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Landauer Versus Nernst: What is the True Cost of Cooling a Quantum System?
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Thermodynamics connects our knowledge of the world to our capability to manipulate and thus to
control it. This crucial role of control is exemplified by the third law of thermodynamics, Nernst’s
unattainability principle, which states that infinite resources are required to cool a system to absolute zero
temperature. But what are these resources and how should they be utilized? And how does this relate to
Landauer’s principle that famously connects information and thermodynamics? We answer these questions
by providing a framework for identifying the resources that enable the creation of pure quantum states.
We show that perfect cooling is possible with Landauer energy cost given infinite time or control com-
plexity. However, such optimal protocols require complex unitaries generated by an external work source.
Restricting to unitaries that can be run solely via a heat engine, we derive a novel Carnot-Landauer limit,
along with protocols for its saturation. This generalizes Landauer’s principle to a fully thermodynamic
setting, leading to a unification with the third law and emphasizes the importance of control in quantum
thermodynamics.

DOI: 10.1103/PRXQuantum.4.010332

I. INTRODUCTION

What is the cost of creating a pure state? Pure states
appear as ubiquitous idealizations in quantum informa-
tion processing and preparing them with high fidelity is
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essential for quantum technologies, such as reliable quan-
tum communication [1,2], high-precision quantum param-
eter estimation [3–5], and fault-tolerant quantum computa-
tion [6,7]. Fundamentally, pure states are prerequisites for
ideal measurements [8] and precise timekeeping [9,10]. To
answer the above question, one could turn to Landauer’s
principle, stating that erasing a bit of information has an
energy cost of at least kBT log(2) [11]. Alternatively, one
could consult Nernst’s unattainability principle (the third
law of thermodynamics) [12], stating that cooling a physi-
cal system to its ground state requires diverging resources.
At the outset, it seems that these statements are at odds
with one another. However, Landauer’s protocol requires
infinite time, thus identifying time as a resource accord-
ing to the third law [13–17]. Does this mean either infinite
energy or time are needed to prepare a pure state?
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The perhaps surprising answer we give here is: no. We
show that finite energy and time suffice to perfectly cool
any quantum system and we identify the previously hid-
den resource—control complexity—that must diverge (in
the spirit of Nernst’s principle) to do so. Intuitively, the
control complexity of a protocol refers to the structure of
machine energy gaps that the cooling unitary must couple
the system to; we demonstrate that this energy-level spec-
trum must approximate a continuum in order to cool with
minimal time and energy costs. In short, the ultimate limit
on the energetic cost of cooling is still provided by the Lan-
dauer limit, but in order to achieve it, either time or control
complexity must diverge.

At the same time, heat fluctuations and short coher-
ence times in quantum technologies [18] demand that both
energy and time are not only finite, but minimal. Therefore,
in addition to proving the necessity of diverging con-
trol complexity for perfect cooling with minimal time and
energy, we develop explicit protocols that saturate the ulti-
mate limits. We demonstrate that mitigating overall heat
dissipation comes at the practical cost of controlling fine-
tuned interactions that require a coherent external work
source, i.e., a quantum battery [19–23]. From a thermo-
dynamic perspective, this may seem somewhat unsatisfac-
tory: nonequilibrium resources imply that the total system
is not closed, and the optimal protocol (saturating the Lan-
dauer bound) is reminiscent of a Maxwellian demon with
perfect control.

Accordingly, we also consider an incoherent control set-
ting restricted to global energy-conserving unitaries with
a heat bath as thermodynamic energy source. This setting
corresponds to minimal overall control, where interactions
need only be switched on and off to generate transforma-
tions, i.e., a heat engine alone drives the dynamics [24–28].
The incoherent-control setting is therefore fully thermody-
namically consistent inasmuch as both the machine state
is assumed to be thermal (and to rethermalize between
control steps) and the permitted control operations are
those implementable solely via a heat engine. In this
paradigm, we show that the Landauer bound is not attain-
able, subsequently derive a novel limit—which we dub the
Carnot-Landauer bound—and construct protocols that sat-
urate it, thereby establishing its significance. The Carnot-
Landauer bound follows from an equality phrased in terms
of entropic and energetic quantities that must hold for any
state transformation in the incoherent control paradigm; in
this sense, the Carnot-Landauer equality adapts the equal-
ity version of Landauer’s principle developed in Ref. [29]
to a fully (quantum) thermodynamic setting.

Our work thus both generalizes Landauer’s erasure prin-
ciple and, at the same time, unifies it with the laws of
thermodynamics. By accounting for control complexity,
we emphasize a crucial resource that is oftentimes over-
looked but, as we show, must be taken into account for
any operationally meaningful theory of thermodynamics.

Here, we focus on the asymptotic setting that allows us to
connect this resource with Nernst’s unattainability princi-
ple. Beyond the asymptotic case, the gained insights also
open the door to a better understanding of the intricate
relationship between energy, time, and control complexity
when all resources are finite, which will be crucial for prac-
tical applications; we additionally provide a preliminary
analysis to this end. Lastly, our protocols saturating the
Carnot-Landauer bound pave the way for thermodynam-
ically driven (i.e., minimal-control) quantum technologies,
which, by mitigating the cost of control at the very outset,
could lead to tangible advantages.

A. Overview and summary of results

Loosely speaking, there are two types of thermodynamic
laws: those, like the second law, that bound (changes of)
characteristic quantities during thermodynamic processes,
and those, like the third law, which state the impossibil-
ity of certain tasks. Landauer’s principle is of the former
kind (indeed, it can be rephrased as a version of the second
law), associating a minimal heat dissipation to any logi-
cally irreversible process, thereby placing a fundamental
limit on the energy cost of computation. The paradigmatic
logically irreversible process is that of erasing informa-
tion, i.e., resetting an arbitrary state to a blank register.
From a physics perspective, said task can be rephrased as
perfectly cooling a system to the ground state, or more
generally, taking an initially full-rank state to a rank-
deficient one [30]. Note that although there is, in general,
a distinction between physical cooling and information
erasure, in this paper we focus on erasing quantum infor-
mation encoded in fundamental degrees of freedom rather
than in logical macrostate sectors, and accordingly use the
terms somewhat interchangeably. This is justified because
in either case, the ultimate limitation (be it cooling to
absolute zero or perfectly erasing information) requires
a rank-decreasing process, which is what we formally
analyze.

Nernst’s unattainability principle is of the latter kind of
thermodynamic law, stating that perfectly cooling a system
requires diverging resources. The resources typically con-
sidered are energy and time, whose asymptotic trade-off
relation is relatively well established: on the one hand, per-
fect cooling can be achieved in finite time at the expense
of an energy cost that diverges as the ground state is
approached; on the other hand, the energy cost can be min-
imized by implementing a quasistatic process that saturates
the Landauer limit but takes infinitely long [31].

These two types of thermodynamic laws are intimately
related, but details of their interplay have remained elu-
sive: under which conditions can the Landauer bound be
saturated and what are the minimal resources required to
do so? Which protocols asymptotically create pure states
with given (diverging) resources? What type of control
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FIG. 1. Framework. We consider the task of cooling a quantum system in two extremal control scenarios, with each step of both
paradigms comprising two primitives. The top panel depicts the coherent-control scenario: in the control step (left), an agent can use
a work source W to implement any global unitary on the system S and machine M, which both begin thermal at inverse temperature
β; in cooling the target, energy and entropy is transferred to the machine. The machine then rethermalizes with its environment (right),
thereby dissipating the energy it gained in the control step. The bottom panel depicts the incoherent-control scenario: the machine
is bipartitioned into a cold part at inverse temperature β and a hot part at inverse temperature βH < β. In the control step, the agent
switches on an interaction between the three systems, represented by a global energy-conserving unitary UEC. In the rethermalization
step, the interaction is turned off and both subsystems of the machine rethermalize to their respective initial temperatures; the hot
part draws energy from the heat bath while the cold part dissipates heat to its environment. In both paradigms, we quantify the
control complexity as the effective dimension accessed by the unitary operation in a given control step (i.e., the dimension of the
system-machine Hilbert space upon which the unitary acts nontrivially).

do such protocols require and how difficult are they to
implement in practice? We address these questions by con-
sidering the task of cooling a quantum system in two
extremal control paradigms (see Fig. 1): one driven by a
coherent work source and the other by an incoherent heat
engine.

After laying out the framework, we proceed to ana-
lyze the relationship between the aforementioned three
resources for cooling. A core idea of this paper originates
from the observation that it is possible to perfectly cool a
physical system with both finite energy and time. Although
said observation is simple in nature inasmuch as it can be
obtained by a shift in perspective of Landauer’s original
protocol, its consequences run deep: indeed, the apparent
tension between Landauer cooling and Nernst’s unattain-
ability principle that arises when only energy and time are
considered as resources is resolved via the inclusion of
control complexity as a consideration. Subsequently, we
define a meaningful notion of control complexity in terms
of the energy-level structure of the machine that the sys-
tem must be coupled to throughout the cooling protocol
and demonstrate its thermodynamic consistency by show-
ing that it indeed must diverge to cool the system to the

ground state at minimal energy cost, thereby reconciling
the viewpoints of Landauer and Nernst.

Having established the trinity of relevant resources, we
present three main results:

1. Perfect cooling is possible with coherent control
provided either energy, time, or control complex-
ity diverge. In particular, it is possible in finite time
and at Landauer energy cost with diverging control
complexity.

2. Perfect cooling is possible with incoherent control,
i.e., with a heat engine, provided either time or con-
trol complexity diverge. On the other hand, it is
impossible with both finite time and control com-
plexity, regardless of the amount of energy drawn
from the heat bath.

3. No process driven by a finite-temperature heat
engine can (perfectly) cool a quantum system at the
Landauer limit. Nonetheless, the Carnot-Landauer
limit, which we introduce here (as a consequence
of a stronger equality), can be saturated for any
heat bath, given either diverging time or control
complexity.
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In the following, we discuss each of these results in turn
in more detail and provide a systematic study concern-
ing the asymptotic interplay of energy, time, and control
complexity as thermodynamic resources in two extremal
control paradigms, as well as develop insight into the
finite-resource regime for some special cases. We begin by
outlining the framework.

II. FRAMEWORK: COOLING A PHYSICAL
SYSTEM

Consider a target system S in an initial state �S
described by a unit-trace, positive semidefinite operator
with associated Hamiltonian HS . An auxiliary machine
M, initially uncorrelated with S and in equilibrium with
a reservoir at inverse temperature β := 1/kBT, is used to
cool the target system. The initial state of M is thus of
Gibbs form,

�M = τM(β, HM) := e−βHM

ZM(β, HM)
, (1)

where HM is the machine Hamiltonian andZM(β, HM) :=
tr
[
e−βHM

]
its partition function. Throughout this paper we

consider only Hamiltonians with discrete spectra, i.e., with
an associated separable Hilbert space that has a countable
energy eigenbasis. Moreover, for the most part we consider
finite-dimensional systems (or sequences thereof) and deal
with infinite-dimensional systems separately.

As shown in Fig. 1, a single step of a cooling pro-
cess comprises two subprocedures: first, a joint unitary is
implemented during the control step; second, the machine
rethermalizes to the ambient temperature. A cooling pro-
tocol is determined by the initial conditions and any
concatenation of such primitives [32]. We consider two
extremal control paradigms corresponding to two classes
of allowed global transformations. The coherent control
paradigm permits arbitrary unitaries on SM; in general,
these change the total energy but leave the global entropy
invariant and thus require an external work source W .
At the other extreme is the incoherent control paradigm,
where the energy source is a heat bath. Here, the machine
M is bipartitioned: one part, C, is connected to a cold
bath at inverse temperature β, which serves as a sink
for all energy and entropy flows; the other, H, is con-
nected to a hot bath at inverse temperature βH ≤ β, which
provides energy. The composite system SCH is closed
and thus global unitary transformations are restricted to
be energy conserving. The temperature gradient causes a
natural heat flow away from the hot bath, which carries
maximal entropic change with it. Cooling protocols in this
setting can be run with minimal external control, i.e., they
require only the switching on and off of interactions.

III. COHERENT CONTROL

We begin by considering cooling with coherently con-
trolled resources (see Fig. 1, top panel). We first analyze
energy, time, and control complexity as resources that can
be traded off against one another in order to optimize cool-
ing performance, before focusing more specifically on the
nature and role of control complexity.

A. Energy, time, and control complexity as resources

In the coherent-control setting, a transformation �S →
�′S is enacted via a unitary U on SM involving a thermal
machine �M = τM(β, HM), i.e.,

�′S := trM
[
U(�S ⊗ �M)U†] . (2)

For such a transformation, there are two energy costs con-
tributing to the total energy change, which must be drawn
from a work source W . The first is the energy change of
the target �ES := tr

[
HS(�′S − �S)

]
; the second is that of

the machine �EM := tr
[
HM(�′M − �M)

]
, where �′M :=

trS
[
U(�S ⊗ �M)U†

]
. The latter is associated with the heat

dissipated into the environment and is given by [29]

β�EM = �̃SS + I(S : M)�′SM + D(�′M‖�M), (3)

where S(�) := −tr [� log(�)] is the von Neumann entropy,
�̃SA := S(�A)− S(�′A) [33], I(A : B)�AB := S(�A)+
S(�B)− S(�AB) (with marginals �A/B := trB/A

[
�AB

]
) is

the mutual information between A and B, and D(�‖σ) :=
tr [� log(�)] − tr [� log(σ )] is the relative entropy of � with
respect to σ , with D(�‖σ) := ∞ if supp[�] � supp[σ ].
We derive Eq. (3) and its generalization to the incoherent-
control setting in Appendix A. The mutual information is
non-negative and vanishes if and only if �AB = �A ⊗ �B;
similarly, the relative entropy is non-negative and vanishes
if and only if � = σ . Dropping these terms leads to the
Landauer bound [11]

β�EM ≥ �̃SS . (4)

The Landauer limit holds independently of the proto-
col implemented, i.e., it assumes only that some unitary
was applied to the target and thermal machine. For large
machines, the dissipated heat is typically much greater than
the energy change of the target; nonetheless, the contri-
butions can be comparable at the microscopic scale. We
assume that the target begins in equilibrium with the reser-
voir at inverse temperature β, i.e., in the initial thermal
state �S = τS(β, HS), with no loss of generality since such
a relaxation can be achieved for free (by swapping the tar-
get with a suitable part of the environment; however, see
Ref. [34] for a discussion of initial state dependency of the
bound). We track all energetic and entropic quantities and
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TABLE I. Coherent-control cooling protocols for finite-
dimensional (qudit) and harmonic oscillator systems. Landauer
energy cost refers to saturation of Eq. (4) and complexity refers to
the proxy measure effective dimension (see Definition 1); time is
measured as the number of unitary operations with a fixed com-
plexity. In the qudit case, the system and machine dimensions are
equal: dS = dM =: d.

Energy Time Complexity

Qudit →∞ 1 1
2 d(d − 1)

Landauer →∞ 1
2 d(d − 1)

Landauer 1 →∞
H. O. →∞ 1 →∞ (Gaussian)

Landauer →∞ →∞ (Gaussian)
Finite (> Landauer) →∞ 1 (Non-Gaussian)

Landauer 1 →∞ (Gaussian)

refer to the asymptotic saturation of Eq. (4) with �′S pure
as perfect cooling at the Landauer limit.

Although Landauer’s limit sets the minimum heat that
must be dissipated—and thereby the minimum energy
cost—for cooling any physical system, the third law makes
no specification that energy must be the resource min-
imized (or that time must diverge). One might instead
consider using a source of unbounded energy to perfectly
cool a system as quickly as possible. Additionally, con-
trol complexity plays an important role as a resource,
inasmuch as its divergence permits perfect cooling at the
Landauer limit in finite time (see below). As summarized
in Table I, we now present coherently controlled protocols
that perfectly cool an arbitrary finite-dimensional target
system using thermal machines when any one of the three
considered resources—energy, time, or control complex-
ity—diverges; moreover, the resources that are kept finite
saturate protocol-independent ultimate bounds. The fol-
lowing thus provides a comprehensive analysis of cooling
with respect to the trinity of resources that can be traded
off amongst each other.

B. Perfect cooling at the ultimate limits with infinite
resources

1. Diverging energy.—We first consider the situation in
which time and control complexity are fixed to be finite,
while the energy cost is allowed to diverge. Here, we
present the following:

Theorem 1. With diverging energy, any finite-dimensional
quantum system can be perfectly cooled using a single
interaction of finite complexity.

The cooling protocol using diverging energy is the sim-
plest. Here, one exchanges all populations of the target
system with those of a thermal machine with suitably
large energy gaps to sufficiently concentrate the initial

machine population in the ground-state subspace of the
target system. This exchange requires a single system-
machine unitary and is of finite complexity (in a sense
discussed below). Nonetheless, the energy drawn from the
work source in this protocol diverges. Moreover, in addi-
tion to being sufficient for perfect cooling with both finite
time and control complexity, any protocol that cools per-
fectly with both finite time and control complexity requires
diverging energy. See Appendix B for details.

We now move to consider the situations in which
the energy cost is minimized at the expense of either
diverging time or control complexity. Equation (3) pro-
vides insight for understanding the conditions required
for saturating the Landauer bound. Although for finite-
dimensional machines only trivial processes of the form
USM = US ⊗ 1M saturate the Landauer limit [29], we
show how it can be asymptotically saturated with non-
trivial processes by considering diverging machine and
interaction properties, as we elaborate on shortly. Any such
process must asymptotically exhibit no correlations such
that I(S : M)�′SM → 0 and effectively not disturb the
machine, i.e., yield �′M → �M such that D(�′M‖�M) → 0.
Indeed, any correlations created between initially thermal
systems would come at the expense of an additional ener-
getic cost [35–37] whose minimization is a problem that
has so far only been partially resolved [38]. However, it has
been shown that for any (strictly) rank nondecreasing pro-
cess, there exists a thermal machine and joint unitary such
that for any ε > 0, the heat dissipated satisfies β�EM ≤
�̃SS + ε [29], thereby saturating the Landauer limit. Here,
we present protocols that asymptotically achieve both this
and perfect cooling (in particular, effectively decrease the
rank), and provide necessary conditions on the underlying
resources required to do so.

2. Diverging time.—We now present a protocol that uses
a diverging number of operations of finite complexity to
asymptotically attain perfect cooling at the Landauer limit
[20,29,39].

Theorem 2. With diverging time, any finite-dimensional
quantum system can be perfectly cooled at the Landauer
limit via interactions of finite complexity.

Sketch of proof.—We first show that any system can be
cooled from �S = τS(β, HS) to τS(β∗, HS), with β∗ ≥ β,
using only β−1 �̃SS units of energy. Our proof is construc-
tive in the sense that we provide a protocol that achieves
the Landauer energy cost as the number of operations
diverges. The individual interactions in this protocol are
of finite control complexity as they simply swap the tar-
get system with one of a sequence of thermal machines
with increasing energy gaps. In this way, the final state
τS(β∗, HS) can be made to be arbitrarily close to |0〉〈0|S
for any initial temperature. �
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The proof is presented in Appendix C, along with a more
detailed dimension-dependent energy cost function for the
special case of equally spaced Hamiltonians.

Through the protocol described above, we see that given
a diverging amount of time, the target system can be
sequentially coupled with a machine of finite complexity
that rethermalizes between control steps in such a way that
the final target system state is arbitrarily close to the ground
state for any initial temperature. This trade-off between
energy and time is well known, and we discuss it only
briefly in order to help build intuition and highlight the ver-
satility of our framework. Alternatively, one can compress
all the operations applied in the diverging-time protocol
into one global unitary that achieves the same final states,
thereby achieving perfect cooling at the Landauer limit in
a single unit of time but with an infinitely complex interac-
tion. That is, the diverging temporal resource of repeated
interactions with a single, finite-size machine is replaced
by a single interaction with a larger machine of diverging
control complexity.

3. Diverging control complexity.—By reconsidering
the diverging-time protocol above, a trade-off can be
made between time and control complexity. As illus-
trated in Fig. 2, one can consider all of the operations
{Uk = e−iHktk }k=1,...,N required in said protocol to make
up one single joint interaction Utot := limN→∞

∏N
k=1 Uk =

e−iHtotttot acting on a larger machine, thus setting the time

FIG. 2. Complexity. We consider structural (left) and control
complexity (right). Structural complexity concerns properties of
the machine Hamiltonian. For perfect cooling it is necessary
that the largest energy gap diverges [see Eq. (5)]. Moreover, an
infinite-dimensional machine with particular energy-level struc-
ture is required for saturation of the Landauer bound. Control
complexity refers to properties of the unitary that represents a
protocol. The yellow box in the foreground represents a uni-
tary U involving the entire machine, whereas the smaller yellow
columns in the background represent a potential decomposition
(e.g., of the diverging-time protocol) into unitaries Ui involv-
ing certain subspaces of the overall machine. Not only must the
target system interact with all levels of an infinite-dimensional
machine for Landauer-cost cooling, it must do so in a fine-tuned
way.

required to be unity (in terms of the number of con-
trol operations before the machine rethermalizes). In other
words, for any finite number N of unitary transforma-
tions Uk, there exists a total Hamiltonian Htot

(N) and a
finite time t N that generates the overall transformation
Utot

(N) :=∏N
k=1 Uk; since t N is finite, we can set it equal to

one without loss of generality by rescaling the Hamiltonian
as H̃tot

(N) = t NHtot
(N). Here, we refer to the limit N →∞

as diverging control complexity. Compressing a diverging
number of finite-complexity operations thus yields a pro-
tocol of diverging control complexity. The fact that there
exists such an operation that minimizes both the time and
energy requirements follows from our constructive proof
of Theorem 2. We therefore have the following:

Corollary 1. With diverging control complexity, any finite-
dimensional quantum system can be perfectly cooled at the
Landauer limit in finite time.

However, this particular way of constructing complex
control protocols is not necessarily unique. It is thus natu-
ral to wonder if diverging control complexity is a generic
feature necessary to achieve perfect cooling at the Lan-
dauer limit in unit time and indeed, how to quantify control
complexity that is operationally meaningful between the
extreme cases of being either very small or divergent, as
we now turn to discuss. Indeed, the inclusion of an explicit
quantifier of control complexity regarding thermodynamic
tasks—which, although crucial for practical purposes, is
oftentimes overlooked—is one of the main novelties of our
present work.

IV. CONTROL COMPLEXITY IN QUANTUM
THERMODYNAMICS

Although the protocol described above has diverging
control complexity by construction, one need not con-
struct complex protocols in this way, and so the natural
concern becomes understanding the generic features that
enable perfect cooling at the Landauer limit in unit time. To
address this issue, we first provide protocol-independent
structural conditions that must be fulfilled by the machine
to enable (1) perfect cooling and (2) cooling at Lan-
dauer cost; combined, these independent conditions pro-
vide a necessary requirement, namely that the machine
must have an unbounded spectrum (from above) and be
infinite-dimensional (respectively) for the possibility of (3)
perfect cooling at the Landauer limit. Such properties of
the machine Hamiltonian define the structural complex-
ity, which sets the potential for how cool the target system
can be made and at what energy cost. As the name sug-
gests, this is entailed by the structure of the machine, e.g.,
the number of energy gaps and their arrangement, and
as such provides a static notion of complexity. However,
given a machine with particular structural complexity, one
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may not be able to utilize said potential due to constraints
on the dynamics that can be implemented. For instance,
one may be restricted to only two-body interactions, or
operations involving only a few energy levels at a time.
Assuming a sufficient structural complexity at hand, such
constraints limit one from optimally manipulating the sys-
tems. Thus, the extent to which a machine’s potential is
utilized depends on properties of the dynamics of a given
protocol, i.e., the control complexity. We provide a detailed
study of structural and control complexity in Appendix D,
and here summarize the key methods.

A. Structural and dynamical notions of complexity

We split the consideration of complexity into two parts:
first, the protocol-independent structural conditions that
must be fulfilled by the machine and, second, the dynamic
control complexity properties of the interaction that imple-
ments a given protocol (see Fig. 2).

1. Structural complexity

Regarding the former, first note that one can lower
bound the smallest eigenvalue λmin of the final state �′S
(and hence how cold the system can become) after any
unitary interaction with a thermal machine by [29]

λmin(�
′
S) ≥ e−β ωmax

M λmin(�S), (5)

where ωmax
M := maxi,j |ωj − ωi| denotes the largest energy

gap of the machine Hamiltonian HM with eigenvalues ωi.
It follows that perfect cooling is only possible under two
conditions: either the machine begins in a pure state (β →
∞), or HM is unbounded, i.e., ωmax

M →∞. Requiring β <

∞, a diverging energy gap in the machine Hamiltonian is
thus a necessary structural condition for perfect cooling.
Independently, another condition required to saturate the
Landauer limit can be derived for any amount of cooling:
in Ref. [29], it was shown that for any finite-dimensional
machine, there are correction terms to the Landauer bound
that imply that it cannot be saturated since these terms only
vanish in the limit where the machine dimension diverges.

We thus have two independent necessary conditions on
the structure of the machine that must be asymptotically
fulfilled to achieve relevant goals for cooling: the former
is required for perfect cooling; the latter for cooling at
the Landauer limit. Together, these conditions imply the
following:

Corollary 2. To perfectly cool a target system with
energy cost at the Landauer limit using a thermal machine
τM(β, HM), the machine must be infinite dimensional and
ωmax

M , the maximal energy gap of HM, must diverge.

The unbounded structural properties of the machine sup-
port the possibility for perfect cooling at the Landauer

limit; we now move to focus on the control properties of
the interaction that realize said potential (see Fig. 2). This
leads to the distinct notion of control complexity, which
differentiates between protocols that access the machine
in a more or less complex manner. The structural com-
plexity properties are protocol independent and related to
the energy spectrum and dimensionality of the machine,
whereas the control complexity concerns dynamical prop-
erties of the unitary that represents a particular protocol.

2. Control complexity

Although it is intuitive that a unitary coupling the sys-
tem to many degrees of freedom of the machine should be
considered complex, it is a priori unclear how to quantify
control complexity in a manner that both

1. corresponds to our intuitive understanding of the
word “complex,” meaning “difficult to implement”;
and

2. is consistent with Nernst’s third law in the sense
that its divergence is necessary to reach a pure state
(when all other considered resources are restricted
to be finite).

Many notions of complexity put forth throughout the lit-
erature to capture the first point above do not necessarily
satisfy the second, as we discuss later. Here, we take the
opposite approach and seek a minimal notion of complex-
ity that is first and foremost consistent with the third law
of thermodynamics, which we hope to develop further to
incorporate the idea of quantifying how difficult a protocol
is to implement.

In the following sections, we begin by demonstrating
that any cooling protocol that achieves perfect cooling with
minimal time and energy resources requires coupling the
target system to an infinite-dimensional machine, thereby
capturing a notion of control complexity that satisfies the
second point above. However, by subsequently analyzing
the sufficient conditions for such optimal cooling, we see
that such a condition is in general insufficient to achieve
said goal; furthermore, coupling to an infinite-dimensional
machine is not necessarily difficult to implement in prac-
tice in certain experimental platforms. The insights gained
here finally motivate our more refined notion of control
complexity, namely that the system must be coupled to a
spectrum of machine energy gaps that approximate a con-
tinuum. This condition is indeed difficult to achieve in all
experimental settings and therefore provides a reasonable
definition of control complexity inasmuch as it satisfies
both desiderata outlined above.

B. Effective dimension as a notion of control
complexity

As a first step in this direction, a good proxy measure of
control complexity is the effective dimension of a unitary
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operation, i.e., the dimension of the subspace of the global
Hilbert space upon which the unitary acts nontrivially.

Definition 1. The effective dimension is the minimum
dimension of a subspace A of the joint Hilbert space
HSM in terms of which the unitary can be decomposed
as USM = UA ⊕ 1A⊥:

d eff := min dim(A) : USM = UA ⊕ 1A⊥ . (6)

Intuitively, given any (sufficiently large) machine
dimension, the effective dimension captures how much of
the machine takes part in the controlled interaction. While
any dynamics that requires a high amount of control must
accordingly have large effective dimension, the converse
does not necessarily follow: there exist dynamics with cor-
responding large (even infinite) effective dimensions (e.g.,
Gaussian operations on two harmonic oscillators, such as
those enacted by a beam splitter) that are easily imple-
mentable and do not require high levels of control, as we
discuss further below. Nevertheless, using the definition
above, we show that any protocol achieving perfect cool-
ing at the Landauer limit necessarily involves interactions
between the target and infinitely many energy levels of
the machine. In other words, no interaction restricted to
a finite-dimensional subspace suffices.

We begin by demonstrating that the effective dimen-
sion (nontrivially) accessed by a unitary (see Definition 1)
must diverge to achieve perfect cooling at the Landauer
limit, thereby providing a good proxy for control com-
plexity in the sense that it aligns with Nernst’s third law
and provides a necessary condition. Intuitively, the effec-
tive dimension of a unitary operation is the dimension of
the subspace of the global Hilbert space upon which the
unitary acts nontrivially, in other words the part of the
joint space that is actually accessed by the control proto-
col. This quantity can be computed by considering a given
cooling protocol and finite unit of time T (which we can
set equal to unity without loss of generality) with respect
to which the target and total machine transform unitar-
ily by decomposing the Hamiltonian in USM = e−iHSMT

in terms of local and interaction terms, i.e., HSM = HS ⊗
1M + 1S ⊗ HM + Hint. The effective dimension then cor-
responds to rank(Hint). With this definition at hand, we
have the following:

Theorem 3. The unitary representing a cooling proto-
col that saturates the Landauer limit must act nontrivially
on an infinite-dimensional subspace of supp(HM). This
implies d eff →∞.

Intuitively, we show that if a protocol accesses only
a finite-dimensional subspace of the machine, then the
machine is effectively finite-dimensional inasmuch as a

suitable replacement can be made while keeping all quanti-
ties relevant for cooling invariant. Invoking the main result
of Ref. [29] then implies that there are finite-dimensional
correction terms such that the Landauer limit cannot be
saturated.

The effective dimension therefore provides a minimal
quantifier for control complexity: it is the quantity that
must diverge in order to (perfectly) cool at minimal energy
cost—thus, it satisfies the above point 2. Moreover, it
requires no assumption on the underlying structure of
the machine, with the results holding for either collec-
tions of finite-dimensional systems or harmonic oscillators
without any restrictions on the types of individual opera-
tions allowed. This highlights a certain level of generality
regarding the definition put forth, inasmuch as it is not
tied to any presupposed structure of the systems at hand
or the ability of the agent to control them. Additionally, as
we discuss below, in many situations of interest, such as
a machine comprising a collection of qubits and/or natural
gate-set limitations, said definition also corresponds to pro-
tocols that are difficult to implement in practice, therefore
also satisfying the above point 1. However, such additional
restrictions are by no means generic. Moreover, it is a pri-
ori unclear if having a diverging effective dimension is
enough to permit perfect cooling with minimal time and
energy cost. We now move on to discuss the connection
to practical difficulty in general before analyzing sufficient
conditions regarding control complexity.

1. Correspondence to practical difficulty

Importantly, if one supposes that the system and
machines are finite dimensional, then diverging effective
dimension implies diverging circuit complexity, where the
latter is defined in terms of the minimum number of
gates (from a predetermined set of possibilities) required
to implement the overall circuit representing a particu-
lar protocol. For instance, considering a qubit system and
machines, and the ability to perform arbitrary two-qubit
gates, the effective dimension is simply the logarithm of
the number of distinct machine qubits that the system
interacts with throughout the protocol. For any cooling
protocol that achieves Landauer energy cost, it is clear
that every one of a diverging number of qubit machines
must take part in the overall transformation. Moreover, the
particular interactions applied can be taken to be SWAP
gates, which require the ability for the agent to be able
to perform a CNOT gate, which in turn permits universal
quantum computation with two-qubit interactions. Thus,
given a universal two-qubit gate set, the circuit required
to perform perfect cooling at minimal energy cost has a
complexity that scales with the number of machine qubits.
For higher-dimensional architectures or further restrictions
on the gate set, any meaningful notion of control com-
plexity will increase accordingly. This means that the
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task of cooling a finite-dimensional system with finite-
dimensional machines at the Landauer limit is—even with
a perfect quantum computer—an impossibly difficult task.

However, although our proposed definition of effective
dimension as a notion of control complexity is flexible
inasmuch as it applies to arbitrary system-machine struc-
tures, the price of such generality comes with the drawback
that it tends to overestimate the difficulty of implementing
a particular protocol in practice. In other words, without
imposing any additional assumptions regarding the situa-
tion at hand, the effective dimension does not necessarily
satisfy the above point 1. For example, whilst the effec-
tive dimension and the circuit complexity coincide for
qubits, in higher-dimensional settings, the former overesti-
mates the latter because not all system-machine subspaces
are necessarily required to implement a particular proto-
col (i.e., although using all such subspaces provides one
way to achieve it, this is not unique). Thus, the extent to
which the circuit complexity is overestimated depends on
the allowed gate set that is considered “simple” in general.
At the extreme end, i.e., for harmonic-oscillator systems
and machines, this can be seen from the fact that a sin-
gle beam-splitter operation (which is a two-mode Gaussian
operation, corresponding to a simple circuit complexity in
the usual sense considered for infinite-dimensional quan-
tum circuit architectures) already has infinite effective
dimension, but is far from sufficient to achieve perfect
cooling at Landauer cost.

As a representative for infinite-dimensional systems,
we treat harmonic oscillator target systems separately in
Appendix E. In the infinite-dimensional setting, the diffi-
culty of implementing an operation is often related to the
polynomial degree of its generators. Here, we see some
friction with respect to Eq. (6): as mentioned above, a
generic Gaussian unitary operation (i.e., one generated
by a Hamiltonian at most quadratic in the mode opera-
tors) between a harmonic oscillator target and machine
already implies infinite effective dimensionality. In light
of this, we first construct a protocol that achieves perfect
cooling at the Landauer limit with diverging time using
only sequences of Gaussian operations [i.e., those typ-
ically considered to be practically easily implementable
(cf. Refs. [22,40]), but nonetheless with infinite effective
dimensionality according to Definition 1]. This result high-
lights that the polynomial degree of the generators of a
particular protocol would—somewhat counterintuitively,
since operations corresponding to high polynomial degree
are difficult to achieve in practice—not provide a suitable
measure of control complexity inasmuch as its divergence
is not necessary for Landauer-cost cooling. In contrast,
we then present a protocol that demonstrates that perfect
cooling is possible given diverging time and operations
acting on only a finite effective dimensionality (i.e., using
non-Gaussian operations), with a finite energy cost that is
greater than the Landauer limit; whether or not a similar

protocol that saturates the Landauer limit exists in this
setting remains an open question.

2. Sufficiency for optimal cooling

Thus, in general, accessing an infinite-dimensional
machine subspace is not sufficient for reaching the Lan-
dauer limit. Indeed, in all of the protocols that we
present, the degrees of freedom of the machine must
be individually addressed in a fine-tuned manner to per-
mute populations optimally, which intuitively corresponds
to complicated multipartite gates and demonstrates that
an operationally meaningful notion of control complex-
ity must take into account factors beyond the effective
dimensionality accessed by an operation. In particular, the
interactions couple the target system to a diverging num-
ber of subspaces of the machine corresponding to distinct
energy gaps. Moreover, there are a diverging number of
energy levels of the machine both above and below the first
excited level of the target. These observations highlight
that fine-tuned control plays an important role. Indeed,
both the final temperature of the target as well as the energy
cost required to achieve this depends upon how the global
eigenvalues are permuted via the cooling process. First,
how cool the target becomes depends on the sum of the
eigenvalues that are placed into the subspace spanned by
the ground state. Second, for any fixed amount of cool-
ing, the energy cost depends on the constrained distribution
of eigenvalues within the machine. Thus, in general, the
optimal permutation of eigenvalues depends upon proper-
ties of both the target and machine. To highlight this, in
Appendix D, we consider the task of cooling a maximally
mixed target system with the additional constraint that the
operation implemented lowers the temperature as much as
possible. This allows us to derive a closed-form expres-
sion for the distribution of machine eigenvalues alone that
must be asymptotically satisfied as the machine dimen-
sion diverges. Drawing from these insights, in the coming
section we propose a stronger notion of control complex-
ity (in the sense that it bounds the effective dimension from
below and that it corresponds to practical difficulty in vir-
tual every setting imaginable) in terms of the energy-gap
structure of the machine and demonstrate that this measure
too must diverge to cool perfectly with minimal time and
energy costs. This concept is even more important in the
case where all resources are finite, as particular structures
of machines and the types of interactions permitted play
a crucial role in both how much time or energy is spent
cooling a system and how cold the system can ultimately
become (see, e.g., Refs. [41–43]).

C. Energy-gap variety as a notion of control
complexity

This analysis motivates searching for a more detailed
notion of control complexity that takes the energy-level
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structure of the machine into account, which should hold
across all platforms and dimension scales. The discus-
sion above illustrates some key challenges in defining
a measure of control complexity that satisfies natural
desiderata: such a measure should correspond to the dif-
ficulty of implementing operations in practice and simul-
taneously cover all possible physical platforms, including
finite-dimensional systems such as, e.g., specific opti-
cal transitions of electrons in the shell of trapped ions,
and infinite-dimensional systems such as the state-space-
specific modes of the electromagnetic field. The effective
dimension that we introduce above as a proxy manages to
cover all such systems and provides a rigorous mathemat-
ical criterion that every physical protocol will necessarily
have to fulfil in order to cool at minimal energy cost. As we
have seen, however, infinite effective dimension is insuffi-
cient for cooling at the Landauer limit and it may not be all
that difficult to achieve in continuous-variable setups. This
begs the question of how this minimal definition of control
complexity can be extended in order to more faithfully rep-
resent what permits saturation of the ultimate limitations
and is difficult to achieve in practice.

Looking at all of our cooling protocols, a common prop-
erty that seems to be important in minimizing the energy
cost of cooling is that the system is coupled to a set of
machine energy gaps that are distributed in such a way that
they (approximately) densely cover the interval [ω1, ω∗],
where ω1 is the first energy gap of the target system and
ω∗ is the maximal energy gap, which sets the final achiev-
able temperature of the system (for perfect cooling to the
ground state, note that one requires ω∗ → ∞). Let us
denote the number of distinct energy gaps in a (fixed) inter-
val as the energy-gap variety. More formally, we have the
following:

Definition 2. Consider an interval [ωa, ωb) ⊆ R. We
define the energy-gap variety in terms of the set of machine
energy gaps that lie in said interval, i.e., first construct the
set

E[ωa,ωb) := {ωγ := ωi − ωj |ωi − ωj ∈ [ωa, ωb)}γ . (7)

The number of distinct elements in such a set is the energy-
gap variety.

On the one hand, it is clear that coupling a system to a
large number of distinct and/or closely spaced energy gaps
requires fine-tuned control that is difficult in any experi-
mental setting. On the other, the energy-gap variety lower
bounds the effective dimension, and thus it is not clear that
it needs to diverge in order to cool at Landauer energy
cost. In Appendix D, we demonstrate that the energy-
gap variety must indeed diverge and, additionally, that the
set of energy gaps must densely cover a relevant interval
(whose endpoints set the amount of cooling possible) in

order to perfectly cool at the Landauer limit by proving the
following:

Theorem 4. In order to cool �S �→ |0〉〈0| with a thermal
machine τM(β, HM) at Landauer energy cost with a sin-
gle control operation, the global unitary U must couple
the system to a diverging number of distinct energy gaps
that densely cover the interval [ω0,∞), where ω0 is the
smallest energy gap of the target system.

Taken in combination with its sufficiency to achieve said
task, this result posits the energy-gap variety as a better
quantifier of control complexity than the effective dimen-
sion, constituting the best thermodynamically meaningful
notion of control complexity that we have put forth so far.

The above theorem establishes the relevance of the
energy-gap variety regarding the ultimate limitations of
perfect cooling. In reality, of course, experimental imper-
fections abound, and so naturally the question arises:
how robust is the energy-gap variety and to what extent
can it incorporate errors? Regarding the former: note
that the above theorem posits the impossibility of cool-
ing at Landauer energy cost unless one has control
over an (infinitely) fine-grained energy-gap structure.
Any perturbation away from said structure will result in
some additional energy requirement for cooling; however,
intuitively, small perturbations will correspond to small
increases in energy costs. Properly accounting for such
impacts, e.g., by bounding the additional energy cost in
terms of a difference from the optimal energy-gap struc-
ture, is an important next step to understand the practi-
cal limitations of cooling. Regarding the latter point, in
reality one never has perfect control over microscopic
degrees of freedom. For instance, an immediate experi-
mental imperfection that should be accounted for is the fact
that two energy gaps which are very close together will
be practically indistinguishable. Although a full-fledged
error analysis here would constitute a major follow-up
work, note that such cases can be formally dealt with
within our framework by suitably modifying the definition,
i.e., by discretizing energy bands to suitably capture the
indistinguishability of energy gaps and/or error margins.

Aside from introducing and highlighting the important
role of control complexity, we now take a step back to
consider the notion of overall control at a higher level. It
is clear that the protocols that saturate the Landauer limit
for the energy cost of cooling require highly controlled
microstate interactions between the system and machine;
in turn, such transformations necessitate that the agent has
access to a versatile work source, i.e., either a quantum bat-
tery [19–23] or a classical work source with a precise clock
[9,10]. Such control is reminiscent of Maxwell’s demon,
who can indeed address all microscopic configurations at
hand. This level of control is, however, in some sense at
odds with the true spirit of thermodynamics. Indeed, the
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very reason that the machine is taken to begin as a ther-
mal (Gibbs) state in thermodynamics is precisely because
it provides the microscopic description that is both consis-
tent with macroscopic observations (in particular, average
energy) and makes minimal assumptions regarding the
information that the agent has about the initial state; ther-
modynamics as a whole is largely concerned with what can
be done with minimal information requirements. Begin-
ning with this, and then going on to permit dynamical
interactions that address the full complex microstructure
is somewhat contradictory, at least in essence; indeed,
it has been argued that “Maxwell’s demon cannot oper-
ate” [44] as an autonomous thermal being. Thus, a more
thermodynamically sound setting would also restrict the
transformations themselves to be ones that can be driven
with minimal overall control. We now move to analyze the
task of cooling within such a context.

V. INCOHERENT CONTROL (HEAT ENGINE)

The results presented so far pertain to cooling with the
only restriction being that the machines are initially ther-
mal. In particular, there are no restrictions on the allowed
unitaries. In general, the operations required for cooling are
not energy conserving and require an external work source.
With respect to standard considerations of thermodynam-
ics, this may seem somewhat unsatisfactory, as the joint
system is, in the coherent setting, open to the universe.
When quantifying thermodynamic resources, one typically
restricts the permitted transformations to be energy con-
serving, thereby closing the joint system and yielding a
self-contained theory.

We therefore analyze protocols using energy-conserving
unitaries. With this restriction, it is in general not possi-
ble to cool a target system with machines that are initially
thermal at a single temperature, as was considered in the
coherent-control paradigm [45]. Instead, cooling can be
achieved by partitioning the machine into one cold sub-
system C that begins in equilibrium at inverse temperature
β and another hot subsystem H coupled to a heat bath at
inverse temperature βH < β [41,45] (see Fig. 1, bottom
panel). In other words, one uses a hot and a cold bath
to construct a heat engine that cools the target. As we
demonstrate, perfect cooling can be achieved in this set-
ting as pertinent resources diverge. However, the structure
of the hot bath plays a crucial role regarding the resource
requirements. In particular, we present a no-go theorem
that states that perfect cooling with a heat engine using
a single unitary of finite control complexity is impossi-
ble, even given diverging energy drawn from the hot bath.
This result is in stark contrast to its counterpart in the
coherent-control setting, where diverging energy is suffi-
cient for perfect cooling and serves to highlight the fact that
the incoherent-control setting is a fundamentally distinct
paradigm that must be considered independently. Here, we

focus on finite-dimensional systems and leave the analysis
of infinite-dimensional ones to future work.

A. Ultimate limits in the incoherent control paradigm

In the incoherent-control setting, an adaptation of the
(equality-form) Landauer bound on the minimum heat dis-
sipated (or, as we phrase it here, the minimum amount of
energy drawn from the hot bath) can be derived, which we
dub the Carnot-Landauer limit:

Theorem 5. Let Fβ(�X ) := tr[HX�X ] − β−1S(�X ) be the
free energy of a state �X with respect to a heat bath at
inverse temperature β, �F (β)

S := Fβ(�
′
S)− Fβ(�S), and

let η := 1 − βH/β ∈ (0, 1) be the Carnot efficiency with
respect to the hot and cold baths. In the incoherent-control
setting, the quantity

�F (β)
S + η �EH

= − 1
β

[�SS +�SC +�SH+D(�′C||�C)+D(�′H||�H)]

(8)

satisfies the inequality

�F (β)
S + η�EH ≤ 0. (9)

Equation (9) holds due to the non-negativity of the sum
of local entropy changes and the relative-entropy terms.
The derivation is provided in Appendix A, where we also
show that the usual Landauer bound is recovered in the
limit of an infinite-temperature heat bath.

The incoherent-control setting is fundamentally distinct
from the coherent-control setting in terms of what can (or
cannot) be achieved with given resources. For instance,
consider the case where one wishes to achieve perfect
cooling in unit time and with finite control complexity
with diverging energy cost. In the coherent-control setting,
this task is possible in principle (see Theorem 1). On the
other hand, in the incoherent-control setting, we have the
following no-go theorem (see Appendix F for a proof):

Theorem 6. In the incoherent control scenario, it is not
possible to perfectly cool any quantum system of finite
dimension in unit time and with finite control complex-
ity, even given diverging energy drawn from the hot bath,
for any non-negative inverse temperature heat bath βH ∈
[0, β < ∞).

This result follows from the fact that in the incoherent-
control setting, the target system can only interact with
subspaces of the joint hot-and-cold machine with respect
to which it is energy degenerate. For any operation of
fixed control complexity, there is always a finite amount
of population remaining outside of the accessible sub-
space, implying that perfect cooling cannot be achieved,
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independent of the amount of energy drawn from the hot
bath.

B. Saturating the Carnot-Landauer limit

The above result emphasizes the difference between
coherent and incoherent controlling, which means that it is
a priori unclear if the Carnot-Landauer bound is attainable
and, if so, how to attain it. Indeed, the restriction to energy-
conserving unitaries generally makes it difficult to tell if
the ultimate bounds can be saturated in the incoherent-
control setting, and which resources would be required
to do so. We present a detailed study of cooling in the
incoherent-control setting in Appendix F, where we prove
the following results. We begin by demonstrating incoher-
ent cooling protocols that saturate the Landauer bound in
the regime where the heat-bath temperature goes to infin-
ity. We do so by fine tuning the machine structure such
that the desired cooling transitions between the target sys-
tem and the cold and hot parts of the machine are rendered
energy conserving. In particular, we prove the following:

Theorem 7. In the incoherent control scenario, for
an infinite-temperature hot bath βH = 0, any finite-
dimensional system can be perfectly cooled at the Lan-
dauer limit with diverging time via interactions of finite
control complexity. Similarly, the goal can be achieved in
unit time with diverging control complexity.

Following our analysis of infinite-temperature heat
baths, we study the more general case of finite-temperature
heat baths. In Appendix G, we detail cooling protocols
that saturate the Carnot-Landauer limit for any finite-
temperature heat bath. More precisely, we prove:

Theorem 8. In the incoherent control scenario, for
any finite-temperature hot bath 0 < βH < β, any finite-
dimensional quantum system can be perfectly cooled at
the Carnot-Landauer limit given diverging time via finite
control complexity interactions. Similarly, the goal can be
achieved in unit time with diverging control complexity.

As in the coherent-control setting, these protocols use
either diverging time or control complexity to asymptot-
ically saturate the Carnot-Landauer bound. The results
presented in this section therefore provide a comprehen-
sive understanding of the resources required to perfectly
cool at minimum energy cost in a setting that aligns with
the resource theories of thermodynamics.

VI. IMPERFECT COOLING WITH FINITE
RESOURCES

The above results set the ultimate limitations for cool-
ing inasmuch as the protocols saturate optimal bounds
by using diverging resources. In reality, however, any

practical implementation is limited to having only finite
resources at its disposal. According to the third law, a
perfectly pure state cannot be achieved in this scenario.
Nonetheless, one can prepare a state of finite temperature
by investing said resources appropriately. In this finite-
resource setting, the interplay between energy, time, and
control complexity is rather complicated. First, the cool-
ing performance is stringent upon the chosen figure of
merit for the notion of cool—the ground-state popula-
tion, purity, average energy, or temperature of the nearest
thermal state are all reasonable candidates, but they dif-
fer in general [45]. Second, the total amount of resources
available bounds the reachable temperature in any given
protocol. Third, the details of the protocol itself influence
the energy cost of achieving a desired temperature. In other
words, determining the optimal distribution of resources is
an extremely difficult task in general and remains an open
question.

We therefore focus here on the paradigmatic special case
of cooling a qubit target system by increasing its ground-
state population in order to highlight some salient points
regarding cooling to finite temperatures. First, we com-
pare the finite performance of two distinct coherent control
protocols that both asymptotically saturate the Landauer
limit; nonetheless, at any finite time, their performance
varies. The first protocol simply swaps the target qubit
with one of a sequence of machine qubits whose energy
gaps are distributed linearly; the second involves inter-
acting the target with a high-dimensional machine with a
particular degeneracy structure. Although the latter cannot
be decomposed easily into a qubit circuit (thereby mak-
ing it more difficult to implement in practice), one can
compare the two protocols fairly by fixing the total (and
effective) dimension to be equal, i.e., comparing the per-
formance of the linear sequential qubit machine protocol
after N + 1 qubits have been accessed with that of the lat-
ter protocol with machine dimension 2N+1. In doing so,
we see that the simpler former protocol outperforms the
more difficult latter one in terms of the energy cost at finite
times, emphasizing the fact that difficulty in practice does
not necessarily correspond to complexity as a thermody-
namic resource. Additionally, we analyze the cooling rates
at which energy and time can be traded off amongst each
other in the linear qubit sequence protocol by deriving an
analytic expression. Lastly, we compare the performance
of a coherent and an incoherent control protocol that use a
similar machine structure to achieve a desired final temper-
ature. We see that the price one must pay for running the
protocol via a heat engine is that either more steps or more
complex operations are required to match the performance
of the coherent control setting. This example serves to elu-
cidate the connection between the two extremal control
scenarios relevant for thermodynamics.

Although throughout most of the paper we focus on the
asymptotic achievability of optimal cooling strategies, the
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protocols that we construct provide insight into how said
asymptotic limits are approached. This facilitates a better
understanding of the more practically relevant questions
that are constrained when all resources are restricted to be
finite: (i) how cold can the target system be made? and
(ii) at what energy cost? In line with Nernst’s third law,
the answer to the former question cannot be perfectly cold
(i.e., zero temperature). The answer depends upon how
said resources are configured and utilized. For instance,
given a single unitary interaction of finite complexity in
the coherent-control setting, the ground-state population
of the output state can be upper bounded in terms of the
largest energy gap of the machine, ωmax [see Eq. (5)].
On the other hand, supposing that one can reuse a sin-
gle machine system multiple times, then as the number
of operation steps increases, the ground-state population
of the output state approaches (1 + e−βωmax)−1 from below
[45]. There is clearly a trade-off relation here between time
and complexity, and a systematic analysis of the rate at
which these quantities can be traded off against one another
warrants further investigation. Similarly, the energy cost
to reach a desired final temperature also depends upon the
distribution of resources, as we now examine.

Given access to a machine of a certain size (as mea-
sured by its dimension), one could ask what is the optimal
configuration of machine energy spectrum and global uni-
tary to cool a system as efficiently as possible? Here,
we compare two contrasting constructions for the cooling
unitary in the coherent-control setting for a qubit target
system (with energy gap ωS)—both of which asymptot-
ically achieve Landauer cost cooling, but whose finite
behavior differs. The first protocol considers a machine
of N qubits whose energy gaps increase linearly from the
first excited state energy level of the system ω1 = ωS to
some maximum energy level ωN = ωmax, which dictates
the final achievable temperature. In this protocol, the target
system is swapped sequentially with each of the N qubits
in order of increasing energy gaps; we hence refer to it as
the linear qubit machine sequence. The second protocol we
consider is presented in full in Appendix D 4 and inspired
by one presented in Ref. [29] (see Appendix D therein);
we hence refer to it as the Reeb & Wolf (RW) protocol.
Here, the global unitary acts on the system and a high-
dimensional machine with an equally spaced Hamiltonian
whose degeneracy doubles with each increasing energy
level, i.e., it has a singular ground state, a twofold degener-
ate first excited state, a fourfold degenerate second excited
state, and so on; the final energy level has an extra state so
that the total dimension is 2N+1 (where N is the number of
energy levels). In particular, the unitary performs the per-
mutation that places the maximal amount of population in
the ground state of the target system. Due to the structure
of both protocols, one can make a fair comparison between
them, contrasting the single unitary on a 2N -dimensional
machine in the RW protocol versus the composition of N

two-qubit SWAP unitaries in the linear machine sequence,
i.e., such that both protocols access a machine of the same
size overall.

As shown in Fig. 3, although both protocols asymp-
totically tend to the Landauer limit, their finite behavior
differs. Indeed, the work cost of the linear qubit machine
sequence protocol outperforms that of the RW protocol.
This is somewhat surprising, as the latter is a complex
high-dimensional unitary whereas the former a composi-
tion of qubit swaps; although both protocols have the same
effective dimension in this comparison overall, this high-
lights that difficulty in the lab setting need not correspond
to resourcefulness in a thermodynamic sense. Indeed,
developing optimal finite cooling strategies for arbitrary
systems and machines is difficult in general and remains
an important open question. Nonetheless, in Appendix H,
we derive the rate of resource divergence of the sequential
qubit protocol to further clarify the trade-off between time
and energy for this protocol.

Finally, we contrast the two extremal thermodynamic
paradigms considered by comparing the energy cost of a
coherently controlled cooling protocol to an incoherently
controlled one that achieves the same final ground-state
population. Intuitively, the latter setting requires more
resources to achieve the same performance as the former
due to the fact that only energy-resonant subspaces can

FIG. 3. Imperfect cooling. We compare the cooling perfor-
mance of a degenerate qubit target system using either N
machine qubits of linearly increasing energy accessed sequen-
tially or a single unitary on a 2N -dimensional machine, the latter
being a finite adaptation of a protocol presented in Ref. [29]. We
set β = 1, choose units such that � = kB = 1, and fix 1 − ε to
be the desired final ground-state population of the target. We plot
the inverse of the excess work cost above the Landauer limit,
W − β�̃SS (in units of the smallest machine energy gap, ωmin

M ),
confirming that the surplus work cost in both cases scales with
N−1. Interestingly, we see that the protocol in which the target
is sequentially swapped with machine qubits outperforms that
which uses a high-dimensional unitary (at equal overall control
complexity) in terms of energy cost required to reach a desired
temperature.

010332-13



PHILIP TARANTO et al. PRX QUANTUM 4, 010332 (2023)

be accessed by the unitary, and hence only a subspace
of the full machine is usable. This implies that a greater
number of operations (of fixed control complexity) are
required to achieve similar results as the coherent set-
ting, as demonstrated in Appendix H explicitly. Indeed,
determining the optimal cooling protocols for a range of
realistic assumptions remains a major open avenue.

VII. DISCUSSION

A. Relation to previous works

A vast amount of the literature concerning quan-
tum thermodynamics considers resource theories (see
Refs. [46,47] and references therein), whose central ques-
tion is: what transformations are possible given partic-
ular resources, and how can one quantify the value of
a resource? While this perspective sheds light on what
is possible in principle, it does not per se concern itself
with the potential implementation of said transformations.
Yet, the unitary operations considered in a resource theory
will themselves require certain resources to implement in
practice. Focusing only on a resource-theoretic perspective
would thus overlook the question: how does one optimally
use said resources? Our results focus on this latter question
and highlight the role of control complexity in optimizing
resource use.

Concurrently, by considering arbitrary unitary opera-
tions (akin to our coherent-control paradigm without lim-
itations on machine size) Refs. [20,39] and [29], studied
the potential saturation of the second law of thermody-
namics and Landauer’s limit, respectively. References [20]
and [39] develop a similar protocol to our diverging time
protocol in the context of work extraction and demonstrate
its optimality for saturating the second law. However, these
works do not discuss the practical viewpoint that the goal
can be achieved in a smaller number of operations by
allowing the latter to be more complex, as we empha-
size. On the other hand, Ref. [29] considers the resources
required for saturation of the Landauer limit and show an
important result regarding structural complexity, namely
that the machine must be infinite dimensional to cool at the
Landauer limit. Our analysis regarding complexity begins
here and continues to elucidate the key complexity prop-
erties that enhance the efficiency of a cooling protocol. In
particular, we show that an infinite-dimensional machine is
not sufficient unless the controlled unitary indeed accesses
the entire machine. This first leads to the notion of “effec-
tive dimension,” which provides a good proxy for control
complexity that is consistent with Nernst’s third law for
all types of quantum machines—from finite-dimensional
systems to harmonic oscillators. Moreover, we highlight
that the optimal interactions must be fine tuned, i.e., they
must couple the system to particular energy gaps of the
machine in a specific configuration, paving the way for a
more nuanced definition of control complexity that takes

into account the complicated and precise level of con-
trol required, as we present in terms of the “energy-gap
variety.” Lastly, we emphasize that the latter discussion
concerns the coherent-control scenario, which is only one
of the extremal control paradigms that we consider. In
addition, we consider the task of cooling in a more ther-
modynamically consistent setting, namely the incoherent-
control paradigm. There we derive the Carnot-Landauer
equality and consequent inequality, which are adaptations
of the Landauer equality [29] and inequality [11], respec-
tively, where the protocol can only be run via a heat
engine.

On the more practical side, note that our work here
concerns erasing quantum information encoded in funda-
mental rather than logical degrees of freedom. Our rea-
soning here is twofold: firstly, the ultimate limitations that
we aim to understand are the same whether one wishes
to cool a physical system or erase information; in other
words, although it may be possible to save some finite
trade-off costs for imperfect erasure in the coarse-grained
setting, the resources required to perform a rank-reducing
process asymptotically diverge in both cases. Secondly, it
is much more difficult to create coherent superpositions
in the case where information is redundantly encoded in
macrostates, as this would require all microstates to be in
phase (indeed, this is a major reason why quantum com-
puters aim to encode information in fundamental degrees
of freedom). For erasing quantum information using bulk
(classical) cooling (i.e., coupling to a suitably engineered
cold bath), the relevant condition is nondegeneracy of
the ground state; additionally, many original Landauer
thought experiments consider degenerate Hamiltonians for
the computational states. In contrast, our protocols are
based upon directly controlled cooling, which works inde-
pendently of the target system Hamiltonian and as such
bridges the gap between various perspectives. Moving for-
ward, it will be interesting to explore how information
can be erased cheaper if it is encoded in a coarse-grained
fashion, in order to better square our fundamental results
presented here with experimental demonstrations. Doing
so would require finite versions of all of the systems and
resources that we analyze here, which we leave for future
exploration.

B. Conclusions and outlook

The results of this work have wide-ranging implications.
We have both generalized and unified Landauer’s bound
with respect to the laws of thermodynamics. In particular,
we have posed the ultimate limitations for cooling quan-
tum systems or erasing quantum information in terms of
resource costs and presented protocols that asymptotically
saturate these limits. Indeed, while it is well known that
heat and time requirements must be minimized to com-
bat the detrimental effects of fluctuation-induced errors and
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short decoherence times on quantum technologies [18], we
have shown that this comes at a practical cost of greater
control. In particular, we have demonstrated the neces-
sity of implementing fine-tuned interactions involving a
diverging number of energy levels to minimize energy
and time costs, which serves to deliver a cautionary mes-
sage: control complexity must be accounted for to build
operationally meaningful resource theories of quantum
thermodynamics. This result posits the energy-gap variety
accessed by a unitary protocol as a meaningful quantifier
of control complexity that is both fully consistent with
the third law of thermodynamics and chimes well with
what is difficult to achieve in practice. Our analysis of the
incoherent-control setting further provides pragmatic ulti-
mate limitations for the scenario where minimal control is
required, in the sense that all transformations are driven
by thermodynamic energy and entropy flows between two
heat baths, which could be viewed as a thermodynamically
driven quantum computer [48]. Nevertheless, the intricate
relationship between various resources here will need to be
further explored.

Looking forward, we believe it will be crucial to go
beyond asymptotic limits. While Landauer erasure and
the third law of thermodynamics conventionally deal with
the creation of pure states, practical results would need
to consider cooling to a finite temperature (i.e., creating
approximately pure states) with a finite amount of invested
resources [41–43]. In this context, the trade-off between
time and control complexity will gain more practical rel-
evance, as realistic quantum technologies have limited
coherence times and interaction Hamiltonians are limited
to few-body terms. Here, operational measures of con-
trol complexity that fit the envisioned experimental setup
present an important challenge that must be overcome to
apply our results across various platforms.

Our results strengthen the view that, in contrast to clas-
sical thermodynamics, the role of control is one of the
most crucial issues to address before a true understand-
ing of the limitations and potential of quantum machines
is revealed. On the one hand, in classical systems, control
is only ever achieved over few bulk degrees of freedom,
whereas addressing and designing particular microstate
control is within reach of current quantum technological
platforms, offering additional routes towards operations
enhanced by fine-tuned control. On the other hand, the cost
of such control itself can quickly exceed the energy scale
of the system, potentially rendering any perceived advan-
tages a mirage. This is exacerbated by the fact that it is not
possible to observe (measure) a quantum machine with-
out incurring significant additional thermodynamic costs
[8,49] and non-negligible backaction on the operation of
the machine itself [50]. A fully developed theory of quan-
tum thermodynamics would need to take these into account
and we hope that our study sheds light on the role of control
complexity in this endeavor.
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APPENDIX A: EQUALITY FORMS OF THE
(CARNOT-)LANDAUER LIMIT

In this section, we present lower bounds on the energy
change of the machine (or heat dissipated into its envi-
ronment) in terms of the entropy change of the target
system, both in the coherent and incoherent-control set-
tings outlined in the main text. In the coherent setting,
this amounts to the well-known Landauer principle [11],
whereas the incoherent setting requires an extension of
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this derivation. These lower bounds are important, because
they put limits on the optimal energetic performance of
the machines for cooling. Note, finally, that the initial
state of the machine is diagonal in its energy eigenba-
sis and must remain so for any process saturating the
(Carnot-)Landauer limit; moreover, the target begins sim-
ilarly and ends up in the pure state |0〉〈0| when perfect
cooling is achieved. As a result, all quantities relevant
to perfect cooling at the (Carnot-)Landauer limit can be
computed in terms of their “classical” counterparts, i.e.,
�X → pX := (p0, . . . , pd) with pn = e−βEn , tr

[
H�X

]→
〈E〉pX :=∑n pnEn, S(�X ) → S(pX ) := −∑n pn log (pn),
Z(β, HX ) =∑n e−βEn , and so on. Nonetheless, all of the
results presented hold for the more general “quantum”
properties.

1. Coherent-control paradigm: The Landauer limit

The coherent setting was already studied in detail in
Ref. [29], where the authors derived an equality version of
Landauer’s principle. We restate the results here for con-
venience, since we will also use them in the incoherent
paradigm. Recall that the setting we consider consists of
two parts, the target system S and the machine M. In
the beginning, the joint state is �SM = �S ⊗ τM(β, HM)

for some arbitrary (but fixed) Hamiltonian HM and β ∈ R.
Note that any full-rank state � can be associated to some
chosen temperature β, which sets the energy scale, and
a Hamiltonian H = − 1

β
log (�); as we consider arbitrary

Hamiltonians, we only write the state dependence on these
parameters when necessary. If the state is not full rank, the
rank can be used to redefine the dimension. We assume that
both systems are finite dimensional. Let U be a global uni-
tary on SM. We write �′SM := U[�S ⊗ τM(β, HM)]U†

and denote by �′S and �′M the respective reduced states.
The quantity I(S : M)�′SM = S(�′S)+ S(�′M)− S(�′SM)

is the final mutual information between S and M and
D(�′M||�M) = tr

[
�′M log(�′M)

]− tr
[
�′M log(�M)

]
is the

relative entropy of the final machine state with respect to
its initial state.

Lemma 1 ([29, Lemma 2]). Let the setting be as above.
Then

[S(�′S)− S(�S)] + [S(�′M)− S(�M)]

= I(S : M)�′SM ≥ 0. (A1)

Proof. We note that

[S(�′S)− S(�S)] + [S(�′M)− S(�M)]

= S(�′S)+ S(�′M)− S(�′SM), (A2)

since the von Neumann entropy is additive for product
states and invariant under unitary evolution. The assertion

follows from the definition of the mutual information and
the fact that it is non-negative. �

Theorem 9 (Equality form of Landauer’s principle, [29,
Theorem 3]). Let the setting be as above. Then

β tr[HM(�′M − �M)] − [S(�S)− S(�′S)]

= I(S : M)�′SM + D(�′M||�M) ≥ 0. (A3)

Proof. From Lemma 1, it follows that

[S(�S)− S(�′S)] + I(S : M)�′SM = S(�′M)− S(�M).
(A4)

Using the fact that �M = τM(β, HM), we infer that
D(�′M||�M) = −S(�′M)+ βtr[HM�′M] + log [tr(e−βHM)]
and S(�M) = βtr[HM�M] + log [tr(e−βHM)]. Re-expres-
sing the first of these for S(�′M) and inserting both into
Eq. (A4) yields the claimed equality. The inequality results
from non-negativity of relative entropy and mutual infor-
mation. This completes the proof. �

2. Incoherent-control paradigm: The
Carnot-Landauer limit

Landauer’s principle provides a relationship between
how much heat must necessarily be dissipated into the
thermal background environment upon manipulating the
entropy of a given quantum system. Until now, we have
assumed that the system of interest can interact arbitrarily
with its environment (i.e., the machine); in other words, we
have considered general joint unitary interactions between
system and machine, without restriction. In doing so, we
have tacitly assumed the ability to draw energy from
some external resource (i.e., a work source) in order to
implement said unitaries, which are in general not energy
preserving. The particularities of such a resource are left
as an abstraction. However, from a thermodynamicists’
perspective, this setting may seem somewhat unsatisfac-
tory, as the joint target-machine system is not energetically
closed. In order to provide a more self-contained picture
of the cooling procedure, one can explicitly include the
energy resource, modeled as a quantum system itself, into
the setting.

To this end, note first that said resource must be out of
thermal equilibrium with respect to the target and machine
in order to perform any meaningful thermodynamic trans-
formation. Furthermore, it is sensible to assume that the
energy resource system is in thermal equilibrium with its
own environment to begin with. The joint target-machine-
resource system is then considered to be energetically
closed; as such, global unitaries in this setting are restricted
to be energy conserving. In order to act as a resource for
cooling the target in this picture, the energy source here
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must begin in equilibrium with a heat bath that is hotter
than the initial temperature of the machine (assuming that
the machine and resource both begin in thermal states),
such that a natural heat flow is induced that leads the envi-
ronment of the machine to act as a final heat sink. This
setting is what we call the incoherent-control scenario. In
this context, Landauer’s principle translates to studying
the relationship between the heat that is necessarily dissi-
pated into the machine’s environment upon manipulating
the entropy of the target system. Finally, note that the rela-
tionship between the coherent and the incoherent-control
paradigms is interesting in itself: while on the one hand
the incoherent setting includes an additional system and
therefore increases the dimensionality of the overall joint
system, on the other hand, by restricting the transforma-
tions on this larger space to be energy conserving, one
limits the orbit of attainable states.

Now let us consider the incoherent-control setting. Here,
we have the target system S and the machine comprises of
one part C coupled to the cold bath and another H coupled
to the hot bath. We assume that all systems are finite-
dimensional. Every subsystem A is associated to a Hamil-
tonian HA and C, H are initially in a thermal state; the
cold bath has inverse temperature β and the hot bath has
inverse temperature βH < β. We assume β, βH . Thus, the
initial joint state is �SCH = �S ⊗ τC(β, HC)⊗ τH(βH , HH).
The global evolution on SCH is implemented via a unitary
U, leading to �′SCH = U(�SCH)U†. We further assume that
the unitary evolution on the joint system is energy con-
serving, i.e., [U, HS + HC + HH] = 0. We write �SA :=
S(�′A)− S(�A) for the entropy change on subsystemA and
�EA := tr[HA(�′A − �A)] for the average energy change.
Moreover, the free energy of a state �A with respect to the
inverse temperature β is Fβ(�A) = tr[HA�A] − β−1S(�A).

In the incoherent setting, it makes sense to look at the
energy decrease in the hot bath H, since the hot bath can be
seen as the energetic resource one must to expend in order
to cool the system S (alternatively, as we present after the
following theorem, one can consider the energy dissipated
into the cold bath C, which serves as the heat sink).

Theorem 10. In the above setting, it holds that

�F (β)
S + η�EH = − 1

β
[�SS +�SC +�SH + D(�′C||�C)

+ D(�′H||�H)] ≤ 0, (A5)

where (0, 1) � η := 1 − βH/β is the Carnot efficiency and
�F (β)

S = Fβ(�
′
S)− Fβ(�S).

Proof. Let us consider

I(S : C : H)�′SCH := S(�′S)+ S(�′C)+ S(�′H)

− S(�′SCH) ≥ 0. (A6)

Note that the quantity I(S : C : H)�′SCH , which quanti-
fies the tripartite mutual information of the state �′SCH,
is non-negative via subadditivity S(�A)+ S(�B) ≥ S(�AB)

for any state �AB. Furthermore, since the von Neumann
entropy is invariant under unitary transformations and
additive for tensor product states, we have

I(S : C : H)�′SCH = �SS +�SC +�SH. (A7)

We also have that

�SC = β�EC − D(�′C||�C) (A8)

and

�SH = βH�EH − D(�′H||�H). (A9)

Thus,

I(S : C : H)�′SCH = �SS + β�EC − D(�′C||�C)+ βH�EH

− D(�′H||�H). (A10)

Since the unitary is energy conserving, we infer that
�ES +�EC +�EH = 0. Hence, we have

�SS − β�ES + (βH − β)�EH

= I(S : C : H)�′SCH + D(�′C||�C)+ D(�′H||�H).
(A11)

Using the free energy, we can rewrite this as

−β[Fβ(�
′
S)− Fβ(�S)] − (β − βH)�EH

= I(S : C : H)�′SCH + D(�′C||�C)+ D(�′H||�H).
(A12)

Dividing by −β, we obtain the assertion, since, in partic-
ular, I(S : C : H)�′SCH + D(�′C||�C)+ D(�′H||�H) ≥ 0 by
the non-negativity of each term. �

In particular, we have shown that the energy extracted
from the hot bath is lower-bounded by the increase in free
energy, weighted by the inverse Carnot efficiency:

tr[HH(�H − �′H)] ≥ 1
η

[Fβ(�
′
S)− Fβ(�S)]. (A13)

Note that if �S = τS(β, HS), the rhs is non-negative for
any nontrivial thermodynamic process, i.e., any for which
the target system is heated or—of particular relevance for
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us—cooled. This follows by the Gibbs variational princi-
ple, which states that the free energy of � is minimal if and
only if � is the corresponding Gibbs state.

Finally, in order to make a more concrete connection to
the spirit of Landauer’s original derivation, note that one
can consider bounding the heat dissipated into the cold
bath, rather than that drawn from the hot bath. Substituting
�EH = −(�ES +�EC) into Eq. (A10) leads to

−�̃SS − βH�ES + (β − βH)�EC ≥ 0, (A14)

which recovers the standard Landauer bound for the dis-
sipated heat in the limit of an infinitely hot heat bath, i.e.,
βH → 0.

APPENDIX B: DIVERGING ENERGY

1. Sufficiency: Diverging energy cooling protocol

This cooling protocol is arguably the simplest of those
presented. The thermal populations of any target system
can be exchanged with a machine system of the same
dimension, in the thermal state of HM = ωM

∑d−1
n=0 n|n〉〈n|.

As ωM →∞, the machine state τM(β, HM) approaches
|0〉〈0|M independently of β (as long as β �= 0). Such a
population-exchange operation is a single interaction (i.e.,
the protocol occurs in unit time), which is of finite com-
plexity (in a sense that we discuss below). However, the
energy drawn from the resource W upon performing said
SWAP operation is at least E = (p (1)

S − p (1)
M )(ωM − ω

(1)
S ),

where p (1)
X is the initial population of the first excited level

of system X and ω
(1)
S is the first energy eigenvalue of the

target system. Denoting by ω
(k)
S the energy eigenvalue of

the kth excited level of the target system, we have above
assumed that ω

(0)
S = 0 (which we do for all Hamiltoni-

ans without loss of generality) and ωM > ω
(d−1)
S . As such,

perfect cooling will incur diverging energy cost.

2. Necessity of diverging energy for protocols with
finite time and control complexity

Consider the following Hamiltonians for the target
system and machine with finite but otherwise arbi-
trary energy levels, HS =

∑dS−1
n=0 ω

(n)
S |n〉〈n|S and HM =

∑dM−1
n=0 ω

(n)
M |n〉〈n|M, respectively. For any finite inverse

temperature β, the initial thermal states τS(β, HS) and
τM(β, HM) are of full rank. Suppose now that one can
implement a single unitary transformation (i.e., a unit time
protocol) of finite control complexity on the joint tar-
get and machine, yielding the joint output state �′SM =
trM

[
U(τS(β, HS)⊗ τS(β, HM))U†

]
, and wishes to attain

perfect cooling of the target in doing so. By invariance of
the rank under unitary transformations and the fact that the

system and machine begin uncorrelated, we have

rank[τS(β, HS)] rank[τM(β, HM)]

= rank[�′SM] ≤ rank[�′S] rank[�′M], (B1)

where the inequality follows from the subadditivity of the
Rényi-zero entropy [51], which is the logarithm of the
rank. To achieve perfect cooling of the target, one must (at
least asymptotically) attain rank[�′S] < rank[τS(β, HS)],
which implies that rank[�′M] > rank[τM(β, HM)]. How-
ever, if this condition is achieved, then D[�′M‖τM(β, HM)]
diverges, implying a diverging energy cost by Eq. (3). The
above argument already appears in Ref. [29].

The other situation that one must consider is the
case where one attains a �′S such that rank[�′S] =
rank[τS(β, HS)] but nonetheless �′S is arbitrarily close to
a pure state, as is the case, for instance, in the proto-
cols that we present. Consider a sequence of machines
�(i)
M and unitaries U(i) such that �(i)

M → �M and U(i) →
U. Note that since we fixed the dimensions of S and
M, any sequence of machines has a converging subse-
quence by the Bolzano-Weierstrass theorem and the fact
that the set of quantum states is compact. Here, �M and
U achieve perfect cooling. If we fix �S , we obtain a
corresponding sequence (�′M)(i) such that (�′M)(i) → �′M.
Crucially, here, since we restrict the unitary transforma-
tion to be of finite control complexity, the states �M
and �′M are effectively finite dimensional, in the sense
that whatever their true dimension, they can be replaced
by finite-dimensional versions without changing any of
the relevant quantities (see Appendix D). Since the rel-
ative entropy (�, σ) �→ D(�||σ) is lower semicontinuous
[52,53] and since D(�′M||�M) →∞ by the arguments
above, we infer that D[(�′M)(i)||�(i)

M] →∞ as i →∞. This
argument holds independently of rank[�′S]; in particular,
for the special case rank[�′S] = rank[τS(β, HS)] that we
are considering here. Thus, to approach perfect cooling in
finite time and with finite control complexity, one would
need a diverging energy cost. Thus, we see that within
the resource trinity of energy, time, and control complex-
ity, if the latter two are finite, then energy must diverge to
asymptotically achieve a pure state. Whether or not there
exist other (unaccounted for) resources that allow one to
achieve this with all three of the aforementioned resources
being finite remains an open question.

Importantly, the above argument no longer holds if the
time or control complexity is allowed to diverge. In such
cases, both �M and �′M can be infinite dimensional, and
because of this the rank argument no longer applies and the
relative entropy does not necessarily diverge in the limit of
perfect cooling. In contrast, as we show, it is even possible
to saturate the Landauer bound.
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APPENDIX C: DIVERGING TIME COOLING
PROTOCOL FOR FINITE-DIMENSIONAL

SYSTEMS

1. Proof of Theorem 2

Proof. Consider a target system S of dimension d with
associated Hamiltonian

HS =
d−1∑

k=0

ωk|k〉〈k|S , (C1)

where we also set ω0 = 0 without loss of generality. Con-
sider also the machine M to be composed of N subsys-
tems, {Mn}n=1,...,N , each of the same dimension d as the
target, whose local Hamiltonians are

H (n)
M = (1 + nε)HS , (C2)

where ε = (βmax − β)/(Nβ). We first cool the system
initially at nonzero β to some fixed, finite βmax, which
we eventually take βmax →∞ in order to asymptotically
achieve perfect cooling. We treat the case β = 0 as a lim-
iting case of β → 0: here, as β → 0, we let N →∞ such
that Nβ →∞, e.g., we specify a suitable function N (β)

such that N (β) →∞ “faster” than β → 0.
We now show that, given the ability to perform a

diverging number of operations on such a configuration,
one can reach the target state τS(βmax, HS). In particu-
lar, we show that the protocol presented uses the minimal
amount of energy to do so, and explicitly calculate this to
be β−1�̃S units of energy, where �̃S := S[τS(β, HS)] −
S[τS(βmax, HS)]. In other words, as the number of opera-
tions in the protocol diverges, we approach perfect cool-
ing at the Landauer limit, thereby saturating the ultimate
bound.

The diverging time cooling protocol is as follows. At
each step, the target system interacts with a single machine
labeled by n via the SWAP operator

Sd
SMn

:=
d−1∑

i,j=0

|i, j 〉〈j , i|SMn . (C3)

As the target and machine subsystems considered here are
of the same dimension, we drop the subscript on the states
associated to each subsystem, for ease of notation. Such a
transformation is, in general, not energy conserving, but
one can calculate the energy change for both the target
system and the machine due to the nth interaction as

�E(n)
S = tr

[
HS τ(β, H (n)

M )
]− tr

[
HS τ(β, H (n−1)

M )
]

, (C4)

and so the total energy change of the system over the entire
N -step protocol is given by

�ES =
N∑

n=1

�E(n)
S = tr

[
HS τ(β, H (N )

M )
]

− tr
[
HS τ(β, H (0)

M )
]

. (C5)

The energy change of the machine subsystem that is
swapped with the target system at each step is given by

�E(n)
M = tr

[
H (n)

M τ(β, H (n−1)
M )

]− tr
[
H (n)

M τ(β, H (n)
M )
]

=
d−1∑

k=0

(1 + nε)ωk
[
pk(β, H (n−1)

M )− pk(β, H (n)
M )
]

,

(C6)

where pk(β, H (n)
M ) = e−β(1+nε)ωk/ZMn(β, H (n)

M ) is the pop-
ulation in the kth energy level of the thermal state of
the nth machine subsystem at inverse temperature β, with
ZMn(β, H (n)

M ) = tr
[
e−βH (n)

M
]

being the partition function.
By summing the contributions of the energy changes in

each step, one can obtain the total energy change for the
overall machine throughout the entire process:

�E(N )
M =

N∑

n=1

�E(n)
M

=
N∑

n=1

d−1∑

k=0

(1+ nε)ωk
[
pk(β, H (n−1)

M )− pk(β, H (n)
M )
]
.

(C7)

In general, it is complicated to calculate the energy cost
for the protocol up until a finite time step N , since this
depends on the full energy structure of the target system
and machine subsystems involved (we return to resolve
this problem for the special case of equally spaced sys-
tem and machine Hamiltonians in the coming section).
Here, we focus on a special case in which N →∞, i.e.,
there is a diverging number of machine subsystems that
the target system interacts with throughout the protocol.
This limit physically corresponds to that of requiring a
diverging amount of time (in terms of the number of steps).
Furthermore, we take the limit ε → 0 for any fixed β, βmax.
Considering the differentials

�p (n)

k := pk(β, H (n)
M )− pk(β, H (n−1)

M ), (C8)

and

�xn := xn − xn−1 with xn := 1 + nε. (C9)

In order for xn to become infinitesimal, and noting the
explicit form of the machine subsystem Hamiltonians
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H (n)
M = (1 + nε)HS , we can make the replacement

−�p (n)

k

�xn
�xn →−∂pk(β, xHS)

∂x
dx, (C10)

where x := 1 + nε has become a continuous parameter.
This way we can express the limit N →∞ of Eq. (C7)

as a Riemann integral in the following form:

lim
N→∞

�E(N )
M = −

∫ xmax

1

d−1∑

k=0

xωk
∂pk(β, xHS)

∂x
dx, (C11)

where xmax := βmax/β. Both the summation and the inte-
gral converge, so one can swap the order of their evalua-
tion. Integrating by parts then gives

lim
N→∞

�E(N )
M =

d−1∑

k=0

[
−xωk pk(β, xHS)

∣∣xmax
1 +

∫ xmax

1
ωk pk(β, xHS) dx

]

=
d−1∑

k=0

[−xωk pk(β, xHS)
∣∣xmax
1

]−
∫ xmax

1

1
β

∂

∂x
[

logZ(β, xHS)
]

dx

= E[τ(β, HS)] − E[τ(β, xmaxHS)] − 1
β

logZ(β, xmax HS)+ 1
β

logZ(β, HS), (C12)

where in the second line we again swap the order of the integral and the sum to write
∑d−1

k=0 ωkpk(β, xHS) =
− 1

β
∂
∂x [logZ(β, xHS)] and in the last line we invoke E[τ(β, xH)] = tr [xH τ(β, xH)]. Finally, writing the partition func-

tion in terms of the average energy and entropy, i.e., log[Z(β, xH)] = −β E[τ(β, xH)] + S[τ(β, xH)], the total energy
change of the machine is given by

lim
N→∞

�E(N )
M = E[τ(β, HS)] − E[τ(β, xmaxHS)] + E[τ(β, xmaxHS)]

− 1
β

S[τ(β, xmaxH)] − E[τ(β, HS)] + 1
β

S[τ(β, HS)]

= 1
β

{
S[τ(β, HS)] − S[τ(βmax, HS)]

} = 1
β

�̃SS , (C13)

where we make use of the property τS(β, xmaxHS) =
τS(βmax, HS) and the entropy decrease of the target sys-
tem corresponds to that associated with the transforma-
tion τ(β, HS) → τ(βmax, HS). Thus, as the number of
timesteps diverges, this cooling process saturates the Lan-
dauer limit for the heat dissipated by the machine. In
order to achieve perfect cooling at the Landauer limit,
i.e., the final target state to approach |0〉〈0| and thus prove
Theorem 2, we can now take the limit βmax →∞. �

The above proof holds for systems and machines of
arbitrary (but equal) dimension, either finite or infinite,
with arbitrary Hamiltonians. We now present some more
detailed analysis regarding the special case where the
Hamiltonians of the target system and all machine sub-
systems are equally spaced; this provides an opportunity

both to derive a more detailed formula for the energy
costs involved and to build intuition regarding some of
the important differences between the finite- and infinite-
dimensional settings.

2. Special case: Equally spaced Hamiltonians

Consider a finite d-dimensional target system beginning
at inverse temperature β with an equally spaced Hamil-
tonian HS(ωS) = ωS

∑d−1
n=0 n|n〉〈n|S . In this case, we can

derive a more precise dimension-dependant function for
the energy cost dissipated by the machines throughout the
optimal cooling protocol presented above.

Consider an initial target system τS(β, HS) and a diverg-
ing number N of machines {Mα}α=0,...,N of the same
dimension d as the target, which all begin in a thermal state
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at inverse temperature β with respect to an equally spaced
Hamiltonian whose gaps between neighboring energy lev-
els ωMα

are ordered nondecreasingly. Each machine is
used once and then discarded; the particular interaction is
the aforementioned SWAP between the target system and
the nth qudit machine, i.e., that represented by the uni-
tary Sd

SMα
:=∑d−1

i,j=0 |i, j 〉〈j , i|SMα
. After applying such an

operation, the state of the target system is given by

τS(β, ωα) := e−βHS (ωα)

ZS(β, ωα)
, (C14)

where HS(ωα) := ωα

∑d−1
n=0 |n〉〈n|S and ZS(β, ωα) :=

tr
[
e−βHS (ωα)

]
.

We now calculate the energy cost explicitly for the
diverging time-cooling protocol, which saturates the Lan-
dauer bound in the asymptotic limit. In order to minimize
the energy cost of cooling, the target system must be
cooled by the qudit system in the machines with the small-
est gap between neighboring energy levels (that permits
cooling) as much as possible at each stage. In order to
optimally use the given machine structure at hand, we thus
order the set of energy gaps ωα in nondecreasing order. In
addition, the protocol to reach the Landauer erasure bound,
i.e., minimal energy cost, dictates that one must infinites-
imally increase ωα of the machines in order to dissipate
as little heat as possible throughout the interactions. Since
we are here considering a diverging time limit, we have
access to a diverging number of qudit machine with dis-
tinct energy gap ωα at our disposal; the task is then to use
these in an energy-optimal manner.

It is straightforward to see that to minimize the total
energy cost, one must apply the sequence of unitaries
Sd

SMα
such that Sd

SM0
is first applied to reach the optimally

cool τS(β, ω0), then Sd
SM1

to reach τS(β, ω1), and so on.
The heat dissipated by the reset machines in each stage of
such a cooling protocol (i.e., for each value of α) can thus

be calculated as

�EMα
(ωα) = −{tr [HMα

(ωα)τMα
(β, ωα)

]

+ tr
[
HMα

(ωα) τMα
(β, ωα−1)

]}

= −tr
[
HS(ωα)

[
τS(β, ωα)− τS(β, ωα−1)

]]
.

(C15)

In the second line, we make use of the fact that the Hamil-
tonians of both the target system and each of machine are
d dimensional and equally spaced. So far, we obtain the
energy dissipated by the reset machines. To investigate the
total energy cost of cooling in such a process, we also must
consider the contribution of energy transferred to the target
system S , which is characterized via its local Hamiltonian
HS and calculated via

�ES(ωα) = tr
[
HS(ωS) τS(β, ωα)

]

− tr
[
HS(ωS) τS(β, ωα−1)

]
, (C16)

in which we set ω0 = ωS . Using Eqs. (C15), (C16), the
total energy cost for each stage of cooling is given by

�ESM(ωα) = �ES(ωα)+�EM(ωα)

= tr
{[

HS(ωS)− HS(ωα)
]

× [τS(β, ωα)− τS(β, ωα−1)
]}

, (C17)

which leads to the overall energy cost after N stages, where
N is the number of nonzero distinct energy gaps of the reset
machines, as

�E(N )
SM =

N∑

α=1

�ESM(ωα) =
N∑

α=1

tr
{[

HS(ωS)− HS(ωα)
]

× [τS(β, ωα)− τS(β, ωα−1)
]}

. (C18)

Now, we can obtain the total energy cost for each stage of the protocol (i.e., each value of α considered) in terms of the
transformation of the target system alone. Note that in this protocol, each stage corresponding to each of the N distinct
energy gaps {ωα} in itself requires only one operation to perfectly reach τS(β, ωα). The end result of this protocol is that
the target system is cooled from the initial thermal state τS(β, ωS), where ωS is the energy gap between each pair of
adjacent energy levels in the system, to τS(β, ωmax) in the energy-optimal manner.
Starting from Eq. (C18), we have

�E(N )
SM =

N∑

α=1

tr
{[

HS(ωS)− HS(ωα)
][

τS(β, ωα)− τS(β, ωα−1)
]}

=
N∑

α=1

(ωS − ωα)

[(
e−βωα

1 − e−βωα
− e−βωα−1

1 − e−βωα−1

)
−
(

d e−βdωα

1 − e−βdωα
− de−βdωα−1

1 − e−βdωα−1

)]
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= lim
K→∞

N∑

α=1

(ωS − ωα)

K∑

k=0

[(
e−β(k+1)ωα − e−β(k+1)ωα−1

)− d
(
e−β(k+1)dωα − e−β(k+1)dωα−1

)]

= lim
K→∞

N∑

α=1

(ωS − ωα)

K∑

k=0

[
e−β(k+1)ωα

(
1 − e−β(k+1)(ωα−1−ωα)

)− d e−βd(k+1)ωα
(
1 − e−βd(k+1)(ωα−1−ωα)

)]
. (C19)

Here, since both HMα
and HS are equally spaced Hamiltonians, the average energy can be written as

E(ωx, ωy) = tr
[
HS(ωx) τS(β, ωy)

] =
∑d−1

n=0 nωxe−nβωy

∑d−1
n=0 e−nβωy

= ωx

(
e−βωy

1 − e−βωy
− d e−βd ωy

1 − e−βd ωy

)
(C20)

by evaluating the geometric series

Z(β, ωy) =
d−1∑

n=0

e−βnωy = 1−e−βdωy

1−e−βωy (C21)

and writing

E(ωx, ωy) =
d−1∑

n=0

nωx
e−βnωy

Z(β,ωy )
= ωx

ωy

{
− ∂

∂β
log
[Z(β, ωy)

]} = −ωx
ωy

∂
∂β

[
log
(
1 − e−βdωy

)− log
(
1 − e−βωy

)]
(C22)

as we do in the second line of Eq. (C19) and then using the infinite series expression (1 − x)−1 = limK→∞
∑K

k=0 xk for
any |x| < 1 as per the third line.

As we see in Appendix E 2 a, the energy cost for cooling an infinite-dimensional system when both target and machines
have equally spaced Hamiltonians (i.e., harmonic oscillators) is similar to the form of Eq. (C19). Importantly, the second
term in square parenthesis vanishes as d →∞, simplifying the expression even further.

We now assume that the energy gaps of the machine are given by ωα = ωS + εα and so the total energy cost can be
written as follows:

�E(N )
SM = − lim

K→∞

N∑

α=1

αε

K∑

k=0

e−βk(ωS+αε)
(
1 − eβkε)+ lim

K→∞

N∑

α=1

αdε

K∑

k=0

e−βkd(ωS+αε)
(
1 − eβkdε

)

= lim
K→∞

K∑

k=0

[
e−βkωS

(
eβkε − 1

)( N∑

α=1

αεe−βkαε
)]− lim

K→∞

K∑

k=0

e−βkdωS
[(

eβkdε − 1
)( N∑

α=1

dαε e−βkdαε
)]

, (C23)

where we can swap the order of summation since both sums converge and the summands are nonpositive. This can be
seen from the first line above, using the fact that e−αx(1 − ex) ∈ [−1, 0] for all α ≥ 1 and x ≥ 0. We now calculate the
sum over α.

N∑

α=1

αε e−βαε = − ∂

∂β

N∑

α=0

e−βαε = − ∂

∂β

(
1 − e−β(N+1)ε

1 − e−βε

)

= −
(

(N + 1)εe−β(N+1)ε − (N + 1)εe−β(N+2)ε − εe−βε + εe−β(N+2)ε

(1 − e−βε)2

)

= εe−βε

(1 − e−βε)2

(
1 − (N + 1)e−βNε + Ne−β(N+1)ε

)

= εe−βε

(1 − e−βε)2

(
1 − e−βNε − Ne−βNε(1 − e−βε)

)
. (C24)
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Combining Eqs. (C23) and (C24), we arrive at

�E(N )
SM = lim

K→∞

K∑

k=0

[
e−βkωS

k
kε(1 − e−βNkε)

(1 − e−βkε)
− Nε e−βk(ωS+Nε)

]

− lim
K→∞

K∑

k=0

[
e−βkdωS

k
kdε(1 − e−βNkdε)

(1 − e−βkdε)
− Ndε e−βkd(ωS+Nε)

]
. (C25)

In order to optimize the energy cost, we now assume that the energy gaps of the machines can be chosen to be smoothly
increasing in such a way that ε = �ω/N := (ωmax − ωS)/N . Substituting this expression for ε into the above equation
yields

�E(N )
SM = lim

K→∞

K∑

k=0

[
e−βkωS

k
k�ω(1 − e−βk�ω)

N (1 − e−βk �ω
N )

−�ω e−βk(ωS+�ω)

]

− lim
K→∞

K∑

k=0

[
e−βkdωS

k
kd�ω(1 − e−βkd�ω)

N (1 − e−βkd �ω
N )

− d�ω e−βkd(ωS+�ω)

]

. (C26)

We now wish to take the limit of N � K →∞. This assumption means that energy change of the system is approximately
equal to its free energy change; in other words, the process occurs quasiadiabatically. The ability to switch the order of
taking the limits of K and N going to ∞ follows from the monotonic convergence of the sum over k. In particular, note
that the term inside square parentheses in each summand converges and the first term in each summation (which is the
only part that depends on N ) is positive and bounded.

Under this assumption, we can use the approximation limβx→0 x/(1 − e−βx) = 1/β; since 0 < e−βx < 1 for any posi-
tive x, the sum over k converges to a finite value. In general, this approximation introduces a correction term for the energy
change, however under said assumption the error incurred becomes negligible. Then, the total energy change �Etot

SM for
the transformation τS(β, ωS) → τS(β, ωmax) throughout the overall process is

�Etot
SM = lim

K→∞

K∑

k=0

[
e−βkωS

βk
− e−βkωmax

βk
− (ωmax − ωS) e−βkωmax

]

− lim
K→∞

K∑

k=0

[
e−βkdωS

βk
− e−βkdωmax

βk
− d(ωmax − ωS) e−βkdωmax

]
. (C27)

As a side remark, note that here one can see that in the special case of equally spaced Hamiltonians, one indeed requires
a diverging number of machine subsystems to attain perfect cooling at the Landauer limit, as this is the only way to fulfil
the condition of Theorem 3. This follows from the fact that the approximation x/(1 − e−βx) ≈ 1/β holds only for small
βx and in general one would need to include higher-order terms that lead to an increase in energy cost.

We then have, using the expression for E(ωx, ωy) derived earlier:

�Etot
SM = − 1

β
log(1 − e−βωS )+ 1

β
log(1 − e−βωmax)− (ωmax − ωS) e−βωmax

1 − e−βωmax

+ 1
β

log(1 − e−βdωS )− 1
β

log(1 − e−βdωmax)+ d(ωmax − ωS) e−βdωmax

1 − e−βdωmax

= 1
β

log
(

1 − e−βdωS

1 − e−βωS

)
− 1

β
log
(

1 − e−βdωmax

1 − e−βωmax

)
− (ωmax − ωS)

(
e−βωmax

1 − e−βωmax
− d e−βdωmax

1 − e−βdωmax

)

= 1
β

log[ZS(β, ωS)] − 1
β

log[ZS(β, ωmax)] − tr
[
HS(ωmax) τS(β, ωmax)

]+ tr
[
HS(ωS) τS(β, ωmax)

]
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= 1
β

log[ZS(β, ωS)] − 1
β

log[ZS(β, ωmax)]

− tr
[
HS(ωmax) τS(β, ωmax)

]+ tr
[
HS(ωS) τS(β, ωS)

]− tr
[
HS(ωS) τS(β, ωS)

]+ tr
[
HS(ωS) τS(β, ωmax)

]

= 1
β

�SS +�ES , (C28)

where we have explicitly written the von Neumann entropy S(�) = −tr [� log(�)] of a thermal state at inverse temperature
β as S[τS(β, ω)] = log[ZS(β, ω)] + β E[τS(β, ω)]. Since the energy change of the target system concerns only its local
Hamiltonian, we immediately see that the heat dissipated by the resetting of machines in such a cooling process, i.e.,
�EM, saturates the Landauer bound as it is equal to β−1�SS . The process described is thus energy optimal.

APPENDIX D: CONDITIONS FOR STRUCTURAL
AND CONTROL COMPLEXITY

Here we begin by considering the protocol-independent
structural conditions that must be fulfilled by the machine
Hamiltonian to enable (1) perfect cooling and (2) cooling
at Landauer cost; combined, these independent condi-
tions provide a necessary requirement, namely that the
machine must be infinite-dimensional with a spectrum that
is unbounded (from above) for the possibility of (3) per-
fect cooling at the Landauer limit. We then turn to analyze
the control complexity, which concerns the properties of
the interaction that implements a given protocol. The prop-
erties of the machine Hamiltonian define the structural
complexity, which set the potential for how cool the tar-
get system can be made and at what energy cost; the extent
to which a machine’s potential is utilized in a particular
protocol then depends on the properties of the joint uni-
tary, i.e., the control complexity. Here, we show that it is
necessary that any protocol achieving perfect cooling at
the Landauer limit involves interactions between the target
and infinitely-many levels of the machine to realize the full
cooling potential. We then analyze some sufficient condi-
tions that arise as observations from our diverging control
complexity protocols. This then leads us to demonstrate
that individual degrees of freedom of the machine must be
addressed in a fine-tuned manner to permute populations,
highlighting that an operationally meaningful notion of
control complexity must take into account factors beyond
the effective dimensionality.

1. Necessary complexity conditions

a. Necessary structural conditions

1. Perfect cooling.—Let us consider the task of perfect
cooling, independently from protocol-specific constraints,
in the envisaged setting. One can lower bound the smallest
eigenvalue λmin of the final state �′S (and hence how cold
the system can become) after any unitary interaction with
a thermal machine by [29]

λmin(�
′
S) ≥ e−βωmax

M λmin(�S), (D1)

where ωmax
M := maxi,j |ωj − ωi| denotes the largest energy

gap of the machine Hamiltonian HM with eigenvalues ωi.
Without loss of generality, throughout this paper we set the
ground-state energy of any system to be zero, i.e., ω0 = 0,
such that the largest energy gap coincides with the largest
energy eigenvalue. As we make no restrictions on the size
or structure of the target or machine, the above inequal-
ity pertains to cooling protocols that could, for instance, be
realized via sequences of unitaries on the target and parts of
the machine. It follows that perfect cooling is only possible
under two conditions: either the machine begins in a pure
state (β →∞), or HM is unbounded, i.e., ωmax

M →∞.
Requiring β < ∞, a diverging energy gap in the machine
Hamiltonian is thus a necessary structural condition for
perfect cooling. Indeed, the largest energy gap of the
machine plays a crucial role in limiting how cool the target
system can be made (see also, e.g., Refs. [45,54]). We now
detail an independent property that is required for cooling
with minimal energetic cost.

2. Cooling at the Landauer limit.—Suppose now that
one wishes to cool an initial target state τS(β, HS) to
any thermal state τ ′S(β∗, HS) with β∗ > β (not necessar-
ily close to a pure state), at an energy cost saturating the
Landauer limit. In Ref. [29], it was shown that for any
finite-dimensional machine, there are correction terms to
the Landauer bound, which imply that it cannot be sat-
urated; these terms vanish only in the limit where the
machine dimension diverges. Thus, a necessary condition
for achieving cooling with energy cost at the Landauer
limit is provided by the following:

Theorem 11. To cool a target system τS(β, HS) to
τS(β∗, HS), with β∗ > β, using a machine in the initial
state τM(β, HM) with energy cost at the Landauer limit,
the machine must be infinite dimensional.

As we discuss below, this minimal requirement for the
notion of complexity is far from sufficient to achieve
cooling at Landauer cost.

3. Perfect cooling at the Landauer limit.—We have two
independent necessary conditions on the structure of the
machine that must be asymptotically achieved to enable

010332-24



LANDAUER VERSUS NERNST. . . PRX QUANTUM 4, 010332 (2023)

relevant goals for cooling: the former is required to achieve
perfect cooling; the latter for cooling at the Landauer
limit. Together, these conditions imply that in order to
achieve perfect cooling at the Landauer limit, one must
have an infinite-dimensional machine with a spectrum that
is unbounded (from above), as stated in Corollary 2.

Henceforth, we assume that these conditions are satis-
fied by the machine. The question then becomes: how does
one engineer an interaction between the target system and
machine to achieve perfect cooling at Landauer cost?

b. Necessary control complexity conditions

The unbounded structural properties of the machine sup-
port the possibility for perfect cooling at the Landauer
limit; however, we now focus on the control properties of
the interaction that realize said potential (see Fig. 2). This
leads to the distinct notion of control complexity, which
aims to differentiate between protocols that access the
machine in a more or less complex manner. The structural
complexity properties are protocol independent and related
to the energy spectrum and dimensionality of the machine,
whereas the control complexity concerns properties of the
unitary that represents a particular protocol. For instance,
the diverging-time protocol previously outlined comprises
a sequence of interactions, each of which is individually
not very complex; at the same time, the unconstrained
control complexity protocol accesses the total (overall
infinite-dimensional) machine “at once,” and thus the num-
ber of (nontrivial) terms in the interaction Hamiltonian, or
the effective dimensionality of the machine accessed by the
unitary, becomes unbounded. Nonetheless, the net energy
cost of this protocol with unconstrained control complex-
ity remains in accordance with the Landauer limit, as the
initial and final states of both the system and machine are
identical to those in the diverging-time protocol.

Effective dimensionality.—We begin by considering the
effective dimensionality accessed (nontrivially) by a uni-
tary, whose divergence is necessary but insufficient for
achieving perfect cooling at the Landauer limit, as we
show in the next section. This in turn motivates the desire
for a more detailed notion of control complexity that takes
into account the energy-level structure of the machine.

We define the effective dimension as the dimension
of the subspace of the global Hilbert space upon which
the unitary acts nontrivially, which can be quantified via
the minimum dimension of a subspace A of the joint
Hilbert space HSM in terms of which the unitary can be
decomposed as USM = UA ⊕ 1A⊥ , i.e.,

d eff := min dim(A) : USM = UA ⊕ 1A⊥ . (D2)

One can relate this quantity to properties of the Hamilto-
nian that generates the evolution in a finite unit of time T
(which we can set equal to unity without loss of general-
ity) by considering the interaction picture. In general, any

global unitary USM = e−iHSMT is generated by a Hamil-
tonian of the form HSM = HS ⊗ 1M + 1S ⊗ HM + Hint.
However, all protocols considered in this work have van-
ishing local terms, i.e., HS = HM = 0. More generally,
one can argue that the local terms play no role in how the
machine is used to cool the target. As such, one can con-
sider unitaries generated by only the nontrivial term Hint
to be those representing a particular protocol of interest.
That is, we can restrict our attention to USM = e−iHintT,
where Hint is a Hermitian operator on HSM of the form∑

i Ai
S ⊗ Bi

M such that none of the Ai
S , Bi

M are propor-
tional to the identity operator. In doing so, it follows that
the effective dimension corresponds to rank(Hint). Lastly,
note that the above definition in terms of a direct sum
decomposition provides an upper bound on any similar
quantification of effective dimensionality based on other
tensor factorizations of the joint Hilbert space considered
and makes no assumption about the underlying structure.
On the other hand, knowledge of said structure would
permit a more meaningful notion of complexity to be
defined. For instance, the effective dimensionality of a uni-
tary acting on a many qubit system is better captured by
considering its decomposition into a tensor product factor-
ization rather than the direct sum. We leave the exploration
of such considerations to future work.

The effective dimensionality provides a minimal quan-
tifier for a notion of control complexity, insofar as its
divergence is necessary for saturating the Landauer bound,
as we prove in the next section. In fact, we prove a
slightly stronger statement, namely that the dimension of
the machine Hilbert space to which the unitary (nontriv-
ially) couples the target system to must diverge. However,
as we discuss below, deff →∞ is generally insufficient
to achieve said goal, and fine-tuned control is required.
Nonetheless, the manifestation of such control seems to
be system dependent, precluding our ability (so far) to
present a universal quantifier of control complexity. Thus,
even though further conditions need to be met to achieve
perfect cooling at minimal energy cost in unit time (see
Theorem 12), whenever we talk of an operation with finite
control complexity, we mean those represented by a uni-
tary that acts (nontrivially) only on a finite-dimensional
subspace of the target system and machine. In contrast,
by diverging control complexity, we mean a unitary that
couples the target (nontrivially) to a full basis of the
machine’s Hilbert space, whose dimension diverges. With
this notion at hand, we have Theorem 3, which is proven
below. Intuitively, we show that if a protocol accesses
only a finite-dimensional subspace of the machine, then
the machine is effectively finite dimensional inasmuch as a
suitable replacement can be made while keeping all quan-
tities relevant for cooling invariant. Invoking then the main
result of Ref. [29], there are finite-dimensional correction
terms that then imply that the Landauer limit cannot be
saturated.
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Note finally that in Theorem 3 no particular structure
of the systems is presupposed and the effective dimen-
sionality relates to various notions of complexity put
forth throughout the literature (see, e.g., Refs. [55,56]).
For instance, for a finite-dimensional target system with
equally spaced energy levels ωS , suppose that the machine
structure is decomposed as N qubits with energy gaps
ωMn ∈ {ωS + nε}n=1,...,N , with arbitrarily small ε > 0 and
N →∞. Then the overall unitary that approaches perfect
cooling at the Landauer limit has circuit complexity equal
to the diverging N .

2. Proof of Theorem 3, Corollary 2, and Theorem 11

Here we prove Theorem 3, which implies Theorem 11
and leads to Corollary 2.

Proof. Let HX be a separable Hilbert space associated
with the system X . Consider

HM =
∞∑

n=0

ωn|n〉〈n| and HM′ = spann≤m{|n〉}, (D3)

for some finite m. In other words, HM′ is a finite-
dimensional restriction of HM. We show that any unitary
that (nontrivially) interacts the target system with only a
subspace spanned by finitely many eigenstates of HM can-
not attain Landauer’s bound. Consider a general unitary
U. Suppose that U couples only HS with HM′ ; whenever
we talk of an operation with finite effective dimension in
this paper, we mean specifically such a U, and by diverg-
ing effective dimension we mean a unitary that couples the
target to any subspace of HM whose dimension diverges.
Since

HS ⊗HM = HS ⊗ (HM′ ⊕H ⊥
M′)

� (HS ⊗HM′)⊕ (HS ⊗H ⊥
M′), (D4)

we can associate the subspace HS ⊗HM′ with the label
A and HS ⊗H ⊥

M′ with B and write U = UA ⊕ 1B. Then
the initial configuration can be expressed as

�S ⊗ τM(β, HM) =
[
�S ⊗ �M′ 0

0 �S ⊗ �⊥M′

]
, (D5)

where

�M′ := 1
ZM(β, HM)

∑

n≤m

e−βωn |n〉〈n| and

�⊥M′ := 1
ZM(β, HM)

∑

n>m

e−βωn |n〉〈n| (D6)

add up to a (normalized) thermal state. Now consider the
state

�̃M =
[
�M′ 0

0 tr
[
�⊥M′
]
]

. (D7)

It is straightforward to check that is indeed a quantum state;
moreover, it is the Gibbs state (at inverse temperature β)
associated with the Hamiltonian

H̃M =
∑

n≤m

ωn|n〉〈n| − 1
β

log

(
∑

n>m

e−βωn

)

|m + 1〉〈m + 1|.
(D8)

To see this, note that ZM(β, HM) = ZM(β, H̃M) and that

exp

{

−β

[

− 1
β

log

(
∑

n>m

e−βωn

)]}

=
∑

n>m

e−βωn . (D9)

Thus �̃M = τM(β, H̃M). To ease notation in what follows,
we write ω̃m+1 := − 1

β
log
(∑

n>m e−βωn
)
. In the rest of the

proof, we show that the unitary U and the Hamiltonian
HM can be replaced by finite-dimensional versions without
changing the quantities relevant for Landauer’s principle.

Let Ũ = UA ⊕ (1S ⊗ |m + 1〉〈m + 1|). We then have

Ũ
(
�S ⊗ �̃M

)
Ũ†=

[
UA(�S ⊗ �M′)U†

A 0
0 e−βω̃m+1

ZM(β,HM)
�S

]

(D10)

and

trM
[
Ũ
(
�S ⊗ �̃M

)
Ũ†]

= trM′
[
UA
(
�S ⊗ �M′

)
U†

A
]+ e−βω̃m+1

ZM(β, HM)
�S .

(D11)

Compare this to the expression

trM
[
U(�S ⊗ �M)U†]

= trM′

[
UA(�S ⊗ �M′)U†

A 0
0 �S ⊗ �⊥M′

]

= trM′
[
UA(�S ⊗ �M′)U†

A
]+ tr

[
�⊥M′
]
�S

= trM′
[
UA(�S ⊗ �M′)U†

A
]+ e−βω̃m+1

ZM(β, HM)
�S ,

(D12)

since tr
[
�⊥M′
] = 1/(ZM(β, HM))

∑
n>m e−βωn . Thus, the

final system state is the same as it would be if we replaced
the full initial machine state with �̃M; in particular, the
entropy decrease of the system for any unitary that cools
it is also unchanged.
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The last thing we need to check is that the energy change
of the machine similarly remains invariant. To that end, we
have that

�̃′M = trS
[
Ũ(�S ⊗ �̃M)Ũ†]

= trS
[
UA(�S ⊗ �M′)U†

A
]

+ e−βω̃m+1

ZM(β, HM)
|m + 1〉〈m + 1|

�̃M = �M′ + e−βω̃m+1

ZM(β, HM)
|m + 1〉〈m + 1|. (D13)

Thus, we have

tr
[
H̃M(̃�′M − �̃M)

]

= tr
{
HM

[
trS
[
UA(�S ⊗ �M′)U†

A
]− �M′

]}
, (D14)

since UA only acts on HS ⊗HM′ and H̃M|M′ = HM|M′ .
In the same way, we have

trS
[
U(�S ⊗ �M)U†] = trS

[
UA(�S ⊗ �M′)U†

A
]+ �⊥M′

�M = �M′ + �⊥M′ .
(D15)

Thus, the energy difference is also

tr
{
HM

[
trS
[
UA(�S ⊗ �M′)U†

A
]− �M′

]}
. (D16)

Hence, we show that one can replace (a potentially infinite-
dimensional) M by some (finite) m + 1-dimensional
machine M̃ if the joint unitary U acts only on m levels
of HM. By Theorem 6 of Ref. [29], there are finite-
dimensional corrections to the Landauer bound, which
then imply that it cannot be reached for finite m. Thus,
the effective machine dimension, i.e., that which is actu-
ally (nontrivially) accessed throughout the interaction,
must diverge in order for cooling to be possible at the
Landauer limit. This proves Theorem 3, which implies
Theorem 11. �

3. Sufficient complexity conditions

Having shown the necessary requirements for cooling
at Landauer cost, namely a control interaction that acts
nontrivially on an infinite-dimensional (sub)space of the

machine’s Hilbert space, let us now return to emphasize
the properties of the machine and cooling protocol that are
sufficient to achieve perfect cooling at Landauer cost. For
simplicity, we consider the case of a qubit, which exempli-
fies the discussion of finite-dimensional systems. The case
of infinite-dimensional systems is treated independently in
the next Appendix.

We first consider the structural properties of the
machine. The diverging-time protocol discussed in
Appendix C makes use of a diverging number N of
machines. Thus, the machine begins in the thermal state
τ(β, H tot

M) of a (2N )-dimensional system (with N eventu-
ally diverging), with energy-level structure given by the
sum of the Hamiltonians in Eq. (C2), i.e.,

H tot
M =

N∑

n=1

H (n)
Mn

=
∑

n

(1 + nε)H (n)
S , (D17)

that acts on the full Hilbert space (we use the usual con-
vention that it acts as identity on unlabeled subspaces,
e.g., H (1)

M ≡ H (1)
M ⊗ 1(2) ⊗ · · · ⊗ 1(N )). Let us analyze in

detail the properties of this Hamiltonian. The ground
state is |0〉⊗N , which is set at zero energy. More gener-
ally, the energy eigenvalue corresponding to an eigenstate
|i0, i1, . . . , iN 〉 is given by ω1 multiplied by the number
of indices ik that are equal to 1, plus a sum of terms kε
where k is the label of each index equal to 1. Thus, the
energy eigenvalue of the eigenstate |1, . . . , 1〉 diverges as
the number of subsystems diverges. At the same time, let-
ting the factor ε go to zero renders all eigenstates with
the same (constant) number of indices such that ik = 1
approach the same energy. Thus, in the limit ε → 0, one
obtains subspaces of energy E(k)

M = kω1 with degeneracy
given by Dk =

(N
k

)
, which also diverges for each constant

k and diverging N . Therefore, in addition to satisfying the
structural conditions that are necessary for perfect cooling,
as stated in Theorem 11, the machine used here features
additional properties, which are crucially important for this
particular protocol, in particular because they are suffi-
cient for perfect cooling at Landauer cost. As a remark,
we also emphasize that for fixed (large) N and (small) ε,
the machine is finite dimensional and has a nondegenerate
Hamiltonian without any energy levels formally at infinity.

Concerning the control complexity properties of the uni-
tary that achieves perfect cooling in unit time, note that it
is a cyclic shift operator, which can be written as

USM = �N
n=1S

2
SMn

= �n

⎛

⎝
1∑

i,jn=0

|i, j1, . . . , jn, . . . , jN 〉〈jn, j1, . . . , i, . . . , jN |SM

⎞

⎠

=
1∑

i,j1...jN=0

|i, j1, . . . , jN 〉〈jN , i, j1, . . . , jN−1|SM. (D18)
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As it is evident from its form, this unitary acts non-
trivially on all of the (divergingly many) energy levels
of the machine. The only basis vectors of the system-
plus-machine Hilbert space that are left invariant are
|i = 0, j1 = 0, . . . , jN = 0〉 and |i = 1, j1 = 1, . . . , jN = 1〉.

4. Fine-tuned control conditions

Theorem 3 captures a notion of control complexity as a
resource in a thermodynamically consistent manner, i.e., in
line with Nernst’s unattainability principle. However, fol-
lowing the discussion around Theorem 11 and that above,
the protocols that we present that achieve perfect cooling
at Landauer cost make use of machines and interactions
with a far more complicated structure than suggested by
the necessary condition of diverging effective dimension-
ality. In particular, we note that the interactions couple the
target system to a diverging number of subspaces of the
machine corresponding to distinct energy gaps in a fine-
tuned manner. Moreover, there are a diverging number of
energy levels of the machine both above and below the
first excited level of the target. In this section, we begin by
outlining the general conditions that perfect cooling at the
Landauer limit entails, before presenting a more nuanced
notion of control complexity in terms of the variety of
distinct energy gaps in the machine in Appendix D 5.

This suggests that an operationally meaningful quan-
tifier of control complexity must take into account the
energy-level structure of the machine that is accessed
throughout any given protocol; additionally that of the
target system plays a role. Indeed, both the final temper-
ature of the target as well as the energy cost required
to achieve this depends upon how the global eigenvalues
are permuted via the cooling process. First, how cool the
target becomes depends on the sum of the eigenvalues
that are placed into the subspace spanned by the ground
state. Second, for any fixed cooling amount, the energy
cost depends on the constrained distribution of eigenvalues
within the machine. Thus, in general, the optimal permu-
tation of eigenvalues depends upon properties of both the
target and machine.

For instance, consider an arbitrary initially thermal tar-
get qubit, whose state is given by diag(p , 1 − p) and
a thermal machine of dimension dM with spectrum
{λi

M}i=0,...,dM−1. Now consider the decomposition of the
joint Hilbert space into two orthogonal subspaces, B0 and
B1, corresponding to the ground and excited eigenspaces
of the target. The initial joint state is p diag(λi

B0
)⊕ (1 −

p) diag(λi
B1

), where we write λi
Bj

to denote the ith machine
eigenvalue in the subspace Bj . The total population in the
subspaces B0 and B1 are p and (1 − p), respectively. To
achieve perfect cooling one must permute the eigenval-
ues such that approximately a net transfer of population
(1 − p) is moved from B1 to B0. To do this, one can take
any subset K of {λi

B1
} such that as dM →∞,

∑
i∈K λi

B1
→

(1 − p) and a subset K ′ (with |K | = |K ′|) from {λi
B0
} such

that
∑

i∈K ′ {λi
B0
} → 0 and exchange them. Although the

choice of eigenvalues permuted is nonunique, the require-
ment must be fulfilled for some sets to perfectly cool the
target. For any pair of eigenvalues exchanged between
the subspaces, demanding that the exchange costs mini-
mal energy amounts to a fine-tuning condition of the form
λi
M → pλi

B0
+ (1 − p)λi

B1
that must be satisfied. In gen-

eral, the fine-tuned eigenvalue conditions that must be
asymptotically attained depend upon target and machine
eigenvalues, making it difficult to derive a closed-form
expression. However, in the restricted scenario in which
the target qubit begins maximally mixed (i.e., at infinite
temperature), the machine begins thermal at some β > 0
and of dimension dM, and that the unitary implemented
is such that the target is cooled as much as possible, one
can derive precise conditions in terms of the machine
structure alone, as we demonstrate below. The case for
higher-dimensional target systems is similar.

This discussion highlights the importance of captur-
ing properties beyond the effective dimensionality, e.g.,
those regarding the distribution of machine (and, more
generally, target system) eigenvalues, in order to mean-
ingfully quantify control complexity in thermodynamics.
Our protocols display similar behavior to that discussed
above asymptotically. Moreover, the machines exhibit an
energy-level structure such that every possible energy gap
is present, i.e., the set of machine energy gaps {ωij =
ωi − ωj } densely covers the interval [ωS ,∞), where ωS
is the energy of the first excited level of the target. In
Appendix D 5, we demonstrate that indeed this condition
is necessary for minimal-energy cost cooling.

Before doing so, we here first derive the fine-tuned con-
trol conditions that are asymptotically required for cooling
at the Landauer limit. We begin with some general con-
siderations before focusing on a special case for which
an analytic expression can be derived. Furthermore, we
demand that the unitary implemented is such that the tar-
get is cooled as much as possible: this does not preclude
the possibility for cooling the target system less (albeit
still close to a pure state) at a cost closer to the Landauer
bound without satisfying all of the fine-tuning conditions.
Nonetheless, in general there are a number of such con-
ditions to be satisfied, and the special case serves as a
pertinent example that demonstrates how the particular set
of fine-tuning conditions for any considered scenario can
be similarly derived.

Consider an arbitrary thermal target system and
machine of finite dimensions, with respective spectra
λS := {λ0

S , . . . , λdS−1
S } and λM := {λ0

M, . . . , λdM−1
M }. The

states begin uncorrelated, so the global spectrum of
the initial joint state is λSM := {λ0

SM, . . . , λdSdM−1
SM } =

{λ0
Sλ0

M, λ0
Sλ1

M, . . . , λdS−1
S λ

dM−1
M }. Consider now a global

unitary transformation; such a transformation cannot
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change the values of the spectrum, but merely permute
them. In other words, the spectrum of the final global state
after any such unitary is invariant and we have equivalence
of the (unordered) sets λ′SM and λSM.

The transformation that cools the target system as much
as possible [57] is the one that places the dM largest of
the global eigenvalues into the subspace spanned by the
ground state of the target, the second dM largest into that
spanned by the first excited state of the target, and so forth,
with the smallest dM global eigenvalues placed in the sub-
space corresponding to the highest energy eigenstate of the
target system (we prove this statement shortly). More pre-
cisely, we denote by λ↓ the nonincreasing ordering of the
set λ. Since the target and machine begin thermal, the local
spectra λS and λM are already ordered in this way with
respect to their energy eigenbases, which we consider to be
labeled in nondecreasing order. Cooling the target system
as much as possible amounts to achieving the final reduced
state of the target

�′S =
dS−1∑

i=0

⎛

⎝
dM−1∑

j=0

λ↓idM+j
SM

⎞

⎠ |i〉〈i|S . (D19)

As a side remark, note that since each of the global eigen-
values are a product of the initial local eigenvalues (due
to the initial tensor product structure), which are in turn
related to the energy-level structure of the target system
and machine (as they begin as thermal states), one can
already see here that in order to approach perfect cooling,
the machine must have some diverging energy gaps, such
that the (finite) sum of the global eigenvalues contributing
to the ground-state population of the target approaches 1.

Of course, there is an equivalence class of unitaries that
can achieve the same amount of cooling; in particular, any
permutation of the set of the dM global eigenvalues within
each energy eigenspace of the target system achieves the
same amount of cooling, since it is the sum of these val-
ues that contribute to the total population in each subspace.
Importantly, although such unitaries cool the target system
to the same extent, their effect on the machine differs, and
therefore so too does the energy cost of the protocol. How-
ever, demanding that such cooling is achieved at minimal
energy cost amounts to a unique constraint on the global
post-transformation state, namely that it must render the
machine energetically passive, leading to the form:

�′SM =
dS−1∑

i=0

dM−1∑

j=0

λ↓idM+j
SM |ij 〉〈ij |SM. (D20)

We can derive the above form of the final joint state as
follows. Consider the following ordering for the energy

eigenbasis of SM chosen to match the above form

{|00〉SM, |01〉SM, . . . , |0, dM − 1〉SM, |10〉SM, . . . ,

|1, dM − 1〉SM, . . . , |dS − 1, 0〉SM, . . . ,

|dS − 1, dM − 1〉SM}. (D21)

This ordering is monotonically nondecreasing primarily
with respect to the energy of S , and secondarily with
respect to M. We take the final state ρ ′SM to be expressed
in this basis. To maximize the cooling in a single uni-
tary operation, we maximize the sum of the first k · dM
diagonal elements, for each k ∈ {1, 2, . . . , dS}, as each sum
corresponds to the total population in the kth lowest energy
eigenstate of S . The initial state �SM is diagonal in this
basis, so the vector of initial diagonal elements, which we
label θ := diag(�SM), is also the vector of eigenvalues,
λSM, i.e., θ = λSM. Furthermore, since the unitary opera-
tion leaves the set of eigenvalues invariant, we have via the
Schur-Horn lemma [58] that the vector of final diagonal
elements, which we label θ ′ := diag(�′SM), is majorized
by the vector of initial ones, i.e., θ ′ ≺ θ . It follows that
the partial sums we wish to maximize are upper bounded
by the corresponding partial sums of the k · dM largest
diagonal elements of the initial state. We claim that the
unitary that cools this maximal cooling amount at min-
imum energy cost is the one that permutes the diagonal
elements to be ordered with respect to the basis ordering in
Eq. (D21).

More precisely, via the Schur-Horn lemma, one can
always write θ ′ = Dθ , with D a doubly stochastic matrix.
The partial sums of the k · dM first elements are linear
functions of the elements of θ . Thus the maximum val-
ues are obtained at the extremal points of the convex set
of doubly stochastic matrices, which are the permutation
matrices, via the Birkhoff-von Neumann theorem [58]. One
can see by inspection that the optimal permutation matrices
are the ones that place the largest dM diagonal elements
in the first block (i.e., the ground-state eigenspace of S),
the next largest dM elements in the second block (i.e., the
first excited-state eigenspace of S), and so on. Within each
block, the ordering does not affect the cooling of the tar-
get, so there is an equivalence class of permutations that
satisfy the maximal cooling criterion. However, adding the
optimization over the energy cost eliminates this freedom.
We may consider the reduced set of stochastic matrices
that satisfy maximal cooling, generated by the permuta-
tions described above. Since the average energy of the
final state is again a linear function of the diagonal ele-
ments, here too the minimum corresponds to a permutation
matrix. Clearly the permutation that minimizes the average
energy is the one that orders the elements within each block
to be decreasing with respect to the energies of M. Thus,
the unique [59] stochastic matrix D that leads to maximal
cooling at the least energy cost possible is the one that
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permutes the energy eigenvalues to be ordered decreasing
primarily with respect to the system energies, and secon-
darily with respect to the machine energies. The action
of the stochastic matrix on diagonal elements of the state
is related to the unitary operation on the entire quantum
state by |Uij |2 = Dij , so that the unitary operation is also
a permutation (up to an energy-dependent phase, which is
irrelevant since the initial and final states are diagonal).

We may understand this optimal operation through the
notion of passivity, by noting that it cools at minimal
energy cost by rendering the machine into the most ener-
getically passive reduced state in the joint unitary orbit
with respect to the cooling constraint on the target. Intu-
itively, one has cooled the target system maximally at the
expense of heating the machine as little as possible. The
final reduced state of the machine corresponding to this
energetically optimal cooling transformation is

�′M =
dM−1∑

j=0

⎛

⎝
dS−1∑

i=0

λ↓idM+j
SM

⎞

⎠ |j 〉〈j |M. (D22)

In general, any unitary that achieves these desired condi-
tions simultaneously depends upon the energy-level struc-
ture of both the target system and machine, precluding a
closed-form set of conditions that can be expressed only
in terms of the machine. However, for the special case
of a maximally mixed initial target state (i.e., cooling a
thermal state at infinite temperature or erasing quantum
information from its most entropic state), one can deduce
this ordering precisely and moreover relate it directly to
properties of the machine Hamiltonian, as we now demon-
strate. In the following, we assume that dM is even; the
case for odd dM can be derived similarly.

Theorem 12. Consider the target system to begin in the
maximally mixed state and a thermal machine at tem-
perature β > 0, whose eigenvalues are labeled in nonin-
creasing order, {λ↓i

M}i=0,...,dM−1. In order to cool the target
perfectly, with the restriction that the target must be cooled
as much as possible, at an energy cost that saturates the
Landauer limit, the machine eigenvalues must satisfy

dM
2 −1∑

i=0

λ↓i
M → 1,

dM−1∑

i= dM
2

λ↓i
M → 0, (D23)

and

1
2

(
λ
↓� i

2 �
M + λ

↓ dM
2 +� i

2 �
M

)

λ
↓i
M

→ 1 (D24)

for all i ∈ {0, . . . , dM − 1}, where �·� denotes the floor
function and → denotes that the condition is satisfied
asymptotically, i.e., as dM →∞ [60].

Proof. We consider a qubit for simplicity, but the gener-
alization to cooling an arbitrary-dimensional maximally
mixed state is straightforward. The initial joint spectrum
of the system and machine is

λSM = 1
2 {λ↓M, λ↓M}

= 1
2 {λ↓0

M, λ↓1
M, . . . , λ↓dM−1

M , λ↓0
M, λ↓1

M, . . . , λ↓dM−1
M }.

(D25)

As each λ↓i
M = 1/(ZM(β, HM))e−βωi for any thermal state

with Hamiltonian HM =∑i ωi|i〉〈i|M written with respect
to nondecreasing energy eigenvalues, it follows that the
globally ordered spectrum is

λ↓SM = 1
2 {λ↓0

M, λ↓0
M, λ↓1

M, λ↓1
M, . . . , λ↓dM−1

M , λ↓dM−1
M }.

(D26)

Expressing the global states with respect to the product
of local energy eigenbases, we have that the initial joint
state is 1S/2 ⊗ τM(β, HM) = diag(λSM) [see Eq. (D25)]
and the unitary that cools the target as much as possible
at minimum energy cost is the one achieving the globally
passive final joint state �′SM = diag(λ↓SM). This leads to
the following reduced states:

�′S =

⎛

⎜
⎝

dM
2 −1∑

i=0

λ↓i
M

⎞

⎟
⎠ |0〉〈0|S +

⎛

⎜
⎝

dM−1∑

i= dM
2

λ↓i
M

⎞

⎟
⎠ |1〉〈1|S ,

(D27)

�′M = 1
2

(
λ↓0
M + λ

↓ dM
2

M

)
|0〉〈0|M

+ 1
2

(
λ↓0
M + λ

↓ dM
2

M

)
|1〉〈1|M

+ 1
2

(
λ↓1
M + λ

↓ dM
2 +1

M

)
|2〉〈2|M

+ 1
2

(
λ↓1
M + λ

↓ dM
2 +1

M

)
|3〉〈3|M + . . . (D28)

Intuitively, the reduced target state has the larger half
of the initial machine eigenvalues in the ground state
and the smaller half in the excited state; the reduced
machine state has the sum of the largest elements from
each of these halves in its ground state, the next largest
element from each half (which, in this case, is equal
to the first) in its first excited state, and so forth.
Let us denote the spectrum of the final state of the
machine by λ′↓M := {λ′↓0

M , λ′↓1
M , . . . , λ′↓dM−1

M } = 1/2{λ↓0
M +

λ
↓dM/2
M , λ↓0

M + λ
↓ dM

2
M , . . . , λ

↓ dM
2 +1

M + λ
↓dM−1
M }. Import-

antly, by construction, the reduced state of the final
machine has its local eigenvalues in nonincreasing order,
i.e., it is energetically passive.
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We therefore have the final reduced states of the proto-
col that cools the initially maximally mixed target as much
as possible at minimal energy cost, in particular with min-
imal heat dissipation by the machine, given the structural
resources at hand. We can now analyze the properties that
are required to saturate the Landauer limit by considering
the terms on the rhs of Eq. (3) for any fixed initial inverse
temperature of the machine β ≥ 0.

First note that cooling the target system by any amount
fixes the change in entropy of the target system, so the
first term is irrelevant. The second term concerns the
mutual information built up between the target system
and machine. In general, this is nonvanishing, although
one can achieve any desired amount of cooling without
generating such correlations (as per our constructions).
Furthermore, in the case where one wants to consider
attaining a perfectly cool final state, as we do here, the
final reduced state of the target is approximately pure and
so I(S : M )�′SM → 0. In terms of the reduced states above,

this means that
∑dM/2−1

i=0 λ↓i
M → 1 and

∑dM−1
i=dM/2 λ↓i

M → 0,
which can occur only if the largest half of energy eigenval-
ues of the machine, i.e., ωi for all i ≥ dM/2, diverge (since
the summation contains only non-negative summands).

The final term that must be minimized to saturate
the Landauer limit is the relative entropy of the final
with respect to the initial machine state, D(�′M‖�M).
Here one can already see that an infinite-dimensional
machine is required to saturate the Landauer bound:
from Ref. [29], D(�′M‖�M) ≥ f (�SM, dM), where f is
a dimension-dependant function of the entropy differ-
ence of the machine that exhibits non-negative correction
terms that vanish only in the limit dM →∞. The rel-
ative entropy vanishes if and only if �M = �′M; more-
over, by Pinsker’s inequality one has 1

2‖�M − �′M‖2
1 ≤

D(�M‖�′M), so one can bound the trace distance between
the initial and final state of the machine for any desired
value of the relative entropy. Although �M = �′M implies
a trivial process that cannot cool the (initially thermal)
target system, as our protocols that saturate the Landauer
limit demonstrate, there are processes that asymptotically
display the behavior �′M → �M and cool the target sys-
tem. For the asymptotic machine states to converge, in
particular, their eigenvalues must become approximately
equal asymptotically. Demanding this on the spectrum in
Eq. (D28) leads to a generic term that must be asymptoti-
cally satisfied of the form:

1
2

(
λ
↓� i

2 �
M + λ

↓ dM
2 +� i

2 �
M

)

λ
↓i
M

→ 1 ∀ i ∈ {0, . . . , dM − 1}.
(D29)

�

In order to achieve perfect cooling at the Landauer
limit, one thus must simultaneously satisfy the condi-
tions outlined in Theorem 12. In other words, to minimize
the relative-entropy term with the additional constraints
∑dM/2−1

i=0 λ↓i
M → 1 and

∑dM−1
i=dM/2 λ↓i

M → 0. The first thing
to note is that since the eigenvalues λ↓i

M contribute to dif-
ferent sums depending on whether i is in the larger half
{0, . . . , dM/2 − 1} or smaller half {dM/2, . . . , dM}, one
cannot have λ

↓dM/2+�i/2�
M = λ↓�i/2�

M ∀ i (i.e., a completely
degenerate machine), since then both summations would
be over identical values and there is no way for them
to converge to distinct values. This precludes the trivial
solution that satisfies the constraints of Eq. (D24) alone,
namely the maximally mixed machine state, which cannot
be used to perform any cooling [as, in particular, it does
not satisfy the constraints of Eq. (D23)]. For the conditions
to be simultaneously satisfied, we intuitively require that,
although they must be distinct, for each i both λ↓�i/2�

M and
λ
↓dM/2+�i/2�
M become “close” to each other, but with a dif-

ference that decays rapidly as dM →∞, such that in the
infinite-dimensional limit the larger “half” of the eigenval-
ues sum to one and the smaller “half” sum to zero. A subtle
point to note is that because the relative entropy involves
the ratio of final to original eigenvalues it is not enough
that the absolute difference |λ′↓i

M − λ↓i
M| goes to zero, as in

the infinite dM limit, it is possible for this to happen for
all of the eigenvalues approaching zero without the ratios
of final to initial eigenvalues approaching unity (and hence
the relative entropy not vanishing). One manner of satis-
fying such a constraint, as evidenced by the construction
we proceed with next, is for the ratios of final to initial
eigenvalues go to unity for all but a small number energy
levels, with the population in this exceptional subspace
going to zero in the infinite dM limit (along with the ratios
not diverging within said subspace).

The natural question that arises here is whether or not it
is possible to satisfy these constraints concurrently. (Note
that none of the cooling protocols provided throughout this
paper use the max-cooling operation, so do not necessarily
serve as examples.) To this end, we now construct a family
of machine Hamiltonians HM of increasing dimension that
in the limit dM →∞ manages to attain both perfect cool-
ing of a maximally mixed qubit and the Landauer limit for
the energy cost using the maximal cooling operation dis-
cussed above. The form of the Hamiltonian is instructive
regarding the complexity requirements for perfect cool-
ing at the Landauer limit. The construction is inspired by
the infinite-dimensional Hamiltonian found in Ref. [29]
(Appendix D), therein used to perfectly cool a qubit with
energy cost arbitrarily close to the Landauer limit. Their
construction already begins with infinitely many machine
eigenvalues, as well as infinitely many of them corre-
sponding to diverging energy levels. In the following, we
demonstrate that one can arbitrarily closely attain perfect
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cooling and the Landauer limit with finite-dimensional
Hamiltonians, and by taking the limit dM →∞, recover
the result of Ref. [29].

The Hamiltonian of the machine is dM := 2N+1 dimen-
sional,

HM =
N∑

n=0

2n∑

j=1

(
n�|n; j 〉〈n; j |M

)

+ N�|N ; 2N + 1〉〈N ; 2N + 1|M. (D30)

Here, each energy eigenvalue labeled by n is 2n-fold
degenerate. Thus the ground state is unique, the first
excited state is twofold degenerate, the second excited state
fourfold degenerate, and so on, with the degeneracy dou-
bling every energy level. In order to make the Hamiltonian
of even dimensionality for convenience, we add an extra
degenerate state to the final level [which makes this level
(2N + 1)-fold degenerate]. Also note that the Hamiltonian
is equally spaced with energy gap �. In the following,
we use the index n to denote any one of the degenerate
states in the nth energy level from n = 0 to n = N , and the
index i to denote individual energy eigenstates from i = 1
to i = 2N+1 (note that in contrast to the previous section,
we are here beginning with i = 1 in order to simplify some
future notation). With these indices, the eigenvalues are
related by

λ↓i
M = e−β�λ

↓� i
2 �

M ∀ i ∈ {2, . . . , dM − 1}, (D31)

λ↓n
M = e−β�λ↓n−1

M ∀ n ∈ {1, . . . , N }. (D32)

We introduce a parameter ε to express the Gibbs ratio as

e−β� = 1 − ε

2
, (D33)

where 0 < ε < 1, and we eventually take the limit ε → 0
appropriately as the dimension diverges. Note that this
constrains the Gibbs ratio to be smaller than 1/2, which in
turn ensures that the total population over all of the degen-
erate eigenstates in the nth level is smaller than that in
the (n − 1)th level (as it has twice the number of eigen-
states, but less than half the population in each). If this
constraint failed to hold, then in the asymptotic limit, all
of the population would lie in energy levels that diverge.

We now consider using this machine to cool a max-
imally mixed qubit target. The final ground-state popu-
lation of the qubit under the maximal cooling operation
is the sum over the larger half of the eigenvalues of the
machine, corresponding to the eigenvalues from i = 1 to
i = 2N (equivalently, from n = 0 to n = N − 1 plus a sin-
gle eigenvalue from the n = N energy level), and is thus

given by

p ′0 =
1

ZM

(
N−1∑

n=0

2n
(

1 − ε

2

)n

+
(

1 − ε

2

)N
)

,

(D34)

where ZM =
N∑

n=0

2n
(

1 − ε

2

)n

+
(

1 − ε

2

)N

(D35)

is the partition function of the machine. The geometric
series above evaluates to

p ′0 =
(

1 + ε(1 − ε)N

1 − (1 − ε)N + ε(1 − ε)N 2−N

)−1

. (D36)

As an ansatz, supposing that ε scales inversely with N as
ε := θ/N leads to the simplification (1 − ε)N → e−θ as
dM (and hence N ) diverges. The asymptotic behavior of
the ground-state population is thus

p ′0 = 1 − 1
N

(
θ

eθ − 1

)
+ O

(
1

N 2

)
, (D37)

and so p ′0 → 1 in the N →∞ limit.
We now move to calculate the energy cost. Rather than

considering the optimal max-cooling operation described
above, we consider a slight modification in order to make
the connection to the construction in Ref. [29] clear as well
as to simplify notation. Nonetheless, the energy cost of this
modified protocol upper bounds that of the max-cooling
operation (for the same achieved ground-state population),
and so showing that the Landauer limit is attained for the
modified protocol implies that it would be too for the max-
cooling protocol. The modification is simply to relabel the
smallest eigenvalue of the machine λ2N+1

M as λ0
M, and treat

it as the ground-state eigenvalue in the max-cooling oper-
ation. For general machine states, such a switch would
lead to less cooling (if the same unitary were applied), but
in this case it does not because the sum of the first half
of the machine eigenvalues, from i = 0 to i = 2N − 1, is
the same as the original sum from i = 1 to i = 2N , due
to the relabeling λ0 = λ2N , since they are both eigenval-
ues of states corresponding the maximum excited energy
level of the machine spectrum. The spectrum of the final
state of the machine is then given by

λ′↓i
M = 1

2

(
λ
↓� i

2 �
M + λ

↓� i
2 �+

dM
2

M

)
∀ i ∈ {0, . . . , dM − 1},

(D38)
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which leads to

λ′↓0
M = 1

2

(
λ↓0
M + λ↓2N

M

)
= λ↓0

M,

λ′↓1
M = 1

2

(
λ↓0
M + λ↓2N

M

)
= λ↓0

M,

λ′↓i
M = 1

2

(
λ
↓� i

2 �
M + λ

↓� i
2 �+

dM
2

M

)
∀ i ∈ {2, . . . , dM − 1}

= 1
2

(
2

1 − ε
λ↓i
M + λn=N

M

)

= 1
2

1
ZM

[(
1 − ε

2

)n−1

+
(

1 − ε

2

)N
]

, (D39)

where we observe that the index �i/2� + dM/2 corre-
sponds to the largest energy level of the machine for all
i, and we use Eq. (D31) for the spectrum of initial eigen-
values. Using the index n instead to denote a generic
eigenvalue of the nth energy level, we have the simpler
expression

λ′↓n
M = 1

2
(
λ↓n−1
M + λ↓N

M
)

, ∀ n ∈ {1, 2, . . . , N }. (D40)

The energy cost can now be simply calculated from the
difference in the average energy of the machine state,

�EM =
dM−1∑

i=0

(
λ′↓i
M − λ↓i

M
)
ωi, (D41)

where we denote the ith energy eigenvalue by ωi. λ↓0
M is

unchanged, and although λ↓1
M does change, ω1 = 0 corre-

sponds to the ground state and thus this eigenvalue change
does not affect the energy cost. We can thus express the
energy cost in terms of the index n instead, starting from
n = 1 (corresponding to i = 2 onward), as

�EM =
N∑

n=1

(
λ′↓n
M − λ↓n

M
)
ωn

= 1
β

[
1 − 2(1 − ε)N

1 − (1 − ε)N + (1 − 2−N )(1 − ε)N ε

]

× log
(

2
1 − ε

)
. (D42)

As we did above, we parameterize ε = θ/N . The asymp-
totic behavior of the energy cost is then

β�EM = log(2)+ 1
N

(
1 − 2 log(2)

eθ − 1

)
θ + O

(
1

N 2

)
,

(D43)

or in terms of the decrease in entropy of the system,

β�EM = �̃SM + log N
N

(
θ

eθ − 1

)
+ O

(
1
N

)
. (D44)

Combining Eqs. (D37) and (D43), we have that in the limit
N →∞, which is also dM →∞, the ground-state popula-
tion approaches 1—corresponding to perfect cooling—and
the energy cost approaches β−1 log(2), which is the Lan-
dauer limit for the perfect erasure of a maximally mixed
qubit.

To connect this construction to the constraints of
Eq. (D24), note that in the limit N →∞ (recalling that
ε = θ/N ),

λ′↓n

λ↓n = lim
N→∞

1
2

[( 1−ε
2

)n−1 + ( 1−ε
2

)N]

( 1−ε
2

)n

= lim
N→∞

[
1

1 − ε
+ 1

2N−n+1

(
e−θ

(1 − ε)n

)]
= 1,

(D45)

for all n ≥ 1, leaving only the ground-state eigenvalue
(corresponding to n = 0 and i = 1) not satisfying the con-
dition. However, this term is actually a negative contribu-
tion to the relative entropy as this eigenvalue decreases,
and in any case can be verified independently to approach
zero.

To see this, note that a necessary condition that ensures
the contribution of any set of eigenvalues that do not sat-
isfy Eq. (D24) to the relative entropy to be negligible is
that the total population of the relevant subspace is van-
ishingly small. Writing the relative entropy between two
states in terms of their eigenvalues, we have D(�′‖�) =∑

n λ′n log
(
λ′n/λn

)
, which we split up into two sets: S0

containing all n for which Eq. (D24) is satisfied and S±
containing the all n for which Eq. (D24) is not satisfied.
The contribution of the first term to the relative entropy
is asymptotically zero, so we are left with D(�′‖�) =∑

n∈S± λ′n log
(
λ′n/λn

)
. For each term in the sum here, one

can write λ′n = λ(1 +�n) with the condition |�n| ≥ θ > 0
for some θ , i.e., the ratio of eigenvalues is bounded away
from unity (on either side) by at least θ . This leads to the
expression

D(�′‖�) = −
∑

n∈S±
λ′n log(1 +�n)

= −N±
∑

n∈S±
pn log(1 +�n), (D46)

where we renormalize the eigenvalues (which here cor-
respond to a subnormalized probability distribution) by
writing λ′n = N±pn, with N± :=∑n∈S± λ′n being the total
population of the subspace S± and {pn} here forming a
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probability distribution. Note that the ratio of eigenvalues
going to unity in the S0 subspace implies that the total
populations of initial and final eigenvalues in this sub-
space are equal, i.e.,

∑
n∈S0

λn =
∑

n∈S0
λ′n, which in turn

implies that the same is true for the S± subspace, leading
to
∑

n∈S± pn�n = 0.
We argue from the concavity of the logarithm function

that

1
2 log(1 + θ)+ 1

2 log(1 − θ) ≥
∑

n∈S±
pn log(1 +�n).

(D47)

Visualizing the graph of the function y = log(1 + x), the
latter expression above must evaluate to a point that lies
within the intersection of the convex hull of (�n, log(1 +
�n)) and the linear equality

∑
n∈S± pn�n = 0, the latter of

which is the line x = 0. By the concavity of the logarithm,
the aforementioned convex hull lies entirely below the line
segment connecting (1 − θ , log(1 − θ)) to (1 + θ , log(1 +
θ)), and thus the expression is upper bounded by the inter-
section of this line segment with x = 0, which is precisely
the lhs of the inequality above. Thus we have the inequality

D(�′‖�) ≥ −N±
[ 1

2 log(1 + θ)+ 1
2 log(1 − θ)

]

= −N±
2

log(1 − θ2) ≥ N±
2

θ2, (D48)

where we use log(1 − θ2) ≤ −θ2 for all θ ∈ [−1, 1]. As
θ > 0, the only way that this contribution to the relative
entropy by the eigenvalues that do not satisfy Eq. (D24)
can be asymptotically negligible is if the total population
of their associated subspace N± goes to zero.

Finally note that, as mentioned in the main text, the
above result pertains to the restricted setting where the
target system is cooled as much as possible. However,
this is not the only way to approach perfect cooling at
the Landauer cost: instead of the largest half of global
eigenvalues being placed into the ground-state subspace
of the target system, any amount of them such that their
sum is sufficiently close to one would suffice. Although
it is complicated to derive an exact set of conditions that
would need to be satisfied in such cases (since it depends
upon exactly which eigenvalues are permuted to which
subspaces), the fact that fine-tuned control over particu-
lar degrees of freedom is required remains. Lastly, note
that even in the restricted setting of cooling the target as
much as possible, the situation becomes even more com-
plicated when considering target systems that begin at a
finite temperature. Here, the choice of which global eigen-
values should be permuted to which subspaces to cool
the system as much as possible at minimal energy cost
depends on the microscopic structure of both the system
and machine. This means that one can no longer determine
the final eigenvalue distributions of the reduced states in

terms of the initial machine eigenvalues alone, as we were
able to do for the maximally mixed state. In turn, one can
no longer derive a condition on properties of the machine
itself, independently of the target system. Nonetheless,
again, the key message that cooling at minimal energy
cost requires fine-tuned control to access precisely dis-
tributed populations still holds true. We leave the further
exploration of such scenarios, for instance, constructing
optimal machines for particular initial target systems, to
future work.

5. Energy-gap variety as a notion of control complexity

The insights drawn above regarding sufficient condi-
tions for cooling a system at the Landauer limit lead us to
propose a more nuanced notion of control complexity than
the preliminary effective dimension that satisfies the natu-
ral desiderata outlined in the main text. In particular, here
we demonstrate that the energy-gap variety (see Definition
2) provides a good measure of control complexity, both
from a theoretical, thermodynamic standpoint as well as a
practical one.

Firstly, it is quite clear that coupling a system to a
diverging number of distinct machine energy gaps is a
difficult task to achieve in almost any conceivable physi-
cal platform, especially when the energy gaps are closely
spaced; thus, this definition indeed corresponds to our intu-
itive understanding of “complex” as an operation that is
inherently difficult to perform in practice. Secondly, from
all of the optimal cooling protocols that we outline in this
paper, we see that, in contrast to the effective dimension,
having a diverging energy-gap variety that densely covers
an appropriate interval is sufficient for saturating the Lan-
dauer limit, thereby making it a better quantifier of control
complexity. The remaining point is to show that its diver-
gence is necessary to cool a system to the ground state
using a single control operation with energy cost saturat-
ing the Landauer bound, so that it is fully consistent also
with Nernst’s unattainability principle. We argue that this
is indeed the case below by proving Theorem 4.

Proof: First of all, note that how cold the final system
state can be made is bounded by the inequality:

λmin(�
′
S) ≥ e−β ωmax

M λmin(�S), (D49)

where λmin denotes the minimal eigenvalue. For a pure
final system state, the lhs of the above equation goes to
0; thus, for any nontrivial initial system state [i.e., such
that λmin(�S) > 0] and finite temperature β < ∞, we must
have ωmax

M →∞. This determines the upper limit of the
required interval of energy gaps. The lower limit of the
required interval comes from the fact that the only sub-
spaces of the machine that are relevant for cooling the
target system are those associated to energy gaps that are
at least as large as the smallest energy gap of the target,
ω0 [41].
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Next, recall the equality form of the Landauer limit,
which holds true for any global unitary transformation
with a thermal machine:

β�EM = �̃SS + I(S : M)�′SM + D(�′M‖�M). (D50)

Cooling the target system to a pure state necessitates that
the final system and machine are uncorrelated and we
therefore have I(S : M)�′SM = 0 for the optimal process.
We thus need to focus on minimizing the relative-entropy
term, which we do in the following steps.

Consider for simplicity the target system to be a qubit
initially in the maximally mixed state. A generic cool-
ing machine should be able to cool any system state,
include the maximally mixed one; therefore the following
insights pertaining to this special case apply generically.
In this case, the initial joint spectrum of the system and
machine is given by Eq. (D25). Cooling the target sys-
tem to the ground state necessitates taking a subset A
of these global eigenvalues such that

∑
i∈A λ↓i

M = 1 − ε

for arbitrarily small ε and placing these into the ground-
state subspace of the target, with the remaining (small)
ε amount of population contributing only to any higher-
energy eigenstates [this is essentially a generalization of
the conditions put forth in Eq. (D23), accounting for an
arbitrarily small cooling error].

As discussed previously, there are many possible ways
to achieve such a configuration, but there is a unique one
that minimizes the total energy cost of doing so: namely,
that in which the reduced final state of the machine is
rendered passive. This is because if one compares two pro-
tocols achieving the same cooling for the target system,
one in which the final machine is passive and any other in
which it is not, then the former protocol has the smaller
energy cost since a positive amount of energy can be (uni-
tarily) extracted from the latter machine in order to render
it passive.

Thus, for any protocol saturating the Landauer limit,
the final machine state must be arbitrarily close to a pas-
sive state, which implies that it must be approximately
diagonal in the local machine energy eigenbasis with the
globally ordered spectrum as per Eq. (D26). Moreover, in
order to minimize the relative-entropy term and therefore
saturate the Landauer limit, the final machine state must
be arbitrarily close to the initial (i.e., thermal) machine
state; following the argumentation put forth in the previ-
ous Appendix, this leads to the set of conditions outlined
in Eq. (D29), which must be satisfied up to arbitrary
precision.

Since we have the exact relationship between the ini-
tial and final machine eigenvalues, the contribution to the
energy cost from the relative-entropy term can be cal-
culated explicitly, i.e., D(�′‖�) =∑n λ′n log

(
λ′n/λn

)
. Fol-

lowing the argumentation from Eq. (D46) until Eq. (D48)
in the previous Appendix, we see that by assuming a finite

deviation from any of the conditions of Eq. (D29), i.e.,
writing λ′n = λn(1 +�n) with |�n| ≥ θ > 0 for some θ ,
one can derive a lower bound on the relative entropy:

D(�′‖�) ≥ N±
2

θ2, (D51)

where N± is the total population of the subspaces corre-
sponding to the terms in the sum such that λ′n/λn differs
from unity by at least θ . In other words, these are the rele-
vant additional contributions to the energy cost; whenever
N± is nonzero, the Landauer bound cannot be approached
arbitrarily closely.

The final piece is to relate the machine eigenvalues to
its energy-gap spectrum, which can be done straightfor-
wardly due to the initial thermality of the machine, i.e.,
λ↓i
M = e−βωi/ZM(β, HM). We now argue that if there is

ever a finite “jump” in the energy-gap structure of the
machine, then one cannot achieve both a ground-state pop-
ulation of the target that is arbitrarily close to unity and
have N± be arbitrarily close to zero concurrently. Sup-
pose now that one has a machine with a dense energy-gap
structure from ω0 up until some (finite) ωa, followed by a
finite jump until the energy level ωa +� (for some strictly
finite � > 0), and then again a dense set of energy gaps
throughout the interval [ωa +�,∞). Then, one can utilize
the energy-gap structure in the “lower band” [ω0, ωa) in
an optimal fashion in order to cool the target system to a
minimum temperature (set by ωa) at Landauer energy cost
[41,45]. However, assuming that the jump in the energy-
gap structure begins at some finite ωa, then there is always
a finite amount of population in the machine that is sup-
ported on the energy levels corresponding to the “upper
band” [ωa +�,∞). To cool the target to arbitrarily close
to the ground state, one must therefore access this popu-
lation and transfer it to the ground-state subspace of the
target; this precisely corresponds to the N± that contributes
to the excess energy cost in a non-negligible manner
for finite population exchanges. In particular, we have
the bound N± ≥ min(e−βωa/(1 + e−βωa), 1/(1 + e−βωa)).
Thus, whenever ωa takes a finite value, N± is a strictly
positive number. The only way that the relative-entropy
term can vanish then is if θ vanishes; however, this can
occur only if � → 0, because for any finite �, the ratio
λ′n/λn for at least one value of n differs from 1 by a finite
amount as argued above, which finally leads to a nonzero
lower bound in Eq. (D51) and implies that the Landauer
limit cannot be saturated. In other words, the endpoints of
the lower and upper energy gap intervals considered above
must coincide (up to arbitrary precision) in order to satu-
rate the Landauer bound. This implies that the energy-gap
variety must diverge and moreover, since the above logic
holds for arbitrary ωα , which can be smoothly varied as a
parameter, it follows that the diverging number of energy
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gaps must additionally approximately densely cover the
interval in question.

APPENDIX E: DIVERGING TIME AND
DIVERGING CONTROL COMPLEXITY

COOLING PROTOCOLS FOR HARMONIC
OSCILLATORS

We now analyze the case of cooling infinite-dimensional
quantum systems in detail. More specifically, we con-
sider ensembles of harmonic oscillators. For the sake of
completeness, we first briefly present some key concepts
that will become relevant throughout this analysis. Fol-
lowing this, in Appendix E 2 a, we construct a protocol
that achieves perfect cooling at the Landauer limit using
a diverging number of Gaussian operations. Although
such operations are typically considered to be relatively
“simple” both when it comes to experimental implemen-
tation and theoretical description, according to the effec-
tive dimension notion of control complexity that we have
shown must necessarily diverge to cool at the Landauer
limit [see Eq. (6)], such Gaussian operations have infinite
control complexity. Subsequently, in Appendix E 2 b, we
consider the task of perfect cooling with diverging time
but restricting the individual operations to be of finite con-
trol complexity. In particular, note that such operations
are non-Gaussian in general. Here, we present a proto-
col that approaches perfect cooling of the target system
as the number of operations diverges, with finite energy
cost—albeit not at the Landauer limit. Whether or not
a similar protocol exists that also saturates the Landauer
bound remains an open question. Finally, in Appendix E 3,
we reconsider the protocol from Appendix E 2 b in terms of
a single transformation, i.e., unit time. By explicitly con-
structing the joint unitary transformation that is applied
throughout the entire protocol, we show this to be a mul-
timode Gaussian operation acting on a diverging number
of harmonic oscillators. The key message to be taken
away from these protocols is that, while the distinction
between Gaussian and non-Gaussian operations is a sig-
nificant one in terms of experimental feasibility, and it
certainly plays a role regarding the task of cooling—in
particular, the energy cost incurred—these concepts alone
cannot be used to characterize a notion of control com-
plexity that must diverge to approach perfect cooling at
the Landauer limit. On the other hand, the effective dimen-
sion of the machine used does precisely that; however, in a
manner that is far from sufficient (for the case of harmonic
oscillators), as even a single two-mode swap, which cannot
cool perfectly at Landauer cost, would have infinite con-
trol complexity. Indeed, a more nuanced characterization
of control complexity in the infinite-dimensional setting,
which takes more structure regarding the operations and
energy levels into account, remains an open problem to be
addressed.

1. Preliminaries

We consider ensembles of N harmonic oscillators
(i.e., infinite-dimensional systems consisting of N bosonic
modes), which are associated to a tensor product Hilbert
space Htot =

⊗N
j=1 Hj and (respectively, lowering, rais-

ing) mode operators {ak , a†
k} satisfying the bosonic

commutation relations:

[ak, a†
k′] = δkk′ , [ak, ak′] = 0, ∀ k, k′ = 1, 2, . . . , N .

(E1)

The free Hamiltonian of any such system can be written
as Htot =

∑N
k=1 ωka†

kak, where ωk represents the energy
gap of the kth mode (in units where � = 1). Position- and
momentumlike operators for each mode can be defined as
follows (for simplicity, we use the rescaled version below
where the ωk are omitted from the prefactors)

qk := 1√
2
(ak + a†

k), pk := 1

i
√

2
(ak − a†

k). (E2)

As a consequence of the commutation relations in Eq. (E1),
the generalized position and momentum operators satisfy
the canonical commutation relations

[qk, pl] = iδkl. (E3)

To simplify notation, one may further introduce the vector
of quadrature operators X := (q1, p1, . . . , qN , pN ); then,
the commutation relations can be expressed succinctly as

[Xk, Xl] = i�kl, (E4)

where the �kl are the components of the symplectic form

� =
N⊕

j=1

�j , �j =
[

0 1
−1 0

]
. (E5)

The density operator associated to N harmonic oscillators
can be written in the so-called phase-space representation
as

� = 1
(2π)N

∫
χ(�ξ)W(−�ξ) d2N ξ , (E6)

where W(ξ) := eiξTX is the Weyl operator and χ(ξ) :=
tr [�W(ξ)] is called the characteristic function.

Throughout our analysis, we see that a particular class
of states and operations, namely those that are known as
Gaussian, are of particular importance. A Gaussian state is
one for which the characteristic function is Gaussian

χ(ξ) = e−
1
4 ξT�ξ+iXT

ξ . (E7)

Here, X := 〈X〉� is the displacement vector or vector of
first moments, and � is a real symmetric matrix that col-
lects the second statistical moments of the quadratures,

010332-36



LANDAUER VERSUS NERNST. . . PRX QUANTUM 4, 010332 (2023)

which is known as the covariance matrix. Its entries are
given by

�mn := 〈XmXn +XnXm〉� − 2 〈Xn〉� 〈Xm〉� . (E8)

We see that any Gaussian state is thus uniquely deter-
mined by its first and second moments. As an example
of specific interest here, we recall that any thermal state
τ of a harmonic oscillator with frequency ω is a Gaus-
sian state and has vanishing first moments, X = 0. Here
and throughout this article, we are assuming that the
infinite-dimensional thermal state is well defined (see, e.g.,
Ref. [61] for discussion). The covariance matrix of a ther-
mal state is proportional to the 2 × 2 identity, and given by
�[τ(β, H)] = coth (βω/2)12.

Gaussian operations are transformations that map the
set of Gaussian states onto itself. Such operations, which
include, e.g., beam-splitting and phase-space displace-
ment, are generally considered to be relatively easily
implementable in the laboratory. Although nonunitary
Gaussian operations exist as well, all of the examples
mentioned above are Gaussian unitaries. Such Gaussian
unitaries are generated by Hamiltonians that are at most
quadratic in the raising and lowering operators. Con-
versely, any Hamiltonian that can be expressed as a
polynomial of at most second order in the mode opera-
tors generates a Gaussian unitary. Any unitary Gaussian
transformation can be represented by an affine map (M , κ),

X �→ MX+ κ , (E9)

where κ ∈ R2N is a displacement vector in the phase-space
representation and M is a symplectic 2N × 2N matrix that
leaves the symplectic form � invariant, i.e.,

M � M T = �. (E10)

Under such a mapping, the first and second moments
transform according to

X �→ MX+ κ , � �→ M�M T. (E11)

Lastly, note that the energy of a Gaussian state �G with
respect to its free Hamiltonian H =∑k ωka†

kak can be cal-
culated in terms of the first and second moments as follows
[22]:

E(�G) =
∑

k

ωk

(
1
4

tr
[
�(k) − 2

] + 1
2
||X(k)||2

)
, (E12)

where ‖ · ‖ denotes the Euclidean norm. Here, �(k) indi-
cates the 2 × 2 submatrix of the full covariance matrix �

corresponding to the reduced state of the kth mode. Sim-
ilarly X

(k)
denotes the two-component subvector of first

moments for the kth mode of the displacement vector X.

2. Diverging-time cooling protocol for harmonic
oscillators

a. Diverging-time protocol using Gaussian operations
(with diverging control complexity)

We now consider a simple protocol for lowering the
temperature of a single-mode system within the coherent-
control paradigm using a single harmonic oscillator
machine. This protocol will form the basic step of a pro-
tocol for achieving perfect cooling at the Landauer limit
using diverging time, which we subsequently present.

In the situation we consider here, the target system S to
be cooled is a harmonic oscillator with frequency ωS inter-
acting with a harmonic oscillator machine M at frequency
ωM ≥ ωS via a (non-energy-conserving) unitary acting on
the joint system SM initialized as a tensor product of ther-
mal states τS(β, HS)⊗ τM(β, HM) at inverse temperature
β with respect to their local Hamiltonians HS and HM,
respectively. The joint covariance matrix of the system and
machine modes is block diagonal since the initial state is
of product form, i.e.,

�[τS(β, HS)⊗ τM(β, HM)]

= �[τS(β, HS)] ⊕ �[τM(β, HM)], (E13)

and the 2 × 2 blocks of the individual modes are also
diagonal, with the explicit expression �[τX (β, HX )] =
coth (βωX/2)12.

In this setting, it has been shown that the minimum
reachable temperature of the target system is given by
Tmin = ωS/ωM T (for the case ωM ≥ ωS) [41]. The non-
energy-conserving unitary transformation that achieves
this is of the form

U = e−i π
2 (a†b+ ab†), (E14)

where the operators a (a†) and b (b†) denote the annihila-
tion (creation) operators of the target system and machine,
respectively. This beam-splitter-like unitary acts as a SWAP
with a relative phase factor imparted on the resultant state;
nonetheless, this phase is irrelevant at the level of the
covariance matrix, which fully characterizes the (Gaus-
sian) thermal states considered, and transforms it accord-
ing to a standard swapping of the systems. After acting
with such a SWAP operator, which is a Gaussian operation,
the first moment remains vanishing and the covariance
matrix transforms as [see Eq. (E11)]
⎡

⎣
coth

(
βωS

2

)
12 0

0 coth
(

βωM
2

)
12

⎤

⎦

SWAP�−→
⎡

⎣
coth

(
βωM

2

)
12 0

0 coth
(

βωS
2

)
12

⎤

⎦ . (E15)

010332-37



PHILIP TARANTO et al. PRX QUANTUM 4, 010332 (2023)

This means that both the output target system and machine
are thermal states at different temperatures T′S = ωS/ωM T
and T′M = ωM/ωS T. Making use of Eq. (E12), we can
calculate the energy change for the system and machine
as

�ES = E
[
τS

(
ωM

ωS
β, HS

)]
− E

[
τS(β, HS)

]

= ωS

2

[
coth

(
βωM

2

)
− coth

(
βωS

2

)]
,

�EM = E
[
τM

(
ωS

ωM
β, HM

)]
− E

[
τM(β, HM)

]

= ωM

2

[
coth

(
βωS

2

)
− coth

(
βωM

2

)]
. (E16)

The total energy cost associated to this SWAP operation is
thus

�ESM = �ES +�EM

= (ωM − ωS)

2

[
coth

(
βωS

2

)
− coth

(
βωM

2

)]

= (ωM − ωS)
e−βωS (1 − e−β(ωM−ωS ))

(1 − e−βωS )(1 − e−βωM)
. (E17)

Note that this form is similar to that for finite-dimensional
systems with equally spaced Hamiltonian [cf., Eq. (C19)];
the dimension-dependent term vanishes as d →∞, sim-
plifying the expression in the infinite-dimensional case.

With this simple protocol for lowering the temperature
of a harmonic oscillator target using a single harmonic
oscillator machine at hand, we are now in a position to
describe an energy-optimal (in the sense of saturating
the Landauer bound) cooling protocol when a diverging

number of operations, i.e., diverging time, is permitted.
In other words, we now show how to achieve perfect
cooling with minimal energy at the expense of requiring
diverging time, i.e., infinitely many steps of finite dura-
tion. As mentioned above, in this specific protocol, the
control complexity as per Eq. (6) is infinite in each of these
infinitely many steps. As we argue after having presented
the protocol, this is an artefact of the simple structure of
the Gaussian operations used. Indeed, we later present a
non-Gaussian diverging-time protocol for cooling a single
harmonic oscillator to the ground state using finite control
complexity in each of the infinitely many steps, and at an
overall finite (albeit not minimal, i.e., not at the Landauer
limit) energy cost. Before presenting this non-Gaussian
protocol, let us now discuss the details of the Gaussian
diverging-time protocol for cooling at the Landauer limit.

We consider a harmonic oscillator with the frequency
ωS as the target system and the machine to comprise N har-
monic oscillators, where the nth oscillator has frequency
ωMn = ωS + n ε. In addition, we assume that all modes
are initially uncorrelated and in thermal states at the same
inverse temperature β with respect to their free Hamiltoni-
ans, i.e., the target system is τS(β, HS) and the multimode
thermal machine is τM(β, HM) =⊗N

n=1 τMn(β, HMn).
In this case, the cooling process is divided into N time

steps. During each step, there is an interaction between the
target system and one of the harmonic oscillators in the
machine. Here, we assume that at the nth time step, the
target system interacts only with the nth harmonic oscilla-
tor, which has frequency ωS + n ε. To obtain the minimum
temperature for the target system, we perform the pre-
viously outlined cooling process at each step, which is
given by swapping the corresponding two modes. Using
Eq. (E15), the covariance matrix transformation of the
two-mode process at the first time step takes the form

�(1)(τS(β)⊗ τM1
(β)) =

⎡

⎣
coth

(
βωS

2

)
12 0

0 coth
(

β(ωS+ε)

2

)
12

⎤

⎦ SWAP�−→ �
(1)
opt =

⎡

⎣
coth

(
β(ωS+ε)

2

)
12 0

0 coth
(

βωS
2

)
12

⎤

⎦ .

(E18)

By repeating this process on each of the harmonic oscillators in the machine, after the (n − 1)th step, the 2 × 2 block
corresponding to the target system S in the covariance matrix is given by coth ((β(ωS + (n − 1)ε))/2)12. Therefore,
one can show inductively that the covariance matrix transformation associated to the nth interaction is given by

�(n)(τS(β)⊗ τMn
(β)) =

⎡

⎣
coth

(
β(ωS+(n−1)ε)

2

)
12 0

0 coth
(

β(ωS+nε)

2

)
12

⎤

⎦

SWAP�−→ �
(n)
opt =

⎡

⎣
coth

(
β(ωS+nε)

2

)
12 0

0 coth
(

β(ωS+(n−1)ε)

2

)
12

⎤

⎦ .

(E19)
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Based on this process, after N steps (i.e., after the system has interacted with all N harmonic oscillators), the minimal
achievable temperature of the target system is T(N )

min = ωS/(ωS + Nε)T. Moreover, by using Eq. (E16), one can calculate
the energy changes of the target system and the machine at each time step as

�E(n)
S = ωS

2

[
coth

(
β(ωS + nε)

2

)
− coth

(
β(ωS + (n − 1)ε)

2

)]
,

�E(n)
Mn

= (ωS + nε)

2

[
coth

(
β(ωS + (n − 1)ε)

2

)
− coth

(
β(ωS + nε)

2

)]
.

(E20)

The total energy change for the target system during the overall process (i.e., throughout the N steps) is thus given by

�ES =
N∑

n=1

�E(n)
S =

N∑

n=1

ωS

2

[
coth

(
β(ωS + nε)

2

)
− coth

(
β(ωS + (n − 1)ε)

2

)]

= ωS

2

[
coth

(
β(ωS + Nε)

2

)
− coth

(
βωS

2

)]
= ωS

[
e−β(ωS+Nε)

1 − e−β(ωS+Nε)
− e−βωS

1 − e−βωS

]
. (E21)

Here, we write coth (x) = 1 + (2e−2x)/(1 − e−2x). Similarly, one can obtain the total energy change of the overall machine

�EM =
N∑

n=1

�E(n)
Mn

=
N∑

n=1

ωS + nε

2

[
coth

(
β(ωS + (n − 1)ε)

2

)
− coth

(
β(ωS + nε)

2

)]

=
N∑

n=1

(ωS + nε)

[
e−β(ωS+(n−1)ε)

1 − e−β(ωS+(n−1)ε)
− e−β(ωS+nε)

1 − e−β(ωS+nε)

]
. (E22)

It is straightforward to check that the total energy change,
i.e., the sum of Eqs. (E21) and (E22), is equal to the energy
cost obtained in Eq. (C19) with d →∞. In particular, this
can be seen by considering the second line of Eq. (C19),
where the second term in round parenthesis vanishes as
d →∞ for any value of N . Thus, when the number of
operations diverges N →∞ and ε = (ωmax − ωS)/N →
0, where ωmax := βmax/(β)ωS is the maximum frequency
of the machines, the heat dissipated by the machines
throughout the process saturates the Landauer bound and
is therefore energetically optimal. Moreover, by taking
ωmax →∞ one approaches perfect cooling.

At this point, a comment on the notion of control com-
plexity is in order. According to Eq. (6), the effective
dimension of the machine in the protocol we consider here
diverges in addition to time. Indeed, the notion of control
complexity thusly defined diverges for any Gaussian oper-
ation acting on the machine, in particular, it diverges for
any single one of the infinitely many steps of the protocol,
as each operation is a two-mode Gaussian operation. At
first glance, this appears to be in contrast to the common
conception that Gaussian operations are typically easily
implementable (cf. Refs. [22,40]). However, an alternative
way of interpreting this protocol is that, exactly because
of the simple structure of Gaussian operations, reaching
the ground state at finite energy cost requires a diverging

number of two-mode Gaussian unitaries, and thus diverg-
ingly many modes on which to act (see also Appendix E 3).
In fact, if non-Gaussian unitaries are employed, then the
ground state can be approached at finite energy cost using
just a single harmonic oscillator machine, as we now show.

b. Diverging-time protocol using non-Gaussian
operations (with finite control complexity)

We now consider a protocol for cooling a single har-
monic oscillator at frequency ωS to the ground state using a
diverging amount of time, but requiring only a finite over-
all energy input as well as finite control complexity in each
of the diverging number of steps of the protocol. In this
protocol, the machine M is also represented by a single
harmonic oscillator whose frequency matches that of the
target oscillator that is to be cooled, ωM = ωS =: ω. The
initial states of both the target system S and machine M
are assumed to be thermal at the same inverse temperature
β, and are hence both described by thermal states of the
form

τ(β) = e−βH

tr
[
e−βH

] =
∞∑

n=0

e−βωn(1 − e−βω) |n〉〈n|

=
∞∑

n=0

pn |n〉〈n|SM, (E23)
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where the Hamiltonian H is given by H =∑∞
n=0 nω |n〉〈n|

and the pn = e−βωn(1 − e−βω) are the eigenvalues of τ .
The joint initial state is a product state that we can then
write as

τS(β)⊗ τM(β) =
∞∑

m,n=0

pmpn |m〉〈m|S ⊗ |n〉〈n|M

=
∞∑

m,n=0

p̃m+n |m, n〉〈m, n|, (E24)

where we define p̃k := e−βωk(1 − e−βω)2. We then note
that the eigenvalues p̃k of the joint initial state have degen-
eracy k + 1. For instance, the largest value p̃0 = p0p0,
corresponding to both the system and machine being in
the ground state, is the single largest eigenvalue, but
there are two eigenstates, |0, 1〉 and |1, 0〉, corresponding
to the second largest eigenvalue p̃1, three states, |0, 2〉,
|1, 1〉, and |2, 0〉 for the third largest eigenvalue p̃2, and so
forth. Obviously, not all of these eigenvalues correspond
to eigenstates for which the target system is in the ground
state.

In order to increase the ground-state population of the
target system oscillator, we can now apply a sequence of
“two-level” unitaries, i.e., unitaries that act only on a sub-
space spanned by two particular eigenstates and exchange
their respective populations. The two-dimensional sub-
spaces are chosen such that one of the two eigenstates
corresponds to the system S being in the ground state,
|0, k〉, while the other eigenstate corresponds to S being in
an excited state, |i �= 0, j 〉. In addition, these pairs of levels
are selected such that, at the time the unitary operation is to
be performed, the population of |0, k〉 is smaller than that
of |i �= 0, j 〉, such that the two-level exchange increases the
ground-state population of S at each step.

More specifically, at the kth step of this sequence, the
joint system SM is in the state � (k)

SM and one deter-
mines the set �k of index pairs (i �= 0, j ) such that p̃k <

〈i, j |� (k)
SM|i, j 〉, i.e., the set of eigenstates for which S is

not in the ground state and which have a larger associ-
ated population (at the beginning of the kth step) than
|0, k〉. One then determines an index pair (mk, nk) for which
this population is maximal, i.e., 〈mk, nk|� (k)

SM|mk, nk〉 =
max{〈i, j |� (k)

SM|i, j 〉|(i, j ) ∈ �k}, and performs the unitary

U(k)
SM = 1SM − |0, k〉〈0, k| − |mk, nk〉〈mk, nk|

+
(
|0, k〉〈mk, nk| + |mk, nk〉〈0, k|

)
. (E25)

If there is no larger population that is not already in the sub-
space of the ground state of the target system, i.e., when
�k = ∅, which is only the case for the first step (k = 1),
then no unitary is performed. After the kth step, the joint
state � (k+1)

SM is still diagonal in the energy eigenbasis, and the

subspace of the joint Hilbert spaces for which S is in the
ground state is populated with the k + 1 largest eigenval-
ues p̃i in nonincreasing order with respect to nondecreasing
energy eigenvalues of the subspace’s basis vectors |0, i〉.
That is, for all i ∈ {0, 1, 2, . . . , k} and for all j ∈ N with
j > i, we have 〈0, i|� (k+1)

SM |0, i〉 ≥ 〈0, j |� (k+1)
SM |0, j 〉.

Since the Hilbert spaces of both S and M are infi-
nite dimensional, we can continue with such a sequence
of two-level exchanges indefinitely, starting with k = 1
and continuing step by step as k →∞. Here we note that
the choice of (mk, nk) is generally not unique at the kth
step, but as k →∞, the resulting final state is indepen-
dent of the particular choices of (mk, nk) made along the
way. In particular, in a fashion that is reminiscent of the
famed Hilbert hotel paradox (see, e.g., Ref. [62, p. 17]),
this sequence places all of the infinitely many eigenvalues
p̃k of the joint state of SM (which must hence sum to one)
into the subspace where S is in the ground state. In other
words, in the limit of infinitely many steps, the population
of the ground-state subspace evaluates to

∞∑

k=0

(k + 1)p̃k =
∞∑

k=0

(k + 1) e−βωk (1 − e−βω)2 = 1,

(E26)

where we take into account the (k + 1)-fold degeneracy
of the kth eigenvalue p̃k. We thus have limk→∞ trM

[
� (k)
SM
]

= |0〉〈0|S , the reduced state of the system is asymptotically
the pure state |0〉S .

As per our requirement on the structural complexity (see
Appendix D), the Hilbert space of the machine required
to achieve this is infinite-dimensional, and since each step
of the protocol is assumed to take a finite amount of time,
the overall time for reaching the ground state diverges. At
the same time, the control complexity for each individual
step is finite, since each Uk acts nontrivially only on a two-
dimensional subspace. To see that also the energy cost for
this protocol is finite, we first note that the protocol results
in a final state of the machine that is diagonal in the energy
eigenbasis |n〉M, with probability weights p̃k decreasing
(but not strictly) with increasing energy. Due to the degen-
eracy of the eigenvalues p̃k, each one appears (k + 1) times
on the diagonal (with respect to the energy eigenbasis)
of the resulting machine state, populating adjacent energy
levels. The label n(k) of the lowest energy level that is
populated by a particular value p̃k can be calculated as

ñ(k) :=
k−1∑

n=0

(n + 1) = 1
2 k(k + 1), (E27)

while the largest energy populated by p̃k is given by ñ(k +
1)− 1. With this, we calculate the energy of the machine
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after the protocol, which evaluates to

Efinal
M
ω

=
∞∑

k=1

e−βωk (1 − e−βω)2
ñ(k+1)−1∑

n=ñ(k)

n

=
∞∑

k=1

e−βωk (1 − e−βω)2 1
2 k(k + 1)(k + 2)

= 3
4 cosech2(βω

2

)
. (E28)

Since the energy of the initial thermal state is given by

E [τ(β)]
ω

=
∞∑

n=0

n e−βωn (1 − e−βω) = e−βω

1 − e−βω
, (E29)

we thus arrive at the energy cost

�EM
ω

= Efinal
M − E [τ(β)]

ω
= e−βω(2 + e−βω)

(1 − e−βω)2 . (E30)

We thus see that this energy cost is finite for all finite initial
temperatures (although note that the energy cost diverges
when β → 0).

However, as we show next, the energy cost for attaining
the ground state is not minimal, i.e., the protocol achieves
perfect cooling (with finite energy and control complex-
ity, but infinite time) but not at the Landauer limit. To
see this, we first observe that the entropy of the final pure
state of the system S vanishes, such that �̃SS = S [τ(β)].
Evaluating this entropy, one obtains

S [τ(β)] = −tr [τ log(τ )]

= −
∞∑

n=0

e−βωn(1 − e−βω) log
[
e−βωn(1 − e−βω)

]

= −
∞∑

n=0

e−βωn(1 − e−βω)

× [−βωn + log(1 − e−βω)
]

= βωe−βω

1 − e−βω
+ βω + log

( e−βω

1 − e−βω

)

= βω

1 − e−βω
+ log

( e−βω

1 − e−βω

)
. (E31)

Using the results from Eqs. (E30) and (E31), we can thus
compare the expressions for β�EM and �̃SS , and we
find that β�EM − �̃SS > 0 for all nonzero initial tem-
peratures. The origin of this difference is easily identified:
although the protocol results in an uncorrelated final state
because the system is left in a pure state, that is, I(S :
M)�′SM = 0, the last term D(�′M‖τM) in Eq. (3) is non-
vanishing for nonzero temperatures because the protocol
does not result in a thermal state of the machine.

With this, we thus show that perfect cooling is indeed
possible using a finite energy cost and a finite control com-
plexity in every one of infinitely many steps (thus using
diverging time). As we have seen, the structural require-
ment of an infinite-dimensional effective machine Hilbert
space can be met by realizing M as a single harmonic
oscillator. Although the presented protocol does not min-
imize the energy cost to saturate the Landauer bound, we
cannot at this point conclusively say that it is not possi-
ble to do so in this setting. However, we suspect that a
more complicated energy-level structure of the machine is
necessary.

Finally, let us comment again on the notion of control
complexity in terms of effective machine dimension as
opposed to the notion of complexity that is often (loosely)
associated with the distinction between Gaussian and non-
Gaussian operations. As we see from the protocols pre-
sented here, the concept of control complexity based on
the nontrivially accessed Hilbert-space dimension of the
machine indeed captures the resource that must diverge in
order to reach the ground state, while the intuition of com-
plexity associated with (non)-Gaussian operations, albeit
valid as a characterization of a certain practical difficulty
in realizing such operations, seems to be irrelevant for
determining if the ground state can be reached. In the pro-
tocol presented in this section, non-Gaussian operations
with finite control complexity are used in each step to
reach the ground state. Infinitely many steps (i.e., diverging
time) could then be traded for a single (also non-Gaussian)
operation of infinite control complexity, performed in unit
time. In the previous protocol based on Gaussian opera-
tions (Appendix E 2 a), the control complexity diverges in
every single step of the cooling protocol, but only when
there are infinitely many such steps (diverging time) or
one operation in unit time on infinitely many modes (see
below), can we reach the ground state. However, in the
latter case, the operation, although acting on a diverging
number of harmonic oscillators, remains Gaussian, as we
now show explicitly.

3. Diverging control complexity cooling protocol for
harmonic oscillators

Here we give a protocol for perfectly cooling a harmonic
oscillator in unit time and with the minimum energy cost,
but with diverging control complexity. In accordance with
Theorem 3, the machines used to cool the target system
will likewise be harmonic oscillators. Let the operators
a (a†) and bk (b†

k), respectively, denote the annihilation
(creation) operators of the target system and a machine
subsystem labeled k. We then consider the the unitary
transformation in Eq. (E14), namely

Uk := ei π
2 (a†bk+ab†

k ). (E32)

010332-41



PHILIP TARANTO et al. PRX QUANTUM 4, 010332 (2023)

One can then apply the diverging-time cooling protocol
from Appendix E 2 a to cool the system to the ground state
at the Landauer limit via the total unitary transformation

Utot := lim
N→∞

U(N ), with U(N ) :=
N∏

k=1

Uk.

(E33)

We now seek the Hamiltonian that generates Utot. First
note that U(N )aU†

(N ) = ib1 and

U(N )bkU†
(N ) =

⎧
⎪⎨

⎪⎩

−bk+1, for k < N
ia, for k = N
bk, for k > N

, (E34)

which can be proven by induction. In contrast with
Appendix E 2 a, here we use the complex repre-
sentation of the symplectic group to describe the
transformation, i.e., the set of matrices S satisfy-
ing SKS† = K , where K := 1N ⊕ (−1N ). Gathering
the raising and lowering operators of the target sys-
tem and the first N machines into the vector �ξ :=(
a b1 b2 . . . bN a† b†

1 b†
2 . . . b†

N

)T, we can
write the transformation above as U(N )

�ξ U†
(N ) = ST�ξ [63],

where

S =
(

α(N ) 0
0 α(N )

)
, with

α(N ) :=

⎛

⎜⎜⎜⎜⎜
⎜
⎝

0 0 0 . . . 0 i
i 0 0 . . . 0 0
0 −1 0 . . . 0 0
0 0 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −1 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (E35)

Now, defining the matrix of Hamiltonian coefficients
h(N ) implicitly by U(N ) =: exp(−i�ξ † · h(N ) · �ξ), we have
that S = exp(−iKh(N )) [63], i.e., h(N ) = iK log(ST) =
iK log(S)T, where we take the principal logarithm. To
calculate this, we must diagonalize the matrix α(N ) in
Eq. (E35). The eigenvalues of α(N ) are

λk := −e−iπ 2k−1
N+1 , with k ∈ {1, 2, . . . , N + 1}, (E36)

i.e., the negative of the (N + 1)th roots of −1, and it is
diagonalized by the unitary matrix V constructed from the

eigenvectors �vk:

V := (�v1 �v2 �v3 . . . �vN+1
)

with

�vk := −1√
N + 1

⎛

⎜⎜⎜⎜⎜
⎝

i(−λk)
−1

(−λk)
−2

(−λk)
−3

...
(−λk)

−(N+1)

⎞

⎟⎟⎟⎟⎟
⎠

. (E37)

Specifically, α(N ) = VDV†, where D := diag(λ1, λ2, . . . ,
λN+1), and thus

hT
(N ) = iK log

(
VDV† 0

0 VDV†

)

= iK
(

V 0
0 W

)(
log(D) 0

0 log(D)

)(
V† 0
0 V†

)

=:
(

A 0
0 −A

)
(E38)

for some matrix A. By direct calculation, one finds that

Ajk = iδj 1 iδk1
π

(N + 1)2

N+1∑

p=1

(2p − 2 − N )e−iπ 2p−1
N+1 (j−k).

(E39)

Now, considering the identity

N+1∑

p=1

eiθp = eiθ(N+1) − 1
1 − eiθ (E40)

for θ ∈ R, as well as its derivative with respect to θ , one
can calculate the sum in Eq. (E39). We then have

lim
N→∞

Ajk =
{

0, for j = k
iiδj 1 iδk1 1

j−k , for j �= k
. (E41)

Then, finally, we have that Utot = e−iHtot , where Htot =
limN→∞

(�v † · h(N ) · �v
)
, i.e.,

Htot = −
∞∑

j=2

(
1

j − 1
b†

j a + H.c.
)
+

∞∑

j ,k=1; j �=k

i
j − k

b†
j bk.

(E42)

Thus, the system is cooled to the ground state at an energy
cost saturating the Landauer bound, and in unit time, but
via a procedure that implements a multimode Gaussian
unitary on a diverging number of modes.
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APPENDIX F: COOLING PROTOCOLS IN THE
INCOHERENT-CONTROL PARADIGM

In this section, we investigate the required resources
to cool the target system within the incoherent-control
paradigm. For simplicity, we consider only the finite-
dimensional setting. Here, we have a qudit target system S
interacting resonantly (i.e., in an energy-conserving man-
ner) with a qudit machine M, which is partitioned into one
part, C, in thermal contact with the ambient environment at
inverse temperature β and another part, H, in contact with
a hot bath at inverse temperature βH < β. The Hamiltoni-
ans for each subsystem are HX =∑dX −1

n=0 n ωX |n〉〈n|X ; the
energy resonance condition enforces that ωH = ωC − ωS .
For the most part in this section, we focus on equally
spaced Hamiltonians for simplicity; we comment specif-
ically whenever we consider otherwise.

In order to cool the target system, we aim to compress
as much population as possible into the its lowest energy
eigenstates via interactions that are restricted to the energy-
degenerate subspaces of the joint SCH system. Thus we
are restricted to global energy-conserving unitaries UEC

that satisfy

[HS + HC + HH, UEC] = 0. (F1)

In Ref. [41], it was shown that for the case where all three
subsystems are qubits, the optimal global unitary in this
setting (inasmuch as they render the target system in the
coldest state possible given the restrictions) is

UEC = |0, 1, 0〉〈1, 0, 1|SCH + |1, 0, 1〉〈0, 1, 0|SCH + 1̄,
(F2)

where 1̄ denotes the identity matrix on all subspaces that
are not energy degenerate. Considering the generalization
to qudit subsystems, it is straightforward to see that, for
equally spaced Hamiltonians, the optimal global unitaries
must be of the form

UEC =
[ d−2∑

m,n,l=0

|m, n + 1, l〉〈m + 1, n, l + 1|SCH

+ |m + 1, n, l + 1〉〈m, n + 1, l|SCH

]
+ 1̄. (F3)

For the most general case where the Hamiltonians of each
subsystem are arbitrary, it is not possible to write down
a generic form of the optimal unitary, since the energy-
resonant transitions that lead to cooling the target now
depend on the microscopic details of the energetic struc-
ture. Nonetheless, in Appendix G, we provide a protocol
(i.e., not the unitary per se, but a sequence of steps) in
this setting that attains perfect cooling and saturates the
Carnot-Landauer limit.

Intuitively, the above types of unitaries simply reshuffle
populations that are accessible through resonant transi-
tions. For the purpose of cooling, one wishes to do this
in such a way that the largest population is placed in the
lowest energy eigenstate of the target system, the sec-
ond largest in the second lowest energy eigenstate, and
so on (in line with the optimal unitaries in the coherent-
control setting); indeed, on the energy-degenerate sub-
spaces accessible, such unitaries act precisely in this way.
It is straightforward to show that interactions of this form
satisfy Eq. (F1).

For the sake of simplicity, we now focus on the case
where all systems are qubits, although the results gen-
eralize to the qudit setting. Consider the initial joint
state �SCH =∑1

m,n,l=0 pmnl|m, n, l〉〈m, n, l|SCH. By apply-
ing a unitary UEC of the form given in Eq. (F3), the
post-transformation joint state is

�′SCH = UEC�SCHU†
EC

= �SCH +�p |0, 1, 0〉〈0, 1, 0|SCH

−�p |1, 0, 1〉〈1, 0, 1|SCH, (F4)

where �p := p101 − p010 indicates the amount of popula-
tion that has been transferred from the excited state of the
target system to the ground state throughout the interac-
tion. Naturally, in order to cool the target system, �p ≥ 0,
i.e., the initial population p101 must be at least as large
as p010.

Due to the energy-conserving nature of the global
interaction, the energy exchanged between the sub-
systems throughout a single such interaction, �EX =
tr
[
HX (�′X − �X )

]
, can be calculated via

�ES = −ωS�p , �EC = ωC�p , �EH = −ωH�p .
(F5)

Thus, for a fixed energy-level structure of all subsys-
tems (i.e., given the local Hamiltonians), one requires only
knowledge of the pre- and post-transformation state of any
one of the subsystems to calculate the energy change for
all of them.

1. Diverging energy: Proof of Theorem 6

The first thing to note is that in the incoherent-control
paradigm, even when one allows for the energy cost, i.e.,
the heat drawn from the hot bath, to be diverging, it is not
possible to perfectly cool the target system, as presented in
Theorem 6. The intuition behind this result is that the target
system can interact only with energy-degenerate subspaces
of the hot and cold machine subsystems. The optimal trans-
formation that one can do here to achieve cooling is to
transfer the highest populations of any such subspace to
the lowest energy eigenstate of the target system; however,
any such subspace has population strictly less than one for
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any 0 ≤ βH ≤ β < ∞ independently of the energy struc-
ture. Moreover, the difference from one can be bounded
by a finite amount that does not vanish independent of the
energy-level structure of any machine of finite dimension.
This makes it impossible to attain a subspace population
of one even as the energy cost diverges for any fixed and
finite control complexity. It follows that the ground-state
population of the target system can never reach unity in
a single operation of finite control complexity and hence
perfect cooling cannot be achieved.

Precisely, we show the following. Let S be a finite-
dimensional system of dimension dS with associated
Hamiltonian with finite but otherwise arbitrary energy
gaps HS =

∑dS−1
i=0 ωi

S |i〉〈i|S , and let dC and dH be inte-
gers denoting the dimensions of the cold and hot parts of
the machine respectively. Then it is impossible to cool the
system S in the incoherent-control paradigm, i.e., using
energy-conserving unitaries involving C and H at some
initial inverse temperatures β, βH respectively, arbitrarily
close to the ground state. Note that, in particular, this result
holds irrespective of the energy-level structure of C and H
and no matter how much energy is drawn from the hot bath
as a resource.

In order to set notation for the following, we assume
ωi

X ≥ ω
j
X for i ≥ j and ω0

X = 0, where ωi
X denotes the ith

energy eigenvalue of system X with X ∈ {S , C,H}. We
also assume the initial states on S and C to be thermal at
inverse temperature β, and H is assumed to be initially in
a thermal state at inverse temperature βH ≤ β. We denote
by pi

X the ith population of system X in a given state, i.e.,
pi
X = 〈i|�X |i〉, where |i〉 denotes the ith energy eigenstate

of �X . We also write pijk := pi
Spj

Cpk
H.

The intuition behind the proof is as follows. The global
ground-state level of the joint hot-and-cold machine has
some nonzero initial population for any finite-dimensional
machine; in particular, it can always be lower bounded by
1/(dCdH) for any Hamiltonians and initial temperatures,
which is strictly greater than zero as long as the dimen-
sions remain finite. Fixing the control complexity of any
protocol considered here to be finite in value thus implies
a lower bound on the initial ground-state population of the
total machine that is larger than zero by a finite amount.
Depending on the energy-level structure of the hot and
cold parts of the machine, there may be other nonzero ini-
tial populations, but in order to cool the target system S
perfectly, at least all of the previously mentioned popula-
tions must be transferred into spaces spanned by energy
eigenstates of the form |0jk〉SCH. This intuition is formal-
ized via Lemma 2, where we show that independent of
the energy structure of C and H, one must be able to
make such transfers of population in order to perfectly
cool S . However, in order to make such transfers in an
energy-conserving manner, all energy eigenstates of the
form |i00〉SCH must be degenerate with some of the form

|0jk〉SCH. This degeneracy condition, in turn, also implies
that every energy eigenstate of the form |0jk〉SCH has an
associated initial population p0jk that is nonvanishing for
all machines of finite dimension (i.e., for all protocols with
finite control complexity). Thus, upon transferring some
population pi00 into the subspace spanned by |0jk〉SCH,
i.e., one of a relevant form for the population to con-
tribute to the final ground-state population of the target,
one inevitably transfers some finite amount of population
away from the relevant space and into |i00〉SCH, which
does not contribute to the final ground-state population of
the target. We formalize this intuition in the discussion fol-
lowing Lemma 2. In this way, no matter what one does,
there is always a finite amount of population, which is
lower bounded by some strictly positive number due to the
constraint on control complexity, that does not contribute
to the final ground-state population of the target, implying
that perfect cooling is not possible.

The formal proof occurs in two steps. We first show that
some specific degeneracies in the joint SCH system must
be present in order to be able to even potentially cool S
arbitrarily close to the ground state. We then prove that,
given the above degeneracies, one cannot cool the system
S beyond a fixed ground-state population that is indepen-
dent of the energy structure of C and H; in particular, one
can draw as much energy from the hot bath as they like and
still do no better. We begin with the following lemma.

Lemma 2. Given S , dC , and dH as above, one can reach
a final ground-state population of the system S arbitrarily
close to one in the incoherent-control setting only if each
|i00〉SCH, where i ∈ {1, . . . , dS − 1}, energy eigenstate is
degenerate with at least one |0jk〉SCH energy eigenstate,
where j ∈ {0, . . . dC − 1}, k ∈ {0, . . . dH − 1}.

Proof. Suppose that there exists an i∗ ∈ {1, . . . , dS − 1}
such that |i∗00〉SCH is not degenerate with any |0jk〉SCH,
where j ∈ {0, . . . dC − 1}, k ∈ {0, . . . dH − 1}. We show
that, then, one cannot cool S arbitrarily close to zero.

Let Bi denote the degenerate subspace of the total
Hamiltonian HS + HC + HH, where HX denotes the
Hamiltonian of system X ∈ {S , C,H}, that contains the
eigenvector |i00〉SCH. Then, any energy-conserving uni-
tary UEC used to cool the system in the incoherent-control
paradigm must act within such Bi subspaces, i.e., UEC =⊕

i UBi (this is a direct consequence of [UEC, HS + HC +
HH] = 0, see, e.g., Lemma 5 of Ref. [64]). This means, in
particular, that the initial population of |i∗00〉SCH can only
be distributed within Bi∗ , and as no eigenvector of the form
|0jk〉SCH is contained in Bi∗ by assumption, it can never
contribute to the final ground-state population of S , which
we denote p̃0

S . So we have

p̃0
S ≤ 1 − pi∗00. (F6)

010332-44



LANDAUER VERSUS NERNST. . . PRX QUANTUM 4, 010332 (2023)

Now, as for X ∈ {C,H}, with any {ωi
X } such that each

ωi
X ≥ 0 with ω0

X = 0 and any inverse temperature β ≥ 0,
we have for the partition function ZS that

ZX = 1 + e−βω1
X + · · · + e−βω

dX −1
X ≤ dX , (F7)

and so we have the following bound on the initial popula-
tions associated to each eigenvector: |i00〉SCH

pi00 = e−βωi
S

ZSZCZH
≥ e−βωi

S

ZSdCdH
> 0

∀i ∈ {1, . . . , dS − 1}. (F8)

Combining the above, we have that

p̃0
S ≤ 1 − e−βωi∗

S

ZSdCdH
< 1. (F9)

So as desired, we show that one cannot cool beyond
1 − (e−βωi∗

S )/(ZSdCdH), a bound strictly smaller than 1
for any finite-dimensional machine (i.e., for any protocol
using only finite control complexity) and independent of
the energies of C and H. �

We can now proceed to the second step of the proof of
Theorem 6.

Proof. To this end, consider any i∗ ∈ {1, . . . , dS − 1}. If
|i∗00〉SCH is not degenerate with any |0jk〉SCH, our asser-
tion is proven by Lemma 2. On the other hand, if there
is a j ∗ ∈ {0, . . . , dC − 1} and a k∗ ∈ {0, . . . , dH − 1} for
which |i∗00〉SCH and |0j ∗k∗〉SCH are degenerate, then Bi∗ ,
the degenerate subspace containing |i∗00〉SCH, also con-
tains |0j ∗k∗〉. Now Bi∗ may also contain other eigenvectors
of the form |0jk〉SCH, i.e., some other |0j ′k′〉SCH with
j ′ ∈ {0, . . . , dC − 1}, k′ ∈ {0, . . . , dH − 1}. Crucially, each
such eigenvector in Bi∗ must have an associated minimal
amount of initial population as long as the machine is
finite dimensional. Indeed, for any such |0j ∗k∗〉SCH in Bi∗ ,
we have the condition ω

j ∗
C + ωk∗

H = ωi∗
S and so ω

j ∗
C ≤ ωi∗

S ,
ωk∗

H ≤ ωi∗
S , implying that βω

j ∗
C ≤ βωi∗

S and βHωk∗
H ≤ βωi∗

S .
Thus we have the bound

p0j ∗k∗ = e−βω
j ∗
C e−βH ωk∗

H

ZSZCZH
≥ e−2βωi∗

S

ZSZCZH
≥ e−2βωi∗

S

ZSdCdH
=: qi∗ .

(F10)

Now, take any particular i∗ ∈ {1, . . . , dS − 1} and let πi∗ be
the dimension of Bi∗ , μ the number of energy eigenstates

of the form |0jk〉SCH that Bi∗ contains and ν = π − μ the
number of energy eigenstates of the form |ijk〉SCH, where
i �= 0, that Bi∗ contains. So

Bi∗ = span{|0jk〉, |0j2k2〉, . . . , |0jμkμ〉, |i∗00〉,
|i2�2m2〉, . . . , |iν�νmν〉}. (F11)

Let v = {p0jk, p0j2l2 , . . . , p0jμkμ , pi∗00, pi2�2m2 , . . . , piν�νmν }
be the vector of initial populations associated to the eigen-
vectors of Bi∗ , and v↑ be the vector whose components
are those of v arranged in nondecreasing order. Using
Schur’s theorem [58], we know that after applying any uni-
tary transformation UBi∗ on the relevant energy-degenerate
subspace, then the vector of transformed populations, ṽ, is
majorized by v. In particular, labeling the vector elements
by vα , we have

p̃i∗00 +
ν∑

α=2

p̃iα�αmα ≥
ν∑

α=1

v↑α . (F12)

We now claim that
∑ν

α=1 v↑α ≥ qi∗ from Eq. (F10). Indeed,
as v has at most ν − 1 elements that do not belong to the
set A := {p0jk, p0j2k2 , . . . , p0jμkμ , pi∗00}, at least one element
of A must contribute to the sum

∑ν
α=1 v↑α . Let x be that

element. As v↑α ≥ 0 for all α = 1, . . . , π = μ+ ν, we have

ν∑

α=1

v↑α ≥ x. (F13)

Now as p0jγ kγ ≥ qi∗ for all γ = 2, . . . , μ, we have

x ≥ min(qi∗ , pi∗00) = qi∗ , (F14)

where pi∗00 ≥ qi∗ can be seen from Eq. (F10), as claimed.
As the lhs of Eq. (F12) represents the amount of popula-

tion in the subspace Bi∗ that does not contribute to the final
ground-state population of the target system, we have

p̃0
S ≤ 1−

(

p̃i∗00 +
ν∑

α=2

p̃iα�αmα

)

≤ 1− qi∗ = 1 − e−2βωi∗
S

ZSdCdH
.

(F15)

So, for any finite-dimensional machine, one cannot cool
the system S beyond 1 − (e−βωi∗

S )/(ZSdCdH), a bound
strictly smaller than 1 and independent of the energy
structure of C and H, as desired. �

As a concrete example, consider the case where all
systems are qubits. The initial joint state is

�(0)
SCH = (|0〉〈0| + e−βωS |1〉〈1|)S ⊗ (|0〉〈0| + e−βωC |1〉〈1|)C ⊗ (|0〉〈0| + e−βH ωH |1〉〈1|)H

ZS(β, ωS)ZC(β, ωC)ZH(βH , ωH)
. (F16)
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The only energy-conserving unitary interaction that is rel-
evant for cooling is the one that exchanges the populations
in the levels spanned by |010〉 and |101〉, which have initial
populations (e−βωC )/(ZS(β, ωS)ZC(β, ωC)ZH(βH , ωH))

and (e−βωS e−βH ωH)/(ZS(β, ωS)ZC(β, ωC)ZH(βH , ωH))

respectively, which are both strictly less than one. The nec-
essary condition for any cooling to be possible implies that
e−βωS e−βH ωH ≥ e−βωC ; now, performing the optimal cool-
ing unitary leads to the final ground-state population of the
target system

p ′S(0) = 〈0| trCH
[
U�(0)

SCHU†]|0〉S

= 1 + e−βH ωH(1 + e−βωS + e−βωC )

ZS(β, ωS)ZC(β, ωC)ZH(βH , ωH)
< 1. (F17)

Indeed, using e−βωS e−βH ωH ≥ e−βωC ,

p ′S(0) ≤ 1 + e−βH ωHe−βωS

ZS(β, ωS)ZC(β, ωC)
≤ 1

ZC(β, ωC)
≤ 1. (F18)

The second inequality is strict unless βH = 0 or ωH = 0.
In the both cases, for equality in the first inequality, we
need βωS = βωC. If β = 0, then ZC(β, ωC) = 2 and the
last inequality is strict. If ωS = ωC, no cooling is possible;
hence p ′S(0) = pS(0) < 1.

2. Diverging time and diverging control complexity

We now move to analyze the case where diverging time
is allowed, where we wish to minimize the energy cost and
control complexity throughout the protocol over a diverg-
ing number of energy-conserving interactions between the
target system and the hot and cold subsystems of the
machine. We again consider all three systems to be qubits,
but the results generalize to arbitrary (finite) dimensions.
Here, the machines and ancillas begin as thermal states
with initial inverse temperatures β and βH ≤ β, respec-
tively. Just as in the diverging time-cooling protocol in
the coherent-control setting presented in Appendix C, we
consider a diverging number of machines, with slightly
increasing energy gaps, in a configuration such that the
target system interacts with the nth machine at time step
n. Suppose that after n steps of the protocol, the target
qubit has been cooled to some inverse temperature βn > β;
equivalently, this can be expressed as a thermal state with
corresponding energy gap ωn = βn

β
ωS . We now wish to

interact the target system τS(βn, ωS) with a machine Mn+1
with slightly increased energy gaps with respect to the
most recent one Mn, i.e., we increase the energy gaps
of the cold subsystem C from ωn to ωn+1 = ωn + εn; the
resonance condition enforces the energy gap of the hot sub-
system H to be similarly increased to ωn + εn − ωS . Thus,
the next step of the protocol is a unitary acting on the global

state

�(n)
SCH = τS(βn, ωS)

⊗ τC(β, ωn + εn)⊗ τH(βH , ωn + εn − ωS).
(F19)

In order to cool the target system via said unitary, we
must have that p101 ≥ p010 for the state in Eq. (F19), which
implies that εn must satisfy the following condition:

e−βωn−βH (ωn+εn−ωS )

≥ e−β(ωn+εn) ⇒ εn ≥ γ (ωn − ωS) where

γ := βH

β − βH

. (F20)

This condition is crucial. It means that if the hot subsys-
tem H is coupled to a heat bath at any finite temperature,
i.e., βH > 0, εn depends linearly on the inverse temperature
of the target system at the previous step βn, and can thus
not be taken to be arbitrarily small. As we now show, this
condition prohibits the ability to perfectly cool the target
system at the Landauer limit for the energy cost whenever
the heat bath is at finite temperature.

On the other hand, for infinite-temperature heat baths,
perfect cooling at the Landauer limit is seemingly achiev-
able; here, βH → 0 and so γ → 0, leading to the trivial
constraint εn ≥ 0 which allows it to be arbitrarily small,
as is required. Nonetheless, the explicit construction of
any protocol doing so in the incoherent-control setting
is a priori unclear, as the restriction of energy conser-
vation makes for a fundamentally different setting from
the coherent-control paradigm. We now explicitly derive
the optimal diverging-time protocol to perfectly cool at
the Landauer limit for an infinite-temperature heat bath,
thereby proving Theorem 7.

3. Saturating the Landauer limit with an
infinite-temperature heat bath

Before calculating the energy cost, we briefly discuss
the attainability of the optimally cool target state. We begin
with all subsystems as qubits, for the sake of simplicity, but
the logic generalizes to higher dimensions. In the incoher-
ent paradigm, the target system S interacts with a virtual
qubit of the total machine M = CH that consists of the
energy eigenstates |0, 1〉CH and |1, 0〉CH, with populations
p0C1H and p1C0H , respectively. Suppose that at step n + 1
the cold subsystem involved in the interaction has energy
gap ωn + εn. In Ref. [41], it is shown that by repeating the
incoherent cooling process [i.e., implementing the unitary
in Eq. (F3)] and taking the limit of infinite cycles, this
scenario equivalently corresponds to the general (coher-
ent) setting where arbitrary unitaries are permitted and the
target system interacts with a virtual qubit machine with
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effective energy gap ωeff
n given by

e−βωeff
n := p1C0H

p0C1H
= e−β(ωn+εn) eβH (ωn+εn−ωS )

⇒ ωeff
n = ωn + εn − βH

β
(ωn + εn − ωS).

(F21)

It is clear that for finite-temperature heat baths, i.e., βH >

0, the effective energy gap ωeff
n is always smaller than

the energy gap of the machine at any given step, i.e.,
ωeff

n ≤ ωn + εn; on the other hand, equality holds if and
only if the heat bath is at infinite temperature, i.e., βH → 0.
Thus, in the infinite-temperature case, given a target sys-
tem beginning at some step of the protocol in the state
�∗S(β, ωn), it is possible to get close to the asymptotic state
�∗S(β, ωn + εn); if the temperature is finite, however, this
state is not attainable (even asymptotically). Following the
arguments in Appendix C, i.e., considering a diverging
number of machines, each of which having the part con-
nected to the cold bath with energy gap ωCn = ωn + εn and
taking the limit of εn → 0, which one can only do if the
hot-bath temperature is infinite, allows one to cool per-
fectly in diverging time in the incoherent paradigm at the
Landauer limit.

We now calculate the energy cost explicitly for the
infinite-temperature heat-bath case, precisely demonstrat-
ing attainability of the Landauer limit. We use a similar
approach to that described in Appendix C: we have a
diverging number of cold machines for each energy gap
ωn, with which the target system at the n − 1th time step
interacts; for an infinite-temperature heat bath, i.e., H is in
the maximally mixed state independent of its energy struc-
ture, the state of the target system at each step �∗S(β, ωn−1)

is achievable. From Eq. (F5), the energy change between
all subsystems for a given step of the protocol, i.e., taking
�∗S(β, ωn−1) → �∗S(β, ωn), can be calculated as

�E(n)
S = tr

[
HS(ωS)(�∗S(β, ωn)− �∗S(β, ωn−1)

]
,

�E(n)
C = −tr

[
HC(ωn)(�

∗
S(β, ωn)− �∗S(β, ωn−1)

]
,

�E(n)
H = tr

[
HH(ωn − ωS)(�∗S(β, ωn)− �∗S(β, ωn−1)

]
.

(F22)

In general, i.e., for finite-temperature heat baths, we would
have ωn = ωn−1 + εn−1, with a lower bound on εn−1 for
cooling to be possible [in accordance with Eq. (F20)].
However, for infinite-temperature heat baths, this lower
bound trivializes since the energy structure of the hot-
machine subsystem plays no role in its state; thus we
can choose the energy gap structure for the machines as
{ωn = ωS + nε}Nn=1 with ε arbitrarily small. Taking the
limit ε → 0, the diverging time limit N →∞, and writing
ωN = ωmax for the maximum energy gap of the cold-
machine subsystems, the energy exchanged throughout the

entire cooling protocol here is given by

�ES = lim
N→∞

N∑

n=1

�E(n)
S

= tr
[
HS(ωS)(�∗S(β, ωmax)− �∗S(β, ωS)

]
,

�EC = lim
N→∞

N∑

n=1

�E(n)
C

= 1
β

{
S[�∗S(β, ωS)] − S[�∗S(β, ωmax)]

} = 1
β

�̃SS ,

�EH = lim
N→∞

N∑

n=1

�E(n)
H = −�ES −�EC. (F23)

Here, the expression for �EC can be derived using the
same arguments as presented in Appendix C 1. In partic-
ular, the heat dissipated by the cold part of the machine,
which is naturally connected to the heat sink in the inco-
herent setting as an infinite-temperature heat bath can be
considered a work source since any energy drawn comes
with no entropy change, is in accordance with the Lan-
dauer limit. It is straightforward to obtain the same result
for qudit systems. Lastly, in a similar way to the other pro-
tocols we have presented, one could compress all of the
diverging number of operations into a single one whose
control complexity diverges, thereby trading off between
time and control complexity.

4. Analysis of finite-temperature heat baths

We now return to the more general consideration of
finite-temperature heat baths, i.e., 0 < βH ≤ β. In the case
where βH = β, from Eq. (F21), it is straightforward to
see that for any machine energy gap ωn, the effective
gap ωeff

n is equal to the gap of the target system, which
means that no cooling can be achieved in the incoher-
ent paradigm. Nonetheless, for any H subsystem coupled
to a heat bath of inverse temperature βH < β, cooling is
possible. We first provide more detail regarding why cool-
ing at the Landauer limit is not possible in this setting,
before deriving the minimal energy cost in accordance
with the Carnot-Landauer limit presented in Theorem 5;
in Appendix G, we provide explicit protocols that satu-
rate this bound for any finite-temperature heat bath and
arbitrary finite-dimensional systems and machines.

Suppose that at some step n one has the initial joint state
of Eq. (F19), where εn = γ (ωn − ωS)+ ε and ωn = ωS +
nε. Here, γ is as in Eq. (F20). We now wish to cool the
target system to �∗S(β, ωn + ε). For cooling to be possible
in the incoherent setting here, we need the cold-machine
subsystem to have an energy gap of at least ωn + εn; more-
over, with a finite-temperature heat bath, this energy gap
is insufficient to achieve the desired transformation [see
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Eq. (F20)]. Based on Eq. (F5), we can see that nonethe-
less, if we calculate the hypothetical energy change in this
scenario if it were possible, we can derive a lower bound

for the actual energy cost incurred. Employing Eq. (F22),
we have

�E(n+1)
C ≥ −tr{HC(ωn + εn)[�∗S(β, ωn + ε)− �∗S(β, ωn)]}

= −tr{HC[(γ + 1)ωn − γωS + ε][�∗S(β, ωn + ε)− �∗S(β, ωn)]}
= −tr{HC[(γ + 1)ωn − γωS + ε + γ ε − γ ε][�∗S(β, ωn + ε)− �∗S(β, ωn)]}
= −(γ + 1)tr{HC(ωn + ε)[�∗S(β, ωn + ε)− �∗S(β, ωn)]}
+ γ tr{HC(ωS + ε)[�∗S(β, ωn + ε)− �∗S(β, ωn)]}

= (γ + 1)�E∗(n+1)
C + γ�E∗(n+1)

S + γ tr{HC(ε)[�
∗
S(β, ωn + ε)− �∗S(β, ωn)]}, (F24)

where we make use of the fact that for equally spaced
Hamiltonians, the structure of the Hamiltonians on each
subsystem take the same form [i.e., we can write,
with slight abuse of notation, HC(ω + ωS) = HC(ω)+
HS(ωS)]. We use the star in �E∗

A to denote the ideal-
ized energy cost [i.e., that corresponding to what would
be achievable in the infinite-temperature setting; see
Eq. (F22)] and the energy costs without the star to rep-
resent those for when the temperature of the heat bath
is finite. The additional term tr{H(γ ε)[�∗S(β, ωn + ε)−
�∗S(β, ωn)]} vanishes for ε → 0.

Summing up these contributions for a diverging num-
ber of steps gives the lower bound for the heat dissipated
throughout the entire protocol for cooling an initial state
τS(β, ωS) to some final τS(βmax, ωS) is given by

�EC = lim
N→∞

N∑

n=1

�E(n+1)
C

≥ (γ + 1)
1
β

�̃SS + γ �ES

= 1
β

�̃SS + γ

(
�ES +

1
β

�̃SS

)
. (F25)

Note that for infinite-temperature heat baths, γ → 0 and
the usual Landauer limit is recovered; nonetheless, for
finite-temperature heat baths, γ > 0 and there is an addi-
tional energy contribution, implying that the Landauer
limit cannot be achieved. Moreover, note that the expres-
sion inside the parenthesis in the second term above is
always non-negative, as it is the free energy difference of
the system during the cooling process. Lastly, it is straight-
forward to show that this lower bound is equivalent to the
Carnot-Landauer limit in Eq. (A14), which was derived
in a protocol-independent manner as the ultimate limit

in the incoherent-control setting. We now present explicit
protocols that saturate this bound.

APPENDIX G: PERFECT COOLING AT THE
CARNOT-LANDAUER LIMIT IN THE

INCOHERENT-CONTROL PARADIGM

The precise statement that we wish to prove regarding
saturation of the Carnot-Landauer limit is the following:

Lemma 3. For any β∗ ≥ β > βH and ε1,2 > 0, there exists
a cooling protocol in the incoherent-control setting com-
prising a number of unitaries of finite control complexity,
which, when the number of operations diverges, cools to
some final temperature β ′ that is arbitrarily close to the
ideal temperature value β∗, i.e.,

∣∣β ′ − β∗∣∣ < ε1, (G1)

with an energy cost, measured as heat drawn from the hot
bath, that is arbitrarily close to the ideal Carnot-Landauer
limit, i.e.,

∣
∣�EH − η−1�̃F (β)

S
∣
∣ < ε2, (G2)

where η = 1 − βH/β and �F (β)
S = Fβ(�

′
S)− Fβ(�S) is the

free energy difference between the initial �S = τS(β, HS)

and final �′S = τS(β∗, HS) system states (with respect to
inverse temperature β).

We begin by presenting the diverging-time protocol that
saturates the Carnot-Landauer limit when all three subsys-
tems S , C,H are qubits. The simplicity of this special case
allows us to calculate precisely bounds on the number of
operations required to reach any chosen error threshold.
Building on this intuition, we then present the generaliza-
tion to the case where all systems are qudits. The protocols
with diverging control complexity follow directly via the
same line of reasoning presented in the main text.
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1. Qubit case

We begin with setting some notation and intuition for
the proof, before expanding on mathematical details.

Sketch of protocol.—The protocol consists of the
following. There are N stages, each labeled by n ∈
{1, 2, . . . , N }. Each stage proceeds as follows:

(a) A qubit with energy gap ωS + nθ is taken from the
cold part of the machine, and a qubit with energy
gap nθ is taken from the hot part (see below). The
initial state of the machine at the beginning of the
nth stage is thus τC(β, ωS + nθ)⊗ τH(βH , nθ).

(b) The energy-preserving three qubit unitary cycle
in the {010, 101}SCH subspace is performed [see
Eq. (F3)], after which the cold and hot qubits are
rethermalized to their respective initial tempera-
tures.

(c) The above steps are repeated mn times.

The energy increment θ is defined as

θ := ωS

N

(
β∗ − β

β − βH

)
, (G3)

while the number of repetitions within each stage is
given by

mn =
⌈

log(δ)

log(1 − N (n)
V )

⌉
. (G4)

"·# is the ceiling function, and N (n)
V

is the sum of the ini-
tial thermal populations in the {01, 10}CH subspace of the
machine, i.e.,

N (n)
V

:= 〈01|τC(β, ωS + nθ)⊗ τH(βH , nθ)|01〉
+ 〈10|τC(β, ωS + nθ)⊗ τH(βH , nθ)|10〉. (G5)

The parameter δ is chosen appropriately to complete the
proof (δ = 1/N 2 works).

The intuition for the proof is as follows. We first con-
sider how the populations of the target system changes
in the idealized protocol where mn →∞, so that in each
stage, the system reaches the virtual temperature deter-
mined by the CH qubits. We can use this ideal setting to
find expressions for the final temperature and energy cost,
which serves as a baseline that we wish to attain to within
arbitrary precision. We then consider the protocol as con-
structed above with a finite number of repetitions mn in
each stage, and show that its expressions for temperature
and work cost are close (with respect to 1/N ) to the orig-
inal expressions, and by taking N to be sufficiently large
but still finite (i.e., in the diverging time limit), we prove
that the protocol can be arbitrarily close in temperature and
energy cost to the ideal values.

Proof. We label the population in the excited state of the
target system at the end of stage n as pn. Thus p0 is the ini-
tial population and pN is the final population in the excited
level of the target system qubit, i.e., that spanned by
|1〉〈1|S . We also label by qn what the corresponding popu-
lation pn would hypothetically be in the limit mn →∞.
This value can be calculated by matching the tempera-
ture of the target system qubit to the temperature of the
{01, 10}CH virtual qubit within the machine (see Appendix
G in Ref. [41]). Thus qn is defined via the Gibbs ratio

qn

1 − qn
= e−β(ωS+nθ)e+βH nθ = e−βωS e−(β−βH )nθ . (G6)

Note that

1. {pn}, {qn} are both monotonically decreasing
sequences, as each stage cools the target qubit fur-
ther.

2. pn > qn for all n, as more repetitions within each
stage keep cooling the target qubit further.

To keep track of the energetic resource cost, which we take
here to be the total heat drawn from the hot bath, we must
sum the energetic contribution from each time the hot qubit
is rethermalized to βH after the application of the three-
party cycle unitary. Due to the fact that the only manner
in which the population of the hot qubit changes is due to
the {010, 101}SCH exchange, it follows that any population
change in the hot qubit is identical to the population change
in the target system qubit.

Focusing on a single stage, where the machine qubits
are fixed in energy gap, the total population change in the
hot qubit that must be restored by the hot bath is there-
fore equal to the population change in the target system
throughout that stage. The heat drawn from the hot bath
throughout the entire stage is therefore

�̃E(n)
H = ω

(n)
H (pn−1 − pn) = nθ(pn−1 − pn). (G7)

With these expressions derived, we can study the proper-
ties of the abstract protocol where the number of repeti-
tions within each stage goes to infinity: mn →∞. First, the
final temperature asymptotically achieved here is given by
finding the temperature β̃ associated with the qubit with
excited-state population qN

qN

1 − qN

= e−β̃ωS ⇒ e−βωS e−(β−βH )Nθ = e−β̃ωS

⇒ β̃ = β∗, (G8)

where we make use of the definition of θ in Eq. (G3).
We can thus identify qN = q∗, since it is the population
associated with the ideal final temperature β∗.
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We also have the following expression for the total
energetic cost of the ideal protocol after N stages

�̃E∗
H =

N∑

n=1

nθ(qn−1 − qn), (G9)

which can alternatively be expressed as

�̃E∗
H =

N∑

n=1

[(n − 1)θ(qn−1 − qn)] + θ(q0 − qN ). (G10)

The sums appearing in the two alternative expressions are
the left and right Riemann sums of the integral of the
variable y = nθ integrated with respect to the variable q,
i.e.,

I :=−
∫ q∗

q0

y dq,

where
q(y)

1 − q(y)
=e−βωS e−(β−βH )y , (G11)

from Eq. (G6). For y > 0, q(y) is monotonically decreas-
ing and so the converse is also true, i.e., y is monotonically
decreasing with respect to q(y). This implies that the inte-
gral is bounded by the left and right Riemann sums, so we
have

N∑

n=1

(n − 1)θ(qn−1 − qn) ≤
∫ q∗

q0

y dq ≤
N∑

n=1

nθ(qn−1 − qn),

(G12)

from which we can deduce that the value of �E∗
H is itself

is bounded both ways from Eqs. (G9) and (G10):

∫ q∗

q0

y dq ≤ �̃E∗
H ≤

∫ q∗

q0

y dq + θ(q0 − q∗). (G13)

The integral itself can by expressed in terms of the free
energy of the qubit target system with respect to the
environment inverse temperature β. Expressing the free
energy as a function of the excited-state population q and
differentiating with respect to q gives

F(q) = 〈E〉(q)− S(q)

β

= q ωS + 1
β

[q log(q)+ (1 − q) log(1 − q)] .

(G14)

∂F
∂q

= ωS + 1
β

log
(

q
1 − q

)

=
(

ωS + 1
β

(−βωS − (β − βH)y
))

= −β − βH

β
y. (G15)

Using the above expression, the definite integral in
Eq. (G11) amounts to

I = 1
η

[
F(q∗)− F(q0)

] =:
1
η

(
F∗ − F0

)
, (G16)

where we identify the Carnot efficiency η = 1 − βH/β and
for ease of notation written F∗ := F(q∗) and F0 := F(q0).
Thus we can bound �̃E∗

H on both sides

1
η

(
F∗ − F0

) ≤ �̃E∗
H ≤ 1

η

(
F∗ − F0

)+ θ(q0 − q∗)

≤ 1
η

(
F∗ − F0

)+ ωS

N

(
β∗ − β

β − βH

)
, (G17)

where the inequality in the second line follows from the
fact that {qn} forms a decreasing sequence.

We now proceed to consider the cooling protocol with a
finite number of repetitions mn within each stage. We first
bound the difference between pn and qn. Using the prop-
erties of the exchange unitary under repetitions [41,65] (in
particular, see Appendix G in Ref. [41]), we have that in
each stage

pn − qn

pn−1 − qn
= (1 − N (n)

V

)mn . (G18)

Thus, the population difference to the asymptotically
achievable population given by the virtual temperature
shrinks as a power law with respect to the number of rep-
etitions. Since 0 < N (n)

V
< 1 (all strict inequalities), three

points follow: first, the population qn can never be attained
with a finite number of steps within the stage n; second,
that every repetition cools the system further by some finite
amount; third, that one can get arbitrarily close to qn by
taking mn sufficiently large. In fact, by our definition of
mn, we have that

pn − qn

pn−1 − qn
≤ δ. (G19)

From this, we can prove that

pn − qn ≤ δnq0 − δqn + (1 − δ)δ

n−1∑

j=1

δn−j−1qj . (G20)
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The proof is by induction. For n = 0, p0 = q0 (initial state), and for n = 1, using Eq. (G19)

p1 − q1 ≤ δ(p0 − q1)

= δ(q0 − q1). (G21)

Suppose that the above statement holds true for pk. Then from Eq. (G19)

pk+1 − qk+1 ≤ δ(pk − qk+1)

= δ(pk − qk + qk − qk+1)

...

≤ δk+1q0 − δqk+1(1 − δ)δ +
(k+1)−1∑

j=1

δ(k+1)−j−1qj . (G22)

With this result, we can now bound the difference between the energy cost of this finite-repetition protocol and that of the
idealized one. We now proceed to prove that

�̃EH − �̃E∗
H =

N∑

n=1

nθ(pn−1 − pn)−
N∑

n=1

nθ(qn−1 − qn) ≤ θ

⎛

⎝q0

N−1∑

j=1

δN−j −
N−1∑

j=1

δN−j qj

⎞

⎠ . (G23)

We again use proof by induction. First note that we can rewrite

N∑

n=1

nθ(fn−1 − fn) = θ

(
N∑

n=1

fn−1

)

− Nθ fN , (G24)

for fn ∈ {pn, qn}. Therefore, we can rewrite the difference

�̃EH − �̃E∗
H = θ

N∑

n=1

(pn−1 − qn−1)− Nθ(pN − qN ) ≤ θ

(
N∑

n=1

(pn−1 − qn−1)

)

, (G25)

since the last subtracted term is always strictly positive. Consider now the partial sum

Ek =
k∑

n=1

(pn−1 − qn−1) . (G26)

For k = 1, E1 = 0, since p0 = q0. For k = 2, we have

E1 = (p1 − q1) ≤ δ(q0 − q1) =
⎛

⎝q0

1∑

j=1

δ2−j −
1∑

j=1

δ2−j qj

⎞

⎠ , (G27)

which matches the hypothesis of Eq. (G23). Assuming that the same holds true for Ek, then for Ek+1, we have

Ek+1 = Ek + (pk − qk)

≤
⎛

⎝q0

k−1∑

j=1

δk−j −
k−1∑

j=1

δk−j qj

⎞

⎠+
⎛

⎝δkq0 + (1 − δ)δ

k−1∑

j=1

δk−j−1qj − δqk

⎞

⎠

...

= q0

k∑

j=1

δk+1−j −
k∑

j=1

δk+1−j qj . (G28)
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Then, by dropping the second sum, which is a strictly positive quantity, the difference in Eq. (G23) can be further simplified
to

�̃EH − �̃E∗
H ≤ θq0

N−1∑

j=1

δN−j = θq0 δ

N−2∑

k=0

δk < θq0 δ(N − 1) < θq0 δN < ωS

(
β∗ − β

β − βH

)
δ, (G29)

where we use that δ < 1. Finally, to upper bound the number of operations required in the protocol, we bound the number
of repetitions within each stage by bounding the total population of the virtual qubit spanned by the levels {01, 10}CH as
follows:

N (n)
V

= 〈01|τC(β, ωS + nθ)⊗ τH(βH , nθ)|01〉 + 〈10|τC(β, ωS + nθ)⊗ τH(βH , nθ)|10〉

= e−βH nθ + e−β(ωS+nθ)

(1 + e−βH nθ )(1 + e−β(ωS+nθ))

>
e−β(ωS+nθ)

4
.

⇒ log
[
1 − N (n)

V

]
< log

[
1 − e−β(ωS+nθ)

4

]

< −e−β(ωS+nθ)

4
if x ∈ (0, 1) ⇒ log(1 − x) < −x.

⇒ − 1

log
[
1 − N (n)

V

] < 4e+β(ωS+nθ). (G30)

Thus we can bound the number of repetitions in each stage from Eq. (G4). Noting that log(δ) < 0, we have

mn < 4 log (1/δ) e+β(ωS+nθ) + 1. (G31)

For a crude bound, we can replace n by its maximum value N , and sum over all the stages to find an upper bound on the
total number of three-qubit exchange unitaries implemented throughout the entire protocol, which gives

M =
N∑

n=1

mn < N
[
4 log (1/δ) e+β(ωS+Nθ) + 1

] = N
[
4 log (1/δ) eωS (β∗−βH )/η + 1

]
. (G32)

Also, note that limδ→0 pN = qN = q∗. More precisely, using Eq. (G20), we have

pN − q∗ < δ

⎛

⎝δN−1q0 + (1 − δ)

N−1∑

j=1

δn−j−1qj − qN

⎞

⎠

< δ (1 + (1 − δ)(N − 1)) < δN . (G33)

In summary, we have the following bounds on the protocol in which each stage consists of a finite number of steps:

pN − q∗ < δN

�̃EH <
1
η

(
F∗ − F0

)+ ωS

(
β∗ − β

β − βH

)(
1
N
+ δ

)
,

(G34)

where we combine Eqs. (G17) and (G29) for the second expression. For simplicity, we choose δ = 1/N 2, so that

pN − q∗ <
1
N

�̃EH <
1
η

(
F∗ − F0

)+ ωS

(
β∗ − β

β − βH

)(
2
N

)
.

(G35)
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Thus, given any final temperature (encoded by the pop-
ulation q∗), and allowed errors ε1 and ε2 for the final
population and energy cost respectively, one can always
choose N large enough so that both quantities are within
the error threshold. Specifically, choosing N as

N =
⌈

max
{
ε−1

1 , 2ωS

(
β∗ − β

β − βH

)
ε−1

2

}⌉
, (G36)

we automatically have that pN − q∗ < ε1 and �EH <

(F∗ − F0)/η + ε2. The total number of unitary operations
(each of which is followed by rethermalization of the
machine) is then bounded by Eq. (G32)

M < N
(

8 log[N ]eωS (β∗−βH )/η + 1
)

. (G37)

We can see from Theorem 10 that the protocol is asymp-
totically optimal with respect to the energy extracted from
the hot bath. �

2. Qudit case

The extension of the proof above to the case of qudits
is nontrivial. This is because, while for qubits there is
only one energy-resonant subspace that leads to cooling
and hence a unique protocol [see Eq. (F3)] that asymp-
totically attains perfect cooling at the Carnot-Landauer
bound, this is no longer the case for higher-dimensional
systems; here, there can be a number of energy-resonant
subspaces that cool the target and the question of optimal-
ity hinges crucially on the complex energy-level structure
of all systems involved. Hence, it is not possible to provide
a unique unitary that generates the optimal protocol inde-
pendently of the subsystem Hamiltonians. Nonetheless, we
slightly modify the protocol for the qubit case above to
be implemented on a number of particular three-qubit sub-
spaces of the three-qudit global state such that, at the end
of each stage, the state of the target system is arbitrarily
close to the (known) state, which would be achieved in an
abstract protocol in the diverging-time limit. This asymp-
totically attainable state is precisely that which would be
achieved in the coherent-control paradigm with a machine
the same dimension as the joint hot-cold qudits. Thus, we
first begin by presenting the necessary steps for the proof
in the coherent-control setting, which we then adapt as
appropriate for the incoherent setting control. Finally, sum-
ming the overall energy cost of said protocol over all stages
saturates the Carnot-Landauer bound, as required.

Proof. An idealized sequence of temperatures and sys-
tem states. We construct the incoherent protocol in the
following manner. We seek to take the system through a
sequence of thermal states starting at inverse temperature
β and ending at inverse temperature β∗ with N equally

spaced intermediary steps, i.e.,

βn = β + nθ
(
β − βH

)
, (G38)

θ = 1
N

(
β∗ − β

β − βH

)
, (G39)

so that βN = β∗ by construction. This corresponds to tak-
ing the system through the following sequence of thermal
states:

�(n)
S = e−βnHS

ZS(HS , βn)
. (G40)

Note that, in contrast to the coherent protocol where such
a sequence can be traversed by simply swapping the tar-
get system with a sequence of appropriate machines, in the
incoherent setting such a protocol is generally not possible
as such swaps are not energy conserving. Nonetheless, we
develop a modified protocol that is energy conserving and
mimics this idealized one.

Corresponding to each step in the sequence, we define
the following quantity, which we eventually show to be
related to the heat drawn from the hot bath:

G(n) = −nθ�E(n)
S = −nθ tr

[
HS
(
�(n)
S − �(n−1)

S
)]

. (G41)

We proceed to show that the total
∑

n G(n) that we label
the idealized heat cost �̃E∗

H is close to the free energy
difference over the entire sequence. We have

�̃E∗
H =

N∑

n=1

G(n)

=
N∑

n=1

nθ tr
[
HS
(
�(n−1)
S − �(n)

S
)]

(G42)

=
{

N∑

n=1

(n − 1)θ tr
[
HS
(
�(n−1)
S − �(n)

S
)]
}

+ θ tr
[
HS
(
�(0)
S − �(N )

S
)]

. (G43)

The sums on the second and third lines above, Eqs. (G42)
and (G43), respectively, are the right and left Riemann
sums corresponding to the following integral:

I =
∫ qf

qi

q (−dx) =
∫ qi

qf

q dx,

where nθ → q,

x = tr
[
HS�S(q)

]
,

�S(q) = e−[β+q(β−βH)]HS

tr
[
e−[β+q(β−βH)]HS

] . (G44)

We observe that x is the average energy of the thermal
state of temperature β + q(β − βH), and thus x and q
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are strictly monotonically decreasing with respect to each
other (which explains why the left and right sums are
switched). It follows that the Riemann sums bound the
integral

N∑

n=1

(n − 1)θ tr
[
HS
(
�(n−1)
S − �(n)

S
)]

≤
∫ qi

qf

q dx ≤
N∑

n=1

nθ tr
[
HS
(
�(n−1)
S − �(n)

S
)]

. (G45)

We can thus bound the idealized heat cost in both direc-
tions via

I ≤ �̃E∗
H ≤ I + θ tr

[
HS
(
�(0)
S − �(N )

S
)]

. (G46)

The integral in Eq. (G44) can be shown to be equal to the
change in free energy of the target system (with respect to
inverse temperature β)

Fβ[�S(q)] = tr
[
HS�S(q)

]+ 1
β

tr
[
�S(q) log �S(q)

]
,

d
dq

Fβ[�S(q)] = tr
[(

HS +
1S + log �S(q)

β

)
d�S(q)

dq

]
.

(G47)

Note that �S(q) and d�S(q) are both always diagonal in
HS and full rank for all q ∈ R, so we have no problems
with log �S(q), and all of the operators in the expression
are well defined and commute. Proceeding, we repeatedly
use tr

[
d�S(q)

] = d tr
[
�S(q)

] = 0 and label the partition
function Z(q) := tr

[
e−[β+q(β−βH)]HS

]
to obtain

d
dq

Fβ[�S(q)] = tr
[(

HS +
log �S(q)

β

)
d�S(q)

dq

]

= tr
[(

HS −
β + q(β − βH)

β
HS − 1S

logZ(q)

β

)
d�S(q)

dq

]

= −q
(

1 − βH
β

)
d
dq

tr
[
HS�S(q)

] = −qη
dx
dq

, (G48)

where we identify the Carnot efficiency η for an engine operating between β and βH. The integral thus simplifies to

I = η−1 (Fβ[�S(qf )] − Fβ[�S(qi)]
) =: η−1�F (β)

S . (G49)

The idealized heat cost is thus bounded by

η−1�F (β)
S ≤ �̃E∗

H ≤ η−1�F (β)
S + θ tr

[HS
(
�(0)
S − �(N )

S
)]

. (G50)

The left inequality is Landauer’s bound applied to cooling a target system with Hamiltonian HS (see Theorem 5), and the
error term on the right can be bounded quite easily; for instance, for β > 0, we have

tr
[HS

(
�(0)
S − �(N )

S
)] = tr

[(HS − Emin
S 1S

) (
�(0)
S − �(N )

S
)]

≤ tr
[(HS − Emin

S 1S
)
�(0)
S
]

since HS − Emin
S 1S is a positive operator,

≤ tr
[(HS − Emin

S 1S
) 1S

dS

]
≤ ωmax

S
dS

, (G51)

where ωmax
S := Emax

S − Emin
S is the largest energy gap in the

target system Hamiltonian and dS is the system dimension.
We use the fact that since ρ(0)

S is a thermal state of posi-
tive temperature, its average energy is less than that of the

infinite temperature thermal state, 1S/dS . Since θ ∝ 1/N ,
it follows that one can always find an N large enough
such that the error is smaller than a given value, thereby
saturating the Landauer bound.
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A sequence of machine Hamiltonians to mimic the
idealized sequence. Next we construct a protocol that
mimics the above sequence and obeys the global energy
conservation condition imposed in the incoherent-control
setting. The protocol is split into N stages (like above). In
each stage, the Hamiltonian of the machine is fixed. The
machine here comprises to two parts: the “cold” part and
the “hot” part. The cold part is chosen to begin in a thermal
state at temperature β of the Hamiltonian

HC = (1 + nθ) HS . (G52)

At this point we note that this sequence of cold-machine
states is exactly the same as in the coherent protocol, which
would proceed by simply swapping the full state of target
system and machine in each stage. However, that is not
possible here since this is not an energy-preserving oper-
ation. To allow for energy-preserving operations, the hot
part of the machine consists of dS(dS − 1)/2 qubits, each
corresponding to a pair of levels (i, j ) of the target sys-
tem (henceforth we take i < j to avoid double counting),
whose energy gap is equal to the difference in energies of
the target and cold qubit subspaces (hence rendering the
desired exchange energy resonant)

H (ij )
H = [ωi + (1 + nθ)ωj −

(
ωj + (1 + nθ)ωi

)] |1〉〈1|(ij )H

= nθ
(
ωj − ωi

) |1〉〈1|(ij )H , (G53)

where we label the energy eigenvalues of HS by {ωi}.
Each of these hot qubits begins at inverse temperature βH .
After every unitary operation, the cold and hot parts of
the machine are rethermalized to their respective initial
temperatures.

To understand the choice of machine Hamiltonians, con-
sider the following two energy eigenstates of the machine:
|i〉C ⊗ |1〉(ij )H and |j 〉C ⊗ |0〉(ij )H . The energy difference is

�(ij ) = ωj (1 + nθ)− ωi(1 + nθ)− nθ(ωj − ωi)

= ωj − ωi, (G54)

matching the energy difference between the corresponding
pair of energy eigenstates of the target system. Further-
more, calculating the ratio of populations of the two levels
we find

g(ij ) = e−βωj (1+nθ)

e−βωi(1+nθ)e−βHnθ(ωj −ωi)
= e−(ωj −ωi)(β+nθ(β−βH)).

(G55)

This corresponds to the Gibbs ratio of a qubit at the tem-
perature β + nθ(β − βH), which is the temperature that
defines stage n [see Eq. (G38)]. In summary, we construct
a machine featuring dS(dS − 1)/2 qubit subspaces (or vir-
tual qubits), each of the same energy gap as one pair of

energy eigenstates of the system, and all of which have a
Gibbs ratio (or virtual temperature) corresponding the nth
temperature of our desired sequence.

A single step of the protocol: the max exchange.
Within each stage of the protocol, a single step con-
sists of a unitary operation on SCH, followed by the
rethermalization of the machine parts to their respective
initial temperatures. We construct the unitary operation
as follows: for every pair (i, j ) of system energy levels,
one can calculate the absolute value of the difference in
populations of the following two degenerate eigenstates
|i〉S |j 〉C|0〉(ij )H and |j 〉S |i〉C|1〉(ij )H . This value corresponds
to the amount of population that would move under an
exchange |i〉S |j 〉C|0〉(ij )H ↔ |j 〉S |i〉C|1〉(ij )H . We then choose
the pair with the largest absolute value of this differ-
ence and perform that exchange, with an identity opera-
tion applied to all other subspaces. We call this unitary
operation the max exchange. We proceed to prove two
statements about the max-exchange operation. First, that
the heat extracted from the hot bath is proportional to the
change in average energy of the system; and second, that
system state under repetition of said operation converges to
the thermal state of the temperature that defines the stage n.

Consider the change in average energy of the target sys-
tem under the exchange unitary. The only two populations
that change are those of the |i〉S and |j 〉S . We label the
increase in the population of |i〉S as δp . Then, we have

�ES = tr
[
HS
(
�′S − �S

)] = −δp
(
ωj − ωi

)
. (G56)

On the other hand, the populations of the correspond-
ing hot qubit (i.e., tracing out the target system and cold
machine) change by the same amount, i.e., there is a move
of δp from |1〉(ij )H to |0〉(ij )H . In order to rethermalize the hot
qubit, the heat drawn from the hot bath is thus

�̃EH = δp nθ(ωj − ωi) = −nθ�ES . (G57)

This is an expression conveniently independent of the pair
(i, j ) that applies after an arbitrary number of repetitions of
the max-exchange operation (which will use different pairs
in general).

Convergence of the max-exchange protocol to the
virtual temperature. To show that the max-exchange pro-
tocol indeed converges to the desired system state in each
stage of the protocol, we first prove a rather general state-
ment: given a state � diagonal in the energy eigenbasis, if
we exchange any qubit subspace within this system with
a virtual qubit of a particular virtual temperature, then the
relative entropy of the target system with respect to the
thermal state of that (virtual) temperature decreases.

To this end, consider the relative entropy of a state �

that is diagonal in the energy eigenbasis to a thermal state
τ . Labeling the populations of � as pi and those of τ as qi,
this can be expressed as
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D(�||τ) =
∑

k

pk log
(

pk

qk

)
. (G58)

We now focus on a single-qubit subspace labeled by {i, j }, which leads to

D(�||τ) = pi log
(

pi

qi

)
+ pj log

(
pj

qj

)
+
∑

k/∈{i,j }
pk log

(
pk

qk

)

= (pi + pj )

⎡

⎣ pi

pi + pj
log

( pi
pi+pj

qi
qi+qj

pi + pj

qi + qj

)

+ pj

pi + pj
log

⎛

⎝
pj

pi+pj
qj

qi+qj

pi + pj

qi + qj

⎞

⎠

⎤

⎦+
∑

k/∈{i,j }
pk log

(
pk

qk

)

= N
(

p̄i log
p̄i

q̄i
+ p̄j log

p̄j

q̄j
+ log

N
NV

)
+
∑

k/∈{i,j }
pk log

pk

qk
. (G59)

In the last line we renormalize the populations within the qubit subspace and labeled the total populations of the system
and thermal-state qubit subspaces of interest by N and NV, respectively. Labeling the normalized states within these
subspaces as �V and τV, respectively, we have

D(�||τ) = N
[

D(�V||τV)+ log
(

N
NV

)]
+
∑

k/∈{i,j }
pk log

(
pk

qk

)
. (G60)

Suppose now that this qubit subspace of the target system is exchanged with a qubit subspace of any machine that has
the same temperature as the thermal state above. The only object that changes in the the above expression is �V, since
the norm N remains the same. In addition, �V always gets closer to τV under such an exchange [41,65], implying that the
relative entropy always strictly decreases under such an operation.

Returning to the max-exchange protocol, note that by construction, every virtual qubit in the machine that is exchanged
with the qubit subspace {i, j } of the target system in a given stage n has the same virtual temperature, βn = β + nθ(β −
βH). Thus the relative entropy of the system to the thermal state at this temperature always decreases under this operation,
unless the operation does not shift any population, which happens only at the unique fixed point where every qubit
subspace of the system is already at the virtual temperature βn. By monotone convergence, the relative entropy must
converge, and moreover converge to the value that it has at the fixed point of the operation, which is the thermal state
at inverse temperature βn. Note that rather than choosing the qubit subspace with maximum population difference to
exchange we could also have picked at random from among the pairs {i, j } and convergence would still hold; the max-
exchange protocol simply ensures the fastest rate of convergence among these choices.

Choosing a large enough number of repetitions in each stage so that the overall heat cost is close to the idealized
heat cost. Given that the max-exchange protocol in stage n converges to the thermal state that we label �(n)

S , given any
error δE, we choose a number of repetitions mn that is large enough so that the difference between the average energy of
the actual final state of this stage, which we label �̃(n)

S , and that of the ideal state �(n)
S is less than δE. In this case, the total

heat cost over all stages is close to the idealized heat cost

∣
∣�̃EH − �̃E∗

H
∣∣ =

∣
∣∣∣∣

N∑

n=1

{−nθ tr
[
HS
(
�̃(n)
S − �̃(n−1)

S
)]}−

N∑

n=1

{−nθ tr
[
HS
(
�(n)
S − �(n−1)

S
)]}
∣∣
∣∣∣

=
∣∣∣
∣∣

N−1∑

n=0

θ tr
[
HS
(
�̃(n)
S − �(n)

S
)]− Nθ

(
�̃(N )
S − �(N )

S
)
∣∣∣∣∣
≤ 2NθδE = 2

(
β∗ − β

β − βH

)
δE . (G61)

The number of repetitions in each stage mn required depends only upon the initial choice of β∗ and N .
Completing the proof. Finally, suppose that one is given any target temperature β∗ and two arbitrarily small errors, εβ

for the cooling and εE for the heat cost, and asked to cool incoherently in such a way that achieves
∣
∣β ′ − β∗∣∣ ≤ εβ , (G62)
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∣∣�̃EH − η−1�F (β)
S
∣∣ ≤ εE. (G63)

We proceed by first choosing a number of stages N so
that the idealized heat cost �̃E∗

H is within εE/2 to the
Carnot-Landauer bound above. The idealized sequence of
temperatures satisfies βN = β∗ by construction. Once N
is fixed, for each stage from n = 1 to N − 1 we choose
a number of repetitions for each stage mn such that the
actual heat cost is within εE/2 of the idealized heat cost,
as discussed above. This ensures that the total heat cost is
within εE of the bound. Finally, we check that the number
of repetitions of the last stage mN is large enough for us
to be within εβ of β∗. If not, we increase the number of
repetitions (this can only decrease the error in the heat cost
anyway) until we are close enough, as required. �

APPENDIX H: COMPARISON OF COOLING
PARADIGMS AND RESOURCES FOR

IMPERFECT COOLING

Although we have looked at a number of cooling pro-
tocols throughout to demonstrate the ability for perfect
cooling in the asymptotic limit, here we focus on imperfect
cooling behavior, i.e., when all resources are restricted to
be finite and thus a perfectly pure state cannot be attained.
We have three main goals in doing so.

1. To illustrate the finite trade-offs between the trinity
of resources (energy, time, control complexity).

2. To compare the behavior of different constructions
of the cooling unitary for machines of the same
size (i.e., analyzing the energy-time trade-off for for
fixed control complexity).

3. To demonstrate the increase in resources required
for cooling in the thermodynamically self-contained
paradigm of energy-preserving unitaries (i.e., inco-
herent control), as compared to coherently driven
unitaries.

1. Rates of resource divergence for linear qubit
machine sequence

Consider cooling a qubit target system with energy
gap ωS by swapping it sequentially with a sequence of
N machine qubits of linearly increasing energy gaps. In
Appendix G 1, we derived the deviation from the ideal-
ized heat dissipation in the incoherent control setting for a
sequence of N machines [see Eq. (G17)], which we repeat
below:

1
η

(
F∗ − F0

) ≤ �̃E∗
H ≤ 1

η

(
F∗ − F0

)+ ωS

N

(
β∗ − β

β − βH

)
.

(H1)

We can immediately adapt this result to the paradigm of
coherent control by taking βH = 0 and replacing the heat

by work, which yields

�FS ≤ W ≤ �FS + ωS

N

(
β∗

β
− 1
)

. (H2)

Since the above inequalities are derived from the left and
right Riemann sums of an integral, as N becomes large,
one can expect that W lies roughly halfway between both
extremes; we can thus cast the scaling in the approximate
form

[
W −�F

ωS

]
N ∼ 1

2

(
β∗

β
− 1
)

. (H3)

Thus, we see that the relevant quantifier of the energy
resource here is the extra work cost above the Landauer
limit relative to the system energy. Additionally, the quan-
tifier of how much said resource is required (per machine
qubit) is β∗/β − 1, which, for cold enough final tempera-
tures, is approximately the ratio β∗/β.

Returning to the incoherent control paradigm, analyz-
ing the scaling behavior between energy and time is more
complicated. On the one hand, the expression above is only
slightly modified, with the work being replaced by the heat
dissipated multiplied by the Carnot factor:

[
η �EH −�F

ωS

]
N ∼ 1

2

(
β∗

β
− 1
)

, (H4)

which is consistent with the work-to-heat efficiency of a
Carnot engine. However, in the case of incoherent control,
since the population swap only takes place within a sub-
space of the two-qubit machine, the total population is not
completely exchanged in a single operation (in contrast to
that in the coherent control setting). Thus the number of
operations here required to transfer a desired amount of
population to the ground state of the target is greater than
the number of machine qubits N . To make a fair com-
parison, one could either compare the same number of
machine qubits but swap repeatedly (with rethermalization
of the machine in between operations)—thereby fixing the
control complexity at the expense of longer time—or one
could increase the number of machine qubits and count
time by the number of two-level swaps—thereby fixing
time to be equal at the expense of increased control com-
plexity overall. We investigate both methods in the coming
section.

2. Comparison of coherent and incoherent control

Intuitively, the incoherent control paradigm requires the
utilization of a greater amount of resources (albeit less
overall control in general) than the coherent control coun-
terpart because of two distinct disadvantages. First, the
temperature of the baths plays a substantial role in cooling
performance. Consider the example of a SWAP gate applied
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between a system and machine qubit: in the coherent con-
trol case, this operation transforms the target system to the
state of the thermal machine qubit, characterized by the
Gibbs ratio of ground-state to excited-state population. In
the incoherent control case, one requires the addition of a
thermal qubit from the hot bath to render said operation
energy preserving; as a result, the Gibbs ratio of the virtual
qubit that the target system swaps with is, in general, worse
than that of the coherent control setting, and only becomes
equal in the limit of an infinite temperature hot bath. This
is the first disadvantage. The second disadvantage is that in
the incoherent control setting, the target system swaps with
only a subspace of the machine rather than the entire one,
i.e., it is swapped with a virtual qubit. Thus, the exchange
of population is only partial as compared to the coherent
control case: in the limiting case of an infinite temperature
hot bath, said factor goes to 1/2 for all relevant two-level
subspaces. This implies that a greater number of opera-
tions, and thus time, is required in the incoherent control
paradigm in order to achieve a similar result as its coherent
control counterpart.

We illustrate this behavior via the following exam-
ple. The system is a degenerate qubit (beginning in the
maximally mixed state), and we fix the final target ground-
state population (p = 0.99, corresponding to ε = 1 − p =
0.01). Even in this simple case, the optimal finite-resource
protocols with coherent and incoherent control are not
known; we therefore compare protocols from each set-
ting that make use of machines of a similar structure,
namely swapping with machine qubits (virtual ones, in the
incoherent control setting) of linearly increasing energy
gaps.

More specifically, the coherent control cooling proto-
col employed is that of a sequence of swaps with machine
qubits of linearly increasing energy gaps, and for the fixed
target population, we can calculate the surplus work cost
over the Landauer limit as a function of the number N of
operations (which corresponds in this case to the number
of machine qubits). In the incoherent control case, we take
the hot bath to be at infinite temperature, allowing for the
potential saturation of the Landauer limit as in the coher-
ent case. In this way we isolate the disadvantage that arises
due to working in degenerate subspaces in our analysis.
Here too we take a linear sequence of energy gaps for
the cold (and hot) baths, with a single operation step cor-
responding to a three-level energy-conserving exchange
involving the qubit taken from each of the hot and cold
parts of the machine, i.e., |1〉S |0〉C|0〉H ↔ |0〉S |1〉C|1〉H.
As mentioned previously, for an incoherent control pro-
tocol of fixed overall machine size, there are essentially
two extremal methods of implementation. The first is to
identify N two-level subspaces of the total machine with
distinct energy gaps and perform the sequence of virtual
swaps between them and the target; in the language of
Appendix G, we therefore have N different stages with

a single step within each stage (no repetitions) before
moving on to the next stage. The second is to take N/m
two-level subspaces and swap the target with each virtual
qubit m times before moving on to the next; in other words,
we here have N/m different stages with m steps (repeti-
tions) within each stage. For the same fixed ground-state
population, we plot the surplus work cost (energy drawn
from the hot bath in the case of incoherent control) against
the total machine size and number of two-level unitary
swaps, as characterized by N , for both of these incoher-
ent control adaptations, comparing them to the coherent
control paradigm in Fig. 4.

In both control paradigms, we see that the deviation of
the energy cost above the Landauer limit scales inversely
with the number of operations [as expected from Eqs. (H3)
and (H4)], but the proportionality constant is worse in
the case of incoherent control. Moreover, the incoher-
ent control paradigm with no repetitions within stages

FIG. 4. Imperfect cooling with coherent and incoherent con-
trol. We compare the performance of coherent and incoherent
control protocols for cooling a degenerate qubit target by swap-
ping it with machine qubits with linearly increasing energy. The
final ground-state population is fixed to be 0.99. The inverse of
the surplus work cost W − β�̃SS (with β = 1) is plotted (in units
of the smallest machine energy gap, ωmin

M ) against the total num-
ber of unitary operations, with the temperature of the hot bath in
the incoherent control protocols set to βH = ∞ in order to make
meaningful comparison to the coherent control case. We see that
the coherent control protocol (blue) outperforms the two incoher-
ent ones (purple, red) at any given time. As discussed in the text,
there are two choices for how to implement an incoherent control
protocol of this type with fixed control complexity: The red line
corresponds to a protocol in which a machine (subspace) with the
same energy gap is reused 5 times before moving on to the next;
on the other hand, the purple line depicts the case where there are
no repetitions within each stage defined by a distinct energy gap
in the machine. By inspection, the single-use incoherent protocol
(purple) requires approximately 3 times more unitaries to achieve
the same efficiency as the coherent one (blue), whereas the five-
repetition incoherent protocol (red) requires approximately 5.3
times as many unitaries as the coherent one.
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outperforms that with multiple repetitions, as intuitively
expected since the former protocol corresponds to one
for which the spacing between distinct energy gaps that
are utilized is smaller, allowing us to stay closer to the
reversible limit in each step. In our example, the no rep-
etition incoherent control protocol is around 3 times worse
than the coherent control protocol and the incoherent con-
trol protocol with m = 5 repetitions is around 5.3 times
worse, implying that one would require that many times the
number of operations (i.e., that much more time) to achieve
the same performance with incoherent control paradigm as
with coherent control.
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