
1)s @ [)e @ |k) -

We now seek the types of energy-conserving unitaries that can cool the target system given this structure. We assume that
the cooling scheme is Markovian in the sense that it can be represented as a collision model with the hot and cold baths being
completely reset after each step of controlled evolution. As such, any possible correlations generated between the target and
machines cannot be used in the next step and are therefore irrelevant. Moreover, creating correlations and coherences from
initially uncorrelated thermal states incurs an energy cost [40—42, 55]. Since we are seeking the minimum such cost, it follows
that we need only consider energy-conserving unitaries that permute the populations of the eigenstates. All possible such
unitaries can be generated by Hamiltonians of the following form

Hin = |010)(101] + [101)010], (B11)

since acting with U(t) = exp[—iHin t] does not generate any coherence in the marginals of the output state. It is worth
mentioning that cooling in the incoherent-control setting has been investigated completely for different energy-level structures
and all energy-conserving unitaries in Ref. [21]. There it was shown that the above energy-level structure and interaction
Hamiltonian are the only ones that can cool the target system. In other words, as far as cooling with incoherent control for qubits
is concerned it is in general sufficient to consider the combination of machine structure given by Eq. (B10) and interactions in
Eq. (B11). With this in mind we now prove optimality.

Due to the energy-conserving nature of the unitary interaction, if the population of the ground state of the target system is
increased by Ap,, all local energy changes at stage n can be calculated as

AFEs, = —EsApn, AEc, = Ec,Apn, AEy, = —Epq, App, (B12)

where the energy change of subsystem X is defined by AFEy = tr[Hy (¢, — 0x)]- Thus, the energy cost per unit of population
exchange only depends upon the energy-level structure; this is a special feature that holds for qubits only and does not extend to
higher-dimensional systems and hence represents a roadblock for generalisation. In order to minimise the energy cost of cooling,
one should therefore use the smallest available energy gap to cool the target system as much as possible at each stage.

Note that, since such an energy-conserving unitary only acts non-trivially in a (strict) subspace, whose population cannot be
unity, its effective operation on S and C'H considered as a whole is a partial swap (cf. the full swap with the machine in the
coherent-control case). Nonetheless, if such a partial swap is repeated a sufficiently many times, refreshing the hot and cold
machines each time, the state of the system converges to that which would be obtained by completely swapping the target with a
virtual qubit of the machine, i.e., spanned by the vectors {|01) ¢y, |10)cx } [20, 21]. In order to cool the target system to inverse
temperature 3, := g—;ﬁ at stage n in the incoherent-control setting, the energy gaps of the cold and hot machines must satisfy

Ec, > (v+1)E, —vEs and Eg, > (v+ 1)(E, — Es) , where v := BEgH (= 7~ — 1) (see Appendix F 2 in Ref. [8]).
Since the energy cost per population exchange depends linearly upon the energy gaps themselves, it is clear that one must use
the smallest gaps possible to cool the system at each step in order to minimise the energy cost. Thus, the optimal machine energy
structure at each stage n is given by E¢, = (v + 1)E,, — vEs and Ey, = (v + 1)(E,, — Es).

We now move to focus on optimality of the transformation itself [generated by Hamiltonians of the form given in Eq. (B11)].
The diagonal energy-conserving transformations considered here for the qubit case can generally be divided into those that
increase the ground-state population of the target and those that decrease it, which respectively correspond to cooling and
heating the target system. We will now show that heating up the system at any time cannot help to reduce the energy cost of the
cooling process. And since the overall protocol proceeds in a Markovian fashion, this therefore completes the proof.

We proceed by way of contradiction. Consider a qubit target system interacting with fresh qubit hot and cold thermal machines
at each time. We assume that each machine can be a qubit system whose energy gap is finite, but we have access to infinitely
many copies of them. We claim here that the optimal cooling procedure is to cool the target system at each step. Suppose, for the
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sake of contradiction, that this is not true and that heating the target at some point can help to reduce the energy cost in reaching
a desired state at the end of the protocol.

We begin by assuming that the virtual qubits of the machines are ordered in non-decreasing fashion and that we use the

n — 1 n

smallest possible gap that permits cooling the target from z Eln — 1; = e PBn-1 1o ?T; = ¢~ PEn in stage n. As mentioned above,
the system must interact here with a machine whose cold soubsystem has an energoy gap of at least E,, = (y+ 1) E,, — vEs.
The energy dissipated into the cold bath of this stage is simply the product of the cold-machine energy gap and the population
transfer, which leads to AE., /Ap, > E., and AE. > 0. In the next stage n + 1, we will investigate all possible ways of
heating up the target via energy-conserving unitaries. Since heating the target is equivalent to cooling the cold machine, it is, a
priori possible that such a strategy could lead to a reduced energy cost in the long run.

However, this is not the case, as we now show. In order to cool down the cold machine, the target system must interact with a
virtual qubit whose population ratio exceeds e~#~ . For any such heating of the target to reduce the energy cost, one must show
that there exists a choice of energy gaps E¢,, , (and corresponding Ey, ) where B¢, > FEc, and AEc  /Apni1 = Ec, |
such that AE. < 0. Intuitively, these constraints imply that the energy cost per population exchange in the cooling stage is
lower than that of the heating one. If this were true, then one could extract energy from the cold system via a cyclic process, which
contradicts the second law. In the following, we will formally show that it is impossible to find such a process by considering all
possible energy-level structures and energy-conserving unitaries on three qubits. We finally conclude that heating the system at
any point can only serve to increase the energy cost of the overall protocol, and thus the optimal overall procedure can only be a
concatenation of cooling steps.

We proceed on a case-by-case basis.

a) By = E, where X, Y € {S, C, H}: In this case, the degenerate subspace is spanned by {|001), |010), [100)}. Since
Bu < p, one can reduce the energy dissipated by the cold machine via a bipartite interaction with the target system
at inverse temperature /3, = g—g B > (. Here, the energy transferred to the cold machine per population exchange is
determined by Es < E,,. Thus, the energy cost cannot be reduced.

b) E. = Es+ Ey: In this case, the degenerate subspace is spanned by {|101), |010) }. From Ref. [8], in order to heat up
the target system, the energy gap of the cold machine must be E < (v+1)E, — vyEs = Eg,. Thus, the energy
cost cannot be reduced.

Cnt1

c) Ec. = 2Es = 2Fy: In this case, there are three different degenerate subspaces. One of them discussed in case b); the
other two degenerate subspaces are spanned by {|001), |100)} and {|011), |110)}, respectively. In either case, the system
can be heated without interacting with the cold machine (i.e., with only a bipartite interaction with the hot machine), which
does not affect the energy dissipated by the cold machine.

d) By = Es + E.: Inthis case, the degenerate subspace is spanned by {|110), |001)}. Here, if the target is heated, so too
is the cold machine. Thus, this setting also cannot help to reduce the energy cost.

We can now conclude that in 3-qubit incoherent-control cooling scenarios, heating up the target system at any point cannot
reduce the total energy cost of cooling, and so the optimal process must be a concatenation of cooling steps. O

Appendix C: Role of correlations in the incoherent-control paradigm

Proof. (Theorem 3). We start from the strong subadditivity of the von Neumann entropy [57],

SSCH+SS§SSC+SSH7 (Cl)
where we use the notation Sy := S(ox ). Since we begin with an initially uncorrelated global state, the inequality evaluated on
0son = Ts(B) ® 7o (B) @ T4 (By) reduces to equality, i.e., S, + S5 = S%. + S, In addition, since the global evolution is
unitary, we have that ASs.,; = 0, where AS := S} — S%. Hence

ASs < ASsc + ASs, (€2)
Writing Iy 1= I(X:Y),y = S(0x) + S(0v) — S(0xy) then yields
—ASy < —Alge — Algy + ASc + ASy. (C3)

By symmetry, the same arguments as above can be used to derive

—ASe < —Alge — Aloy + ASs + ASy, (c4)
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—ASy < —Algy — Al + ASg + ASc. (C5)
Combining Egs. (C3), (C4), and (C5) then leads to

> AS > ;ZAIQ, (C6)

X € {S,C,H} [e%

where a € {SC, SH,CH?}. Finally, recall the free-energy difference AF? .= AE,—B~1AS,. If we consider the total energy
change of the entire system as work done on the total system by an external agent, i.e., W := — " AFE,, then Eq. (C6) can be
written in the form

2
8 -1
E AF] < -W — §ﬁ E AlL,. (C7
X e {s,C,H} @

In the incoherent-control scenario, since the total energy is conserved, we have W = (. Substituting this into Eq. (C7) asserts
the claim. O
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