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Non-Markovian quantum processes exhibit different memory effects when measured in different ways; an
unambiguous characterization of memory length requires accounting for the sequence of instruments applied
to probe the system dynamics. This instrument-specific notion of quantum Markov order displays stark
differences to its classical counterpart. Here, we explore the structure of quantum stochastic processes with
finite memory length in detail. We begin by examining a generalized collision model with memory, before
framing this instance within the general theory. We detail the constraints that are placed on the underlying
system-environment dynamics for a process to exhibit finite Markov order with respect to natural classes
of probing instruments, including deterministic (unitary) operations and sequences of generalized quantum
measurements with informationally complete repreparations. Lastly, we show how processes with vanishing
quantum conditional mutual information form a special case of the theory. Throughout, we provide a number of
representative, pedagogical examples to display the salient features of memory effects in quantum processes.
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I. INTRODUCTION

Complex processes often exhibit genuine memory effects
on timescales that cannot be ignored [1,2]; however, these
effects are typically limited in duration for many physical
processes. For classical stochastic processes, the notion of
memory length can be captured formally through the concept
of Markov order, �. This dictates that the statistics describ-
ing a system of interest at a given time only depend upon
knowledge of its past � observed states. Markov order thus
provides an operationally meaningful timescale for temporal
correlations, the importance of which cannot be overstated,
because of its significance in reducing modeling complexity:
One must only estimate the conditional “transition” probabil-
ities from the most recent set of observations, rather than the
exponentially many more parameters for each additional time
step further back in the history.

Attempting to generalize the notion of Markov order to
quantum processes, one immediately faces the following
problem: Here, there is a continuous family of possible
noncommuting observables that could be measured, and the
choice of measurement at any point in time (or even whether
to measure at all) can directly affect the future statistics [3–6].
Indeed, in quantum mechanics, one must necessarily disturb
the system in order to observe realizations of the process,
breaking an implicit assumption in the description of classical
stochastic processes. This problem has irked the open systems
and quantum information communities for some time, leading
to various incompatible definitions of important concepts,
such as Markovianity [7–10].

The aforementioned issue can be remedied by account-
ing for the multitime statistics corresponding to all pos-
sible sequences of interrogating instruments, which track
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both the measurement outcome observed and the subsequent
update to the state of the system. For example, the spin
state of an electron evolving in an external magnetic field
can be uniquely characterized by recording the probability
of the spin being found in alignment with any sequence
of independent directions an experimenter might choose to
measure. Such accounting can be achieved within various
related modern frameworks for describing general quantum
processes [11–20]. In short, these frameworks describe a
quantum stochastic process as a collection of joint probability
distributions over the outcomes of any possible sequence of
measurements by distinguishing what one has control over,
i.e., the instruments applied to probe the system, from the
uncontrollable underlying process at hand.

This precise characterization of quantum stochastic pro-
cesses leads naturally to a set of necessary and sufficient
conditions for a process to be Markovian, i.e., memoryless
[21]. Thus equipped, one can address the concept of memory
length by unambiguously generalizing the notion of Markov
order to the realm of quantum mechanics. The intuition be-
hind quantum Markov order remains unchanged—as in the
classical case, the question boils down to whether the future
statistical evolution of the system can be deduced completely,
in principle, from the most recent � instruments applied. When
the state of the system is independent of any previous history
following the application of some sequence of instruments,
the process exhibits conditional independence between the
future and history. This guarantees that any statistics one
might obtain during future measurements will be independent
of those measured in the history, given knowledge of the most
recent � instruments.

In an accompanying paper [22], we have used the process
tensor framework [20,21] to address these issues and formally
extended the notion of Markov order to the quantum realm.
There, we prove that demanding that the future state be
independent of its history, upon application of any possible
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sequence of instruments allowable in quantum mechanics,
is too strong a restriction, immediately leading to a trivial
theory: No non-Markovian quantum process can display finite
Markov order with respect to all possible interventions. Con-
sequently, it is natural to study processes that have nontrivial
Markov order with respect to a specified sequence of instru-
ments. To render any future state independent of its history
for such processes, one must apply the correct interrogation
sequence; if there exists such a sequence, we say that the
process has finite-length memory or finite Markov order with
respect to the history-blocking sequence in question. Indeed,
quantum theory permits a rich landscape of memory effects,
with many properties that distinguish it from the classical
setting. In this paper, we examine the structure of finite-
memory quantum processes in detail.

In particular, we ask which kinds of processes can have
finite-length memory and what can be inferred about the un-
derlying process through knowledge of the history-blocking
sequence. We begin, in Sec. II, by motivating the study of such
processes through a generalized collision model and show
how it displays finite Markov order with respect to a natural
sequence of information-discarding instruments. We then in-
troduce the necessary ingredients to formulate the general the-
ory of quantum Markov order in Sec. III, before outlining the
constraints on the structure of finite-memory processes that
can be deduced through knowledge of the history-blocking
sequence in Sec. IV. Along the way, we introduce a variety of
representative examples, many of which have uniquely quan-
tum properties, such as history blocking through sequences
of unitary transformations or generalized (nonorthogonal)
quantum measurements. In Sec. V, we explore the relation
between processes with finite quantum Markov order and the
quantum conditional mutual information, with the main result
demonstrating how processes with vanishing quantum condi-
tional mutual information are a special case within the theory
of quantum Markov order. Lastly, in Sec. VI, we illuminate
how memory length in classical stochastic processes is also
instrument dependent when one cannot trust the resolution
of their measurement device. Although this issue of fuzzy
measurements obfuscating the memory length in the classical
realm is, in principle, liftable, it is fundamentally unavoidable
in quantum mechanics and must be acknowledged.

II. MEMORY LENGTH OF A GENERALIZED
COLLISION MODEL

A. Classical Markov order

We begin with a brief explanation of Markov order and
memory length in the classical setting to lay the foundations
of the concepts explored throughout this paper. Consider the
toy classical process of a perturbed coin. In this example, we
have a coin resting on a piece of cardboard, which is being
gently shaken at discrete times k ∈ {1, . . . , n}, resulting in a
time-independent probability, p > 1 − p, for the coin to retain
its previous orientation between each shake; with probability
1 − p, the coin flips from heads (H) to tails (T) or vice versa. It
is clear that the probability of the coin being in a particular
state at arbitrary time step k depends entirely on its most
recent state, i.e., the process is completely characterized by

the following conditional distributions:

Pk (Hk|Hk−1) = Pk (Tk|Tk−1) = p,

Pk (Hk|Tk−1) = Pk (Tk|Hk−1) = 1 − p. (1)

The dependence of the future statistics on only the most recent
outcome dramatically simplifies the complexity of any algo-
rithm aiming to predict the behavior of this process. Instead
of estimating the exponentially many probability distributions
corresponding to sequences of outcomes over the entire course
of history, one can simply condition on the previous state
[23–26].

The type of process described above is known as a Markov
or Markovian process and is sometimes referred to as mem-
oryless, since the process itself stores no memory of his-
toric states; the only temporal correlations that can arise are
mediated through the state of the system itself. One can
generalize the perturbed coin to incorporate longer memory
effects by shaking the card harder each time the same outcome
is observed and resetting the shaking strength as soon as an
outcome differs from the previous one. In this case, although
the statistics of the next state only depend upon the most
recent sequence of outcomes, this does not imply an absolute
demarcation of the process into some time steps of memory
and an irrelevant history. Indeed, temporal correlations be-
tween observations can be exhibited over various time scales;
if one begins such a process with the coin facing H up, a few
steps later it is more likely than not to be found in the same
state. The crucial point is that, once we know the state at time
step k, we may as well discard any observations of previous
states, since they tell us no additional information.

One accounts for genuine memory effects of this type that
are finite in duration through the notion of Markov order, �,
which dictates that the statistics observed at any given time
only depend upon knowledge of the past � outcomes. In other
words, with respect to knowledge of the state over a sequence
of � time steps {k − �, . . . , k − 1}, any statistics of the states
an experimenter might deduce over the history {1, . . . , k −
� − 1} and the future {k, . . . , n} time steps are conditionally
independent. It is the act of observing a sequence of outcomes
that renders the future and history conditionally independent;
one can think of this action as an intervention on the system
that blocks any possible historic influence on the future dy-
namics.

Formally, a (discrete-time, n-step) classical stochastic pro-
cess is described by the joint probability distribution of the
state of the system (represented as a random variable X
which takes values x) over the entire sequence of time steps:
Pn:1(xn, . . . , x1). A process has Markov order � when the
distribution factorizes as

Pn:1(xn, . . . , x1)=
n∏

j=�+1

P j (x j |x j−1 . . . , x j−�)P�:1(x�, . . . , x1),

(2)

with the special case � = 1 reducing to the condition of
Markovianity. Again, � determines the number of time steps
over which one must observe states in order to optimally
predict, in principle, the next state, thereby providing a natural
and fundamental timescale for memory length in stochastic
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FIG. 1. Generalized collision model with memory. The top row depicts a standard memoryless collision model. With time running left
to right, the system S (green) interacts unitarily at each time step once with each of a number of uncorrelated, fresh ancillary states Aj that
constitute the environment (orange); the collision is represented by the gray boundary. Following the dynamics at t = 1, the A1 ancilla has been
used and so stores information about the initial state of the system, indicated by the purple color and dashed outline (see A1 at t = 2). However,
each successive portion of evolution proceeds through an interaction with a fresh ancilla that has not yet interacted with the system. Thus, any
memory of the system’s history cannot influence the future evolution, leading to Markovian dynamics. The bottom row shows a generalized
collision model, where the system is allowed to interact with multiple ancillas between time steps. Here, once the system interacts with A0

and A1 after t = 1, again, these ancillary states can store information about the initial system state. The next step of dynamics following t = 2
involves A1 again; thus, the future dynamics are conditioned on the history. In this way, the ancillas serve to propagate memory effects through
the process.

processes. The practical importance of this property cannot
be overstated, as processes with finite Markov order can
be effectively reduced to Markovian processes upon a suit-
able grouping of time steps, allowing for efficient simulation
[2,27].

Implicit in this classical description is the assumption of
the ability to observe realizations of the state at any time
without affecting it. This immediately becomes problematic
when attempting to characterize quantum stochastic pro-
cesses, where this assumption simply cannot be satisfied: In
quantum theory, measurements, in general, necessarily disturb
the state. We now focus on a simple example of system-
environment dynamics within the framework of generalized
collision models with memory to give an intuitive under-
standing of the emergence of finite Markov order in quantum
processes, before addressing the general setting.

B. Generalized collision model with memory

Within the field of open quantum dynamics, collision
models have been introduced to provide a concrete underlying
mechanism describing the evolution of memoryless processes
[28–32]. In such models, a system interacts with an environ-
ment comprising independent ancillary subsystems through
successive unitary collisions with each ancilla. Because each
ancilla is only interacted with once, there is no way for the
environment to act as a mechanism for memory transport by
influencing future dynamics.

One can generalize this setting to allow for nontrivial mem-
ory effects: The most common approaches include beginning
with an initially correlated environment [33,34], allowing
for ancilla-ancilla interactions [35–39], permitting repeated
system-ancilla collisions [40,41], or some type of hybrid ap-
proach [42–45]. Each one of these scenarios can be motivated
through realistic physical origins that demand some reason-
able assumptions [46]; in all of them, the environment acts as

a memory by storing information about previous system states
to govern future evolution (see Fig. 1 for illustration). Here,
we focus on a special case of such dynamics with repeated
system-ancilla interactions, which has application in studying
phenomena with substantial time delays between repeated in-
teractions, e.g., developing feedback-assisted process control
protocols [40,41].

Consider specifically the following n-step process, de-
picted as a quantum circuit in Fig. 2. A system S interacts with
some inaccessible environment E , which comprises n + � − 1
initially uncorrelated ancillary systems τE

0 := ⊗n+�−1
x=1 τAx .

The overall joint system-environment dynamics between time
steps j − 1 and j is represented by the map defined as ρSE

j =
Ũ j: j−1ρ

SE
j−1 := ũ j: j−1ρ

SE
j−1ũ†

j: j−1. In this particular example, the
joint evolution is broken up into an ordered sequence of
pairwise collisions between the system and ancillary states of
the environment as follows:

Ũ j: j−1 := USAj

j: j−1 . . .USAj+�−1

j: j−1 , (3)

where the superscripts label the systems involved in the inter-
action. Following the dynamics between time steps j − 1 and
j, the specific ancilla Aj will have interacted with the system
� times; it is then discarded and never involved in the future
evolution.

In this model, we have not allowed for any initial system-
environment correlations or ancilla-ancilla collisions; this
type of evolution describes a time-translationally-invariant
microscopic model for processes with memory, which prop-
agates through the � ancillas that feed-forward to act like
a linear memory tape. By design, we can see how memory
effects arise: Ancilla Ax can store information about the sys-
tem, acquired during its first interaction through USAx

x−�+1:x−�,
and use it to influence the future dynamics up until its final
interaction with the system via USAx

x:x−1.
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FIG. 2. Finite-length memory with respect to trash-and-prepare protocol. The underlying system-environment dynamics for the generalized
collision model described in the main text, interspersed with the trash-and-prepare protocol applied to the system. Any possible influence
stemming from the history persists to impact the future for at most � = 3 time steps before being trashed. For instance, the red paths signify
the degrees of freedom that can be affected by the initial preparation, whereas the black ones cannot be. The final state is a function of only the
most recent � preparations, {σ S

1 , σ S
2 , σ S

3 }, and entirely independent of the initial system state, ρS
0 . Any other instrument sequence on the system,

e.g., a measurement rather than a trash-and-prepare instrument, would open up a pathway for the initial state ρS
0 to influence the future state

ρS
4 .

Suppose then that we wish to characterize such a process.
To do so, in practice, we must measure realizations of the
state of the system at each time step. We immediately face the
problem that any such measurement both conditions the state
of the environment and directly affects the state of the system.
This leads to different future dynamics dependent on both the
measurement outcomes observed and the way in which they
were measured. In this sense, an operational framework for
characterizing quantum stochastic processes must allow for
probing interventions on the level of the system. In contrast
to the underlying process at hand, an experimenter is assumed
to have complete control over these instruments, which we
formalize in Sec. III. The appropriate question relevant to
quantum processes is how one can actively block the effect
of history on the future dynamics over a finite number of time
steps.

C. Memory length

The representation of the process in Fig. 2 is particularly
illuminating: We can see the possible ways in which informa-
tion about the initial system state can perpetuate forward in
time along connected paths originating from some point in the
history (traced in red). For the particular collision model de-
scribed above, a history-blocking strategy involves discarding
the system state we receive from the process and repreparing
one of a known set of states to feed into the process over a
sequence of � time steps. It is clear that upon applying such a
sequence of trash-and-prepare instruments, any possible path
connecting the history to the future across � time steps is
broken, thereby guaranteeing that the future evolution of the
system is independent of anything that happened to it prior to
the trash-and-prepare sequence. We say that the process has
Markov order � with respect to this instrument sequence. In
line with standard intuition, � quantifies the number of time
steps over which an experimenter must act on the system
in order to block any influence of its history on its future
evolution.

For concreteness, consider the first four time steps of the
generalized collision model dynamics described above, with
� = 3. The final state of the system after some initial state ρS

0
(which can depend, in general, on its entire history) evolves
both uncontrollably due to the process and also in a control-
lable manner due to active application of the trash-and-prepare
instrument sequence, and is given by

ρS
4 = trE

(
Ũ4:3 σ S

3 trS
{
Ũ3:2 σ S

2 trS
[
Ũ2:1 σ S

1 trS
(
Ũ1:0ρ

S
0 ⊗ τE

0

)]})
,

(4)

where Ũ j: j−1 are defined as per Eq. (3), τE
0 = ⊗n+�−1

x=1 τAx , and
the map σ S

j trS (·) acts to discard the system at time step j and
reprepare it in some known state of our choosing, σ S

j .
In Appendix A 1, we prove that this trash-and-prepare

protocol indeed blocks any possible influence that the his-
tory can have on the future evolution. Specifically, we show
that for the particular process introduced above, at arbitrary
time k, all future states of the system after application of
any length-� sequence of trash-and-prepare instruments can
be uniquely described as a function of only the � recently
prepared states, for any prior history [referring to Eq. (4),
ρS

k = f (σ S
k−1, . . . , σ

S
k−3) ∀ {σ S

k−1, . . . , σ
S
k−3} for k = {4, . . . n},

with no dependence on any previous state of the system
such as ρS

0 ]. This result implies that any possible statistics an
experimenter might observe in the history and future are con-
ditionally independent given any length-� trash-and-prepare
sequence beginning at arbitrary time step k − �. Explicitly
defining the trash-and-prepare sequence in terms of operations
on the system as

D�
k

(
ρS

k−1, . . . , ρ
S
k−�

)
:= σ S

k−1trS[ρS
k−1] . . . σ S

k−�trS[ρS
k−�], (5)

in a slight abuse of notation, we can write

I ({n, . . . , k} : {k − � − 1, . . . , 0})D�
k
= 0. (6)

By this, we mean that the mutual information between any
possible statistics recorded on the future and history time

042108-4



STRUCTURE OF QUANTUM STOCHASTIC PROCESSES … PHYSICAL REVIEW A 99, 042108 (2019)

steps, which quantifies any possible correlation between them,
vanishes for all length-� trash-and-prepare sequences, D�

k .
Conversely, having finite-length memory with respect to

the trash-and-prepare protocol is a necessary but insufficient
condition to deduce the system-environment model depicted
in Fig. 2. As an explicit counterexample, consider two time
steps of dynamics in which two ancillary states of the en-
vironment are initially entangled, represented by the density
operator τA1A2 , and in product with the initial system state
ρS

0 . The system interacts first with A1 via USA1
1:0 , before A1

is discarded, and then with A2 via USA2
2:1 , with a trash-and-

prepare instrument σ S
1 trS applied to the system in between.

It is clear that the initial state ρS
0 can have no influence

on the future evolution, since the final system state can
be written uniquely as a map acting only on the prepara-
tion fed into the process, ρS

2 = trA2 [USA2
2:1 σ S

1 ⊗ τ̃A2 ], where
τ̃A2 := trSA1 [USA1

1:0 ρS
0 ⊗ τA1A2 ] = trA1 [τA1A2 ] represents the re-

duced state of A2 that, importantly, shows no memory of ρS
0 .

Therefore, the dynamics has finite Markov order � = 1 with
respect to the trash-and-prepare protocol but evidently does
not have the form depicted in Fig. 2; namely, because the
ancillas begin in an entangled, i.e., correlated, state.

To summarize, in this section we have introduced a specific
type of generalized collision model which, by construction,
perpetuates information about the history via a particularly
simple mechanism. This allows us to study explicitly how
memory effects arise from the perspective of the underlying
dynamics and build an intuitive understanding of the necessity
for instrument-specific Markov order in quantum mechanics.
The salient points to note are the following: (i) The trash-
and-prepare protocol does not block every type of mem-
ory. For arbitrary system-environment dynamics, following a
length-� trash-and-prepare sequence, ρS

k (and all the future
system states) will, in general, depend on both the known
preparations {σ S

k−1, . . . , σ
S
k−�} and the previous historic states

{ρS
k−�−1, . . . , ρ

S
0 }. Thus, if one were to measure statistics on

the future and history, one would see correlations, leading to
a breakdown of Eq. (6) and, hence, an appreciable memory
effect. Throughout this paper, we provide various examples
of processes that exhibit finite Markov order with respect to
other sequences of instruments, but not this one. (ii) Even for
the special case of dynamics described above, application of
a different sequence of instruments than the trash-and-prepare
protocol would not lead to future dynamics that are indepen-
dent of the history. For example, suppose that one were to
perform a measurement at an intermediary time step during
a length-� trash-and-prepare protocol. Here, the measurement
would condition the state of the environment on its outcome,
and hence the influence of the history can permeate through
the memory block, leading to dependence of the final output
on previous dynamics. Lastly, in Appendix A 2, we further
explore some of the various other types of memory that can
be naturally introduced into collision models.

From the considerations outlined above, it is clear that
knowing the history-blocking sequence for a given process
gives us information about the process at hand, but not nec-
essarily all of it. Although we have made no assumptions on
the action of the unitaries, the dynamics introduced above is a
special case of generic quantum evolution and the trash-and-
prepare protocol is just one of many possible sequences of

FIG. 3. Operational description of quantum stochastic processes.
Any quantum stochastic process can be modeled as arising from
a system interacting unitarily with a suitably sized inaccessible
environment. To characterize such evolution, one must interrogate
the system. Hence, we allow for sequences of probing operations,
O j (green), to be applied to the system throughout the dynamics;
these are the most general transformations allowable, taking input
states to output states (i, o respectively). The final state of the system
can be described uniquely through a multilinear mapping on only the
space of operations applied. This is precisely the process tensor, ϒn:1,
represented as everything within the yellow, dashed boundary.

instruments one might apply. For a taste of the possibilities,
the dynamics can fit anywhere within the theory of open
quantum systems and the history-blocking instruments can
be generalized measurements, unitary operations, or even
necessarily correlated in time. We now address the issue
more broadly: Given a process, what can we learn about the
structure of its underlying dynamics through knowledge of a
sequence of instruments that acts to erase the influence of the
system’s history on its future evolution? This question follows
naturally from the general framework of Markov order for
quantum processes, developed in Ref. [22].

III. FRAMEWORK

To formally introduce quantum Markov order, in this sec-
tion we recap the process tensor formalism and show how it
leads naturally to the instrument-specific notion of Markov
order that is unavoidable in quantum mechanics (for a more
thorough introduction, see, e.g., Refs. [19–22]). Following
this, we explore the structure of processes that satisfy the finite
Markov order constraint, making no assumptions about the
form of the underlying dynamics. We then highlight some of
the nonclassical memory effects that can arise in the quantum
setting, such as those whose historic influence can be blocked
only through application of unitary sequences or generalized
quantum measurements, before narrowing in on processes
with vanishing quantum conditional mutual information, of
which classical stochastic processes with finite Markov order
arise a special case.

A. Preliminaries

We consider discrete-time processes on systems with a
finite-dimensional state space. The state of the system S at
time step j ∈ {1, . . . , n} is represented as an element of the
bounded linear operators on a Hilbert space of dimension
d: ρS

j ∈ B(H j ). An operationally meaningful framework for
stochastic dynamics necessarily consists of two parts, as
shown in Fig. 3: (i) the uncontrollable underlying process
which governs the joint unitary evolution of the system with
some inaccessible environment E and (ii) the interleaved
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controllable changes to the state of the system, effected by
our probing operations. In the generalized collision model of
the previous section, the joint unitary evolution defined in
Eq. (3) provides the uncontrollable dynamics (the process),
while the trash-and-prepare instruments defined in Eq. (5)
applied to the system induce changes to the state that we
can control (our probing interventions). Such a description
importantly provides a link between two distinct but equally
valid perspectives of quantum stochastic dynamics: On the
one hand, one can consider a process to be a black box that
can only be characterized with respect to statistics deduced by
an experimenter probing the system; on the other hand, one
can take the omniscient perspective of a being with knowledge
of the deterministic underlying SE dynamics. We now outline
the most general setting possible that any stochastic evolution,
quantum or classical, must fit within.

On the uncontrollable side, the environment need not
begin uncorrelated from the system nor be broken into an-
cillary states which interact with the system locally; all
that is required is that the joint system-environment state
evolves unitarily between time steps. The evolution of the
joint state from time j − 1 to time j is represented by
the map U j: j−1 : B(HSE

j−1) → B(HSE
j ) defined by ρSE

j :=
U j: j−1ρ

SE
j−1 = u j: j−1ρ

SE
j−1u†

j: j−1, where u j: j−1 represents the
unitary matrix corresponding to the joint evolution. Here,
U j: j−1 can, in general and unlike in the previous example, act
on the system and the whole environment.

On the controllable side, the trash-and-prepare protocol
is simply a specific case of possible probing operations one
might apply; more generally, these can be any physically
realizable transformation in quantum mechanics, represented
at each time step j by a completely positive (CP) map
O(x j )

j : B(Hi
j ) → B(Ho

j ), which take input system states to
subnormalized output system states and whose trace is equal
to the probability of realizing the outcome x j , via P(x j )ρo

j =
O(x j )

j [ρi
j ]. The i/o labeling is, by convention, from the per-

spective of an experimenter implementing these operations
to probe the process; we often refer to the input space as
the space for measurements and the output as the space for
preparations. The CP operation O(x j )

j describes how the state
of the system is changed upon measuring outcome x j , given
that the instrument J j was used to interrogate the system. An

instrument is any collection of such CP maps J j = {O(x j )
j }

that overall (i.e., when summed over) yield a completely
positive, trace-preserving (CPTP) map. More generally still,
one could apply a sequence of instruments correlated across
time steps, e.g., by sending forward the ancilla that was used
to implement an earlier operation. The corresponding trans-
formations to the quantum system associated with observing
a sequence of outcomes xn−1:1 is captured by the multi-time-
step CP map O(xn−1:1 )

n−1:1 . A collection of such maps which overall
yields a valid quantum process (which we define shortly),
is deemed a valid instrument sequence. These represent the
most general probing apparata one could implement over a
sequence of time steps (including no measurement at all) and
have been formally introduced as testers throughout the liter-
ature in the context of general quantum circuit architectures
[13].

In analogy to how one abstracts the environmental in-
fluence between two points in time as a quantum channel
acting on the space of the system alone [47–50], one can
abstract all that is uncontrollable in an open process across
multiple time steps as the process tensor, ϒn:1, representing
everything within the yellow, dashed line in Fig. 3. This object
is universal in the sense that it can describe any possible
process permissible within quantum and classical physics
[12,13,20]. The process tensor is a multilinear functional that
takes any sequence of CP maps as its input and outputs the
resulting state of the system, subnormalized with respect to
the probability of realizing the operation sequence in question,
via the following rule:

ρS
n = trE

[
Un:n−1On−1 . . .U2:1O1ρ

SE
0

]
(7)

=: trn−1:1[(1n ⊗ On−1 ⊗ · · · ⊗ O1)ϒn:1].

To reiterate, here the controllable operations O j act on the
space of the system alone, while the joint unitary evolutions
U j: j−1 act on the system and the inaccessible environment. It
is evident that the process tensor contains information regard-
ing the initial system-environment state and the successive
joint unitary evolutions; we refer to this underlying system-
environment model as a dilation of the process. In contrast
to the classical case, where a stochastic process is completely
characterized by the underlying joint probability distribution
over sequences of random variables representing observed
outcomes, in quantum theory, each outcome corresponds to
a CP map on the system. The process tensor provides the
natural generalization of the joint probability distribution,
encapsulating all possible multitime correlations.

In the second line of Eq. (7) (and throughout this pa-
per), we use an extended Choi-Jamiołkowski isomorphism
to represent the sequence of CP maps and the process
tensor [19], i.e., OT

j := (O j ⊗ I )[�] ∈ B(Ho
j ⊗ Hi

j ) is the
Choi state of the map O j , where (·)T denotes transposi-
tion, I is the identity map, and � := ∑

xy |xx〉〈yy| is an
un-normalized maximally entangled state.1 Similarly, ϒn:1 ∈
B(Hi

n ⊗ Ho
n−1 ⊗ · · · ⊗ Hi

1 ) is a positive operator satisfying
tr[ϒn:1] = �n

j=1dim(Ho
j ). Refer to Appendix B for further

details on the representation of the process tensor as a many-
body Choi state and a summary of the labeling conventions
used throughout this paper.

This isomorphism transforms temporal correlations into
spatial ones, e.g., a Markovian process corresponds to an ϒn:1

of tensor product form [20,21]. Thus equipped, we can now
apply standard correlation tools to understand properties of
processes. It is important to note that all processes can be
represented in this way as (un-normalized) quantum states,
but not all quantum states represent valid processes [51]. The
set of possible temporal correlations are restricted, compared
to their spatial counterparts, because the process tensor must
satisfy a hierarchy of trace conditions which encode a proper
causal ordering, ensuring that the future process cannot influ-
ence the past [11–13,19,20,52]:

tr ji [ϒ j:1] = 1 j−1o ⊗ ϒ j−1:1, ∀ 1 < j � n. (8)

1Here we define the Choi state as the transpose of its usual
definition in order to ease notation, with no effect on any results.
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Conversely, any positive Hermitian operator satisfying this
causality constraint is guaranteed to represent a valid temporal
evolution within quantum (and classical) theory [13,20]. Any
valid instrument sequence must also satisfy a complementary
set of trace conditions to be physically realizable. In summary,
although all of the results presented throughout this paper
are in terms of the Choi states of processes, these statements
fundamentally address temporal properties of processes, such
as correlations between observables measured over time on
some evolving quantum system.

Most important, the process tensor formalism allows one to
calculate the joint statistics over the entire process, according
to the following generalized spatiotemporal Born rule [53],

Pn:1(xn:1|Jn:1 ) = tr
[
O(xn:1 )

n:1 ϒn:1
]
, (9)

where we specify a measurement on the final output state. This
allows us to unambiguously characterize important properties,
such as Markovianity [20,21] and Markov order [22], of
quantum stochastic processes from an operationally sound
perspective. Since the process tensor framework contains the
theory of classical stochastic processes as a special case,
such characterizations reduce to the classical statement in the
appropriate limit [6,22].

B. Quantum Markov order

In this new language, the intuition behind the concept
of Markov order remains unchanged from the standard one;
we are still asking whether the future dynamics can be de-
scribed completely, in principle, with knowledge accessible
from the most recent � states of the system. However, there
are subtleties. In Ref. [22], we prove that demanding this
constraint to hold for all possible instruments applicable to
the system trivializes the theory into only admitting processes
with Markov order � = 1 or � = ∞. This leads naturally to
the notion of instrument-specific Markov order, defined with
respect to a particular choice of instrument sequence which

acts to block the influence of the history on the future
evolution. Equivalently, this instrument sequence renders the
history and future parts of the process conditionally indepen-
dent. In terms of the process tensor structure, the instrument-
specific quantum Markov order condition implies that there
exists an instrument sequence JM = {O(xM )

M } such that the
following holds at arbitrary time step k (see Fig. 4 for
illustration) [22]:

ϒ
(xM )
FH := trM

[
O(xM )

M ϒFMH
] = ϒ

(xM )
F ⊗ ϒ

(xM )
H (10)

for all O(xM )
M ∈ JM , where, to ease notation, we group together

time steps as {F, M, H} := {{n, . . . , k}, {k − 1, . . . , k −
�}, {k − � − 1, . . . , 1}}.

A few comments are in order. First, if Eq. (10) is sat-
isfied, we say that the process has Markov order � with
respect to the history-blocking instrument sequence, JM . A
process can have finite Markov order with respect to en-
tire families of instruments (as in the generalized collision
model of Sec. II, where any instrument of the form defined
in Eq. (5) is history-blocking). The fact that the process is
rendered conditionally independent for each realization of the
instrument, which is, overall, a deterministic implementation,
means that we are guaranteed to block the effect of history
upon application of the instrument in question (given that we
know the outcome). In the more general setting, there may
exist individual operation sequences that block the history;
however, since these can only be implemented with some
probability, in contrast to overall deterministic instrument
sequences, such operations act to probabilistically render the
future and history conditionally independent. In this paper,
we focus on deterministic history-blocking sequences, where
every constituent operation sequence in a collection that forms
a valid instrument sequence acts to block the effect of history.

Second, satisfaction of Eq. (10) indeed guarantees the
conditional independence of any possible statistics one could
obtain on the future and history given knowledge of the

FIG. 4. Instrument-specific quantum Markov order. An instrument sequence JM , comprising (temporally correlated) CP operations {O(xM )
M }

(green) across a sequence of time steps of length �, is applied to a process ϒFMH (yellow). The process is said to have Markov order � with
respect to this instrument sequence if, for each possible realization of the instrument, xM , the history (red, ϒ (xM )

H ) and future (blue, ϒ (xM )
F ) parts of

the process are rendered conditionally independent. Here, for illustrative purposes, M = {k − 1o, . . . , k − �o}; i.e., any possible measurement
performed at time step k − �i is considered part of the history, and its outcomes are conditionally independent of any future statistics. Equation
(11) calculates the mutual information between the conditional history and future processes, which vanishes for processes with finite Markov
order.
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history-blocking instrument sequence. Generalizing Eq. (6) to
the case of an arbitrary history-blocking instrument sequence,
we see that the mutual information between the conditional fu-
ture and history processes for any realization of JM vanishes,
since they are of product form,

I (F : H )xM := S
(
ϒ

(xM )
F

) + S
(
ϒ

(xM )
H

) − S
(
ϒ

(xM )
FH

)
= 0, (11)

where I (F : H )xM denotes the mutual information between the
history and future processes given that the operation sequence
corresponding to outcome xM was realized, and S(·) is the
von Neumann entropy.2 The mutual information upper bounds
all possible correlations between arbitrary observables on F
and H , and thus its vanishing implies the temporal regions of
the future and history are totally uncorrelated with respect to
knowledge of xM [54].

Third, note that the conditional future process is a proper
process tensor by construction, while the conditional history
process represents an element of a tester, since the realization
of the instrument sequence on the memory amounts to a
postselection [11,22,52]. Intuitively, this means that when all
possible outcomes are summed over, the conditional history is
described by a proper process tensor, i.e., a positive semidef-
inite Choi state satisfying Eq. (8); however, the individual
tester elements need not obey the latter condition. In the
special cases where the they do, the probability of realising
the associated sequence of outcomes of the history-blocking
instrument can be extracted from the conditional history pro-
cess, as we do at some points throughout this paper.

Lastly, in terms of notation, it is important to distinguish
which input and output spaces constitute a memory block of
length �. Any such block may begin and end on either the
input or output Hilbert spaces of time steps k − � and k − 1
respectively (see Fig. 4). To ease notation, we refrain from
labeling each of these cases distinctly; instead, we provide
visual representations of each example considered throughout
this paper in order to make clear how the memory block is
defined.

As an example, to build a basic understanding of what
the quantum Markov order condition in Eq. (10) entails, we
refer to the main result in Ref. [21]: A quantum process is
Markovian if and only if (iff) it displays Markov order � = 1
(where only the space Ho

k−1 is considered part of the memory
block) with respect to an informationally complete set of
preparations, i.e., JM = {σ (x)

k−1o}d2

x=1 such that the set of states
prepared spans the operator space B(Ho

k−1). Upon specifying
such a set of states to feed into the process (that are necessarily
independent of any prior history, as they can be chosen freely
by the experimenter) and implementing what is referred to as
a causal break in Refs. [20,21], any future state of the system
can be described in terms of CPTP maps acting on {σ (x)

k−1o}
alone. Demanding this condition to hold for each time step in
turn implies that the process tensor ϒn:1 can be decomposed

2Since entropies are only well defined for normalized objects, any
entropic quantity is calculated using the normalized process tensor,
i.e., ϒ/tr[ϒ].

as a sequence of CPTP maps 	kik−1o : B(Ho
k−1) → B(Hi

k )
acting on an initial system state ρ1i [21,22]:

ϒMarkov
n:1 = 	nin−1o ⊗ · · · ⊗ 	2i1o ⊗ ρ1i . (12)

Here, each 	kik−1o completely determines any possible statis-
tics one might observe in the future through its action on
σ

(x)
k−1o , which is uncorrelated from any possible past observa-

tions encoded in the previous 	k−1ik−2o ⊗ · · · ⊗ 	2i1o ⊗ ρ1i .
This product structure is equivalent to the necessary

and sufficient characterization of Markovianity proposed in
Ref. [21] and reduces to the classical Markov condition in
the appropriate limit. Note that if the set of preparations is
not informationally complete, one cannot uniquely deduce the
tensor product structure of Eq. (12). Furthermore, there are
processes with quantum Markov order � = 1 that are non-
Markovian, e.g., where a single trash-and-prepare instrument
blocks the influence of history, as seen in (the counterexample
given in) Sec. II C: There, the future and history are condi-
tionally independent with respect to an instrument defined on
Ho

k−1 ⊗ Hi
k−1, rather than only the most recent preparation

space Ho
k−1 as required to be Markovian. Indeed, there are

processes whose history is blocked with a trash-and-prepare
instrument, but whose future dynamics can be conditioned
by the measurement outcome corresponding to a realization
of a measure-and-prepare instrument and are therefore non-
Markovian.

Extending this line of investigation, we are now interested
in what the satisfaction of Eq. (10) for a particular instrument
sequence implies for the underlying structure of the process
tensor. The remainder of this paper presents our results regard-
ing this question, with associated example processes to build
intuition regarding memory length in quantum processes. The
examples considered are constructed in such a way as to
highlight some key peculiar features of quantum Markov
order, and their essence applies to processes more broadly.

IV. QUANTUM PROCESSES WITH FINITE
MARKOV ORDER

As illustrated in Sec. II, the fact that the memory of a
process is blocked by an instrument sequence does not com-
pletely determine the underlying process. It does, however,
impose certain structural constraints on the process. We begin
by outlining the most general structure a process with finite
Markov order, with respect to some instrument sequence,
must have, before focusing on an important case of interest:
Where the history-blocking sequence is informationally com-
plete. We present a representative example of such processes
in each case.

A. Structure of quantum processes with finite Markov prder

Our structural analysis will be based on the fact that the
process tensor is multilinear in its arguments. Any �-step
operation it acts on can be considered as an element of a vector
space W := B(Ho

k−1 ⊗ · · · ⊗ Hi
k−�) of dimension dim(W ) =

d4�. As already mentioned, the only constraint on a set of oper-
ations that constitute an instrument sequence is that they sum
to a valid process, i.e., they are positive, Hermitian operators
and their sum yields a positive, Hermitian operator with the
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same causal ordering as the process tensor that acts on them
(this is enough to guarantee their physicality). This implies
that the CP operations constituting an instrument sequence
need not span the entire space W , even if they are linearly
independent. We call an instrument sequence that spans W
informationally complete (IC); such a sequence must contain
a minimum number of dim(W ) linearly independent elements.
On the other hand, we refer to an instrument sequence that
does not entirely span W as informationally incomplete.

Note that informational completeness and history blocking
are two distinct properties of an instrument sequence. In
particular, an informationally incomplete instrument sequence
can block the history, e.g., the trash-and-prepare sequence
introduced in Sec. II C. Informational completeness pertains
to whether or not one can completely characterize the process
at hand through knowledge of its action on each constituent
operation sequence. This property is of importance in this
section, which aims to identify structure in the process tensor
given that we know a certain instrument sequence blocks the
history.

We focus first on the most general case, where one
has satisfaction of Eq. (10) for an arbitrary (potentially
informationally incomplete) history-blocking instrument se-
quence. It is sufficient to consider the subset of history-
blocking instrument sequences comprising only linearly inde-
pendent operations, since these provide the maximal amount
of information one can obtain about the process. Suppose
we have an informationally incomplete history-blocking se-
quence JM = {O(x)

M }c
x=1, where c < dim(W ). We can always

complete this instrument sequence by appending an addi-
tional collection of operations, i.e., construct J ′

M = JM ∪
J M := {{O(x)

M }c
x=1, {O

(y)
M }dim(W )

y=c+1 }. Since this entire collection
of operations form a linearly independent set, there ex-
ists an associated dual set of objects {
′(w)

M } such that
tr[O′(z)

M 

′†(w)
M ] = δzw ∀ z,w [5,19,20,55].3 In terms of this (in

general, nonorthonormal) basis, we can (completely) decom-
pose the process tensor as ϒFMH = ∑dim(W )

z ϒ
′(z)
FH ⊗ 


′(z)
M .

However, since we know that the instrument JM acts to
render the history and future into a tensor product for each
outcome, we can further decompose the process tensor. We
partition the total dual set into the elements dual to those
in the history-blocking sequence, {
(x)

M }c
x=1, and the rest,

{
(y)
M }dim(W )

y=c+1 , such that tr[O(a)
M 


(b)
M ] = tr[O

(a)
M 


(b)
M ] = δab and

tr[O(a)
M 


(b)
M ] = tr[O

(a)
M 


(b)
M ] = 0. Now, the first c terms in the

sum above are given as
∑

x ϒ
(x)
F ⊗ 


(x)
M ⊗ ϒ

(x)
H . Note that

the duals in this construction are not necessarily positive
operators, although the overall process must be. By direct
insertion, it is clear that this portion of the process tensor
indeed satisfies Eq. (10). The remaining terms, which are

3Our definition of the dual set elements is related to that of
Ref. [5] by an adjoint to make the connection with the Hilbert-
Schmidt inner product explicit. Throughout this paper, we are always
linearly expanding onto basis objects that are the Choi states to
physical operations {O(x)}, which are Hermitian; in such cases, we
have {
†(y)} = {
(y)}. We therefore drop the adjoint symbol to ease
notation.

inaccessible to the history-blocking operations, can be written

as
∑

y ϒ
(y)
FH ⊗ 


(x)
M . These encapsulate future-history correla-

tions that an experimenter might observe upon application of
an alternative instrument. This leads to the following theorem,
which outlines the most general structure a process with finite
quantum Markov order must have.

Theorem 1. Processes with finite quantum Markov order
with respect to the instrument sequence JM must be of the
form

ϒFMH =
c∑

x=1

ϒ
(x)
F ⊗ 


(x)
M ⊗ ϒ

(x)
H

+
dim(W )∑
y=c+1

ϒ
(y)
FH ⊗ 


(y)
M , (13)

where c := |JM | is the number of constituent operations of the
history-blocking instrument sequence, {
(x)

M } form the dual set

to {O(x)
M }, satisfying tr[O(x)

M 

(y)
M ] = δxy ∀ x, y, and {
(y)

M } satisfy

tr[O(x)
M 


(y)
M ] = 0 ∀ x, y.

Each term in the first summand has F and H in tensor
product, ensuring Eq. (10) is satisfied with certainty for each
realization of the instrument sequence in question. Such a
decomposition must hold true for arbitrary time step k at
which any length-� memory block ends (although the terms in
it can change for different blocks); a generic quantum process
with infinite Markov order cannot be written so. The structure
outlined highlights that for an informationally incomplete
history blocking sequence JM , we can only access a portion of
the process tensor with conditionally independent future and

history. The ϒ
(y)
FH in the second term represents the portion of

the process that can only potentially be revealed through other
probing sequences.

The generalized collision model explored in Sec. II is
an example of such a process, since the trash-and-prepare
protocol that blocks the effect of history constitutes an infor-
mationally incomplete instrument sequence. This instrument
sequence is, by its very nature, incoherent: An experimenter
simply discards whatever states are output by the process
and feeds in some of their own choosing, thereby blocking
any possible effect of history on the future. In contrast to
this, one might expect that applying sequences of coherent
(i.e., unitary) operations to a process would always perpetuate
memory effects from the history to the future by way of trans-
mission through the system alone. We now provide an explicit
counterexample: a process whose history is only blocked upon
application of a sequence of coherent operations.

Example 1: History-blocking with a sequence of unitaries.
Consider the process depicted in Fig. 5 . It is constructed
such that there is exactly one length-� sequence of unitary
operations that guarantees the history is blocked, such that
the Markov order of the process is equal to �. At each time
step j ∈ {k − �, . . . , k − 1} in the memory block, the process
prepares an ancillary system A in a maximally entangled state
with S, ψAS := 1

d

∑
xy |xx〉〈yy|, which are together in tensor

product with the rest of the environment E .
The joint EAS state undergoes dynamics according to some

unitary map, U j , before an operation can be applied to the
system S by the experimenter. Following this operation, the
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FIG. 5. Finite-memory with respect to a unitary instrument se-
quence. The SE dilation of a single time step for a process whose
historic influence on the future is blocked only by the sequence of
unitary operations on the system {Vk−�, . . . ,Vk−1}. Everything inside
the yellow, dashed boundary, including the unitary operation V†

j , is
part of the inaccessible process; we only have the choice of what
operation is applied in the green outlined box. The “cutting protocol”
described in the main text is depicted here in purple: The ancillary
counter, C, registers the number of successive successful Bell basis
measurements on the SA system, which is reprepared as a maximally
entangled pair, ψAS , at each time step. When the counter reaches �,
the current environment state is discarded and a fresh one, τE

j+1, is
prepared to govern the future evolution. If the counter has not reached
�, the environment is left to mediate correlations from the history to
the future.

process applies the inverse V†
j of some unitary map V j on

the system alone. Each of them is defined in terms of unitary
matrices v j as V†

j (ρS
j ) := v

†
j ρ

S
j v j . The joint EAS state then

evolves according to the inverse unitary map U†
j . Lastly, AS

is subject to the following “cutting protocol”: A Bell basis
measurement is implemented, with an ancillary system, C,
counting whenever the outcome corresponds to ψAS . When C
reaches �, then the environment at that time step is discarded,
a fresh one is prepared to govern the future dynamics, and the
counter is reset. If the correct measurement outcome is not
observed, the environment is left untouched and the counter is
also reset.

It is evident that only upon application of the entire un-
correlated unitary sequence {Vk−�, . . . ,Vk−1} are the temporal
correlations guaranteed to be broken and the history and
future processes rendered conditionally independent. If, on
the other hand, this correct unitary sequence is not applied,
the environment is allowed to mediate correlations between
system states of the history and future, breaking the quantum
Markov order condition. For any other sequence of operations
implemented, while there is potentially a nonzero probability
for the counter to reach �, this is not equal to 1; hence, overall,
the influence of the history on the future is not blocked. This
process is of the form of Eq. (13) with respect to the infor-
mationally incomplete sequence of single-element (unitary)
instruments, with the first sum containing a single term and
the remainder of the process description encapsulated in the
second term:

ϒFMH = 1

d�
ϒ ′

F ⊗ V ′
k−1 ⊗ · · · ⊗ V ′

k−� ⊗ ϒH

+
∑

y

ϒ
(y)
FH ⊗ 


(y)
M , (14)

where the V ′
j /d are duals to the Choi states of the unitary maps

V†
j , and the conditional process tensor ϒ ′

F is the fresh future
process initiated by successful implementation of the cutting
protocol.

The process tensor in Eq. (14) is evidently an example
of Theorem 1; however, some remarks are in order. First,
note that even in the special case � = 1, the process is
non-Markovian, since it does not have the product structure
outlined in Eq. (12) (and the coherent unitary operation at time
step k − 1 required to block the effect of history on the future
operates on Ho

k−1 ⊗ Hi
k−1). Second, no sequence of unitary

operations can be IC; by definition, an informationally incom-
plete sequence cannot be used to extract full information about
a process. Although we know that any future dynamics will be
independent of the history with respect to this sequence, we
cannot predict what the next state will be as a function of the
history-blocking sequence.

B. History blocking with informationally complete
instrument sequences

Interestingly, in Example IV A, the influence of the history
on the future is blocked only by a sequence of coherent
(unitary) operations. This is somewhat counterintuitive, as one
might expect unitary transformations to perpetuate memory
effects. In fact, the general structural constraint of Theorem
1 is rather flexible, since knowledge of such an incomplete
history-blocking instrument sequence does not determine the
structure of the process at hand. In many cases of interest, one
has access to an IC set of operations to probe the dynamics,
e.g., when one attempts to tomographically reconstruct a
generic process [20]. In this case, since an IC instrument
sequence spans the entire space of operations, there can be
nowhere for potential memory effects correlating the history
and future to hide. The memory block can be decomposed
onto an IC set of duals, uniquely specifying the entire process
for each sequence of outcomes realized on the memory block.
In this case, finding the future process to be conditionally in-
dependent of the history constrains the structure of the process
tensor in a stricter manner than Eq. (13); we immediately have
the following corollary:

Corollary 2. A process with finite Markov order with
respect to an informationally complete history-blocking in-
strument sequence must have the following structure:

ϒFMH =
∑

x

ϒ
(x)
F ⊗ 


(x)
M ⊗ ϒ

(x)
H . (15)

Remark. Theorem 4 in Ref. [22] states that the only pro-
cesses with finite quantum Markov order with respect to all
instrument sequences are Markovian. Its proof begins by de-
manding Eq. (10) to hold for all possible instruments. As such,
we can consider an IC instrument sequence, in which case the
process tensor must be of the form given by Eq. (15), which
arises immediately from Theorem 1. Then, using the fact that
one can construct arbitrary operation sequences spanning the
operation space of M, we can vary 


(x)
M freely. Demanding the

structure of Eq. (15) to remain intact for arbitrary outcomes
forces a tensor product between M and F or H (or both),
meaning the process tensor is restricted to a single term in
Eq. (15), i.e., it is of product form. Requiring this to hold
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FIG. 6. Finite memory with respect to an informationally com-
plete sequence. Initially, a tripartite state ρY 2i1i is constructed as
per Eq. (17), with subsystems 1i, 2i of it fed out at consecutive
time steps as described in the text. The states fed back into the
process on spaces 1o, 2o are fed forward as inputs to the CPTP map
	3iY 2o1o defined in Eq. (18). Upon applying any combination of the
correct IC causal break sequence {σ (x)

1o ,�
(y)
2i , σ

(z)
2o }, one of d6 final

output states ρ
(xyz)
3i are output by the process in the future, each of

which is conditionally independent of each historic ρ
(y)
1i . If any other

operations are applied, correlations will arise between the history and
future in general.

for any time step leads to the Markovian product structure of
Eq. (12).

An operationally motivated choice for an IC instrument
sequence consists of applying a causal break at each time
step [21]: Each operation here consists of an IC positive
operator-valued measure (POVM) followed by an indepen-
dent preparation of one of an IC set of states to feed forward
at each time step:

O(xM )
M =

k⊗
j=k−�

σ
(xoj )
jo ⊗ �

(xij )

ji . (16)

Here, the {σ (xoj )
jo } are an IC set of states (i.e., they span the

entire space of system states), the {�(xij )

ji } form an IC POVM

satisfying
∑

xij
�

(xij )

ji = 1 ji , and the {xoj , xij } are independent
of each other. Such an operation acts to completely reset the
state of the system and can be achieved, e.g., by making a
measurement followed by a unitary operation, such that the
output state is independent of the premeasurement input. We
now give an example of a process that exhibits finite Markov
order with respect to an IC instrument sequence of causal
breaks.

Example 2: History blocking by an informationally com-
plete instrument sequence (causal breaks). Consider the pro-
cess depicted in Fig. 6 , where, for simplicity, we present
the case � = 2 for a three-step process, with the extension
to longer length memory immediate. Initially, the following
tripartite state is prepared:

ρY 2i1i =
∑

y

P(y)ρ (y)
Y ⊗ 


(y)
2i ⊗ ρ

(y)
1i , (17)

with {
(y)
2i } forming the dual set to some IC POVM J2i :=

{�(y)
2i } and Y labeling an ancillary Hilbert space of the en-

vironment that is never accessible to the experimenter. The
marginal state ρ1i := trY 2i [ρY 2i1i ] is fed out of the process
at the first time step, at which point the experimenter could
implement any operation they choose; similarly, the state ρ2i

is fed out at the second time step. The output states at 1o and

2o are mediated forward by the process, along with the Y party
of ρY 2i1i , as inputs to a CPTP map, whose Choi state is defined
as follows:

	3iY 2o1o :=
∑
xyz

ρ
(xyz)
3i ⊗ D(y)

Y ⊗ D(z)
2o ⊗ D(x)

1o , (18)

where {D(y)
Y } are the dual set to {ρ (y)

Y }, and {D(z)
2o }, {D(x)

1o }
respectively form the dual set to some IC set of prepara-
tions {σ (z)

2o }, {σ (x)
1o }. This map acts to take each one of the

σ
(x)
1o , ρ

(y)
Y , σ

(z)
2o combination of inputs to one of d6 unique states

ρ
(xyz)
3i , which are the final outputs of the process.

Demanding the construction of ρY 2i1i in Eq. (17) to be
a positive operator overall and the map 	3iY 2o1o defined in
Eq. (18) to represent a valid evolution requires sufficient
mixedness of each ρ

(y)
1i and ρ

(xyz)
3i ; additionally, ensuring that∑

xyz D(y)
Y ⊗ D(z)

2o ⊗ D(x)
1o = 1Y 2o1o guarantees 	3iY 2o1o satisfies

the necessary trace conditions. Importantly, all of these con-
ditions outlined above can be achieved simultaneously. It then
follows that there exists an underlying unitary dilation of
the map 	3iY 2o1o that can be implemented in principle. The
process tensor is explicitly given by

ϒ3i:1i =
∑
xyz

P(y)ρ (xyz)
3i ⊗ D(z)

2o ⊗ 

(y)
2i ⊗ D(x)

1o ⊗ ρ
(y)
1i . (19)

Intuitively, the IC instrument sequence JM =
{σ (x)

1o ,�
(y)
2i , σ

(z)
2o } blocks any influence from the history to

the future, as the measurement performed at 2i leaves the
initial state ρY 2i1i in a product between Y and 1i for each
outcome, such that the final output state is independent of
any operation that could be performed at 1i. Indeed, for any
realization of the instrument sequence, the conditional future
and history processes are independent and of the form of
Eq. (10):

tr2o2i1o
[(

σ
(z)
2o ⊗ �

(y)
2i ⊗ σ

(x)
1o

)
ϒ3i:1i

]
= P(y)ρ (xyz)

3i ⊗ ρ
(y)
1i . (20)

In this sense, the map 	3iY 2o1o has no bearing on whether
the effect of history is blocked or not: An experimenter could
coarse grain over any of the preparations while applying the
correct measurement, e.g., feed in pσ (x)

1i + (1 − p)σ (x′ )
1i , yield-

ing a future state pρ (xyz)
3i + (1 − p)ρ (x′yz)

3i that remains condi-

tionally independent of the history ρ
(y)
1i given the measurement

outcome y at 2i. Of course, simpler processes can lead to an
independent history and future with respect to the outcomes
of an IC POVM (such as the example given in Appendix
C of Ref. [22]). However, here we construct a more general
process with 	3iY 2o1o defined as per Eq. (18) in order to yield
d6 distinct future states ρ

(xyz)
3i for each possible realization

of the causal break sequence, each of which is conditionally
independent of the history. We leave as an open problem
the question whether there exist processes with finite Markov
order with respect to an IC instrument sequence that are not
causal breaks, such that each realization of the instrument
leads to a distinct history and future process: i.e., Eq. (10) is
satisfied for some IC JM = {O(m)

M } such that ϒ
(m)
F �= ϒ

(m′ )
F and

ϒ
(m)
H �= ϒ

(m′ )
H ∀ m, m′.

Just as in the generalized collision model of Sec. II, in
principle one can predict the next state of the system as a
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function of measurements and preparations in the causal break
sequence. Furthermore, since the history-blocking sequence
is IC, one can perform a process tomography to completely
characterize the process as per Eq. (19). If, on the other hand,
one were to apply a different instrument on the memory block,
then correlations between the future and history would in
general arise (but, as already mentioned, we could vary the
preparations and not see any influence from the history).

C. Summary of Sec. IV

The examples provided throughout Sec. IV highlight sig-
nificant properties of memory in quantum processes. Exam-
ple IV A explicitly shows that there exist processes where
coherent (unitary) operations can break all possible temporal
correlations between future and history, while Example IV B
highlights that the operations of a history-blocking instrument
sequence can comprise an IC nonorthogonal set of indepen-
dent measurements and preparations.

So far, through Theorem 1 and Corollary 2, this section
has developed the structural constraints that a process tensor
must satisfy in order to exhibit finite quantum Markov order.
However, this characterization is difficult to check in practice,
due to the nonuniqueness of possible decompositions. It is
therefore natural to seek a function of these finite Markov
order processes that vanishes iff there are no correlations be-
tween the history and future remaining once a memory block
of length � is specified. For classical stochastic processes
(without interventions), it is straightforward to show that the
conditional mutual information (CMI) of the underlying joint
probability distribution has the desired property. In contrast,
in both of the above examples (and also in the generalized
collision model of Sec. II), the quantum generalization of the
CMI evaluated on the Choi state of the process tensor between
the history and future with respect to the memory is nonvan-
ishing. This observation is insightful for a number of reasons
which we address in the coming section, where we explore
in detail the necessary conditions on the history-blocking
instrument sequences for processes with vanishing quantum
CMI, of which classical processes with finite Markov order
are a special case.

V. QUANTUM MARKOV ORDER AND THE QUANTUM
CONDITIONAL MUTUAL INFORMATION

We begin this section by briefly considering the
relationship between Markov order and CMI in the classical
setting. Any classical stochastic process with Markov order �,
i.e., described by a probability distribution satisfying Eq. (2),
can be equivalently characterized through the following
two statements. First, from an operational perspective, the
significance of finite Markov order is best encapsulated
through the existence of a so-called “recovery” map WM→FM

that acts only on M to give the correct future probability
distribution: PFMH = WM→FM[PMH ]. This map can be
straightforwardly used to simulate future dynamics, and
the complexity of any predictive model is fundamentally
bounded by the length of the block M on which it acts
(as well as by the number of possible realizations of each
Xj). Second, an entropic characterization of finite Markov

order that is easy to check in practice can be formulated
as follows: The classical CMI vanishes IC(F : H |M ) :=
H (PFM ) + H (PMH ) − H (PFMH ) − H (PM ) = 0, where
H (PX ) := −∑

x PX (x) logPX (x) is the Shannon entropy.
Proving the equivalence between these statements is trivial:
Satisfaction of Eq. (2) implies the distribution factorizes as
PFMH (xF , xM , xH ) = PF (xF |xM )PMH (xM, xH ); the recovery
map WM→FM can be chosen to act as multiplication by
the stochastic transition matrix PF (xF |xM ). Equivalence to
vanishing classical CMI is obvious by writing the conditional
mutual information as a relative entropy between probability
distributions (Kullback-Liebler divergence) in the following
way, IC(F : H |M ) = DKL(PFH |M‖PF |MPH |M ), and noting that
this relative entropy vanishes iff the arguments are identical.
Thus, in the classical setting, vanishing CMI is equivalent to
finite Markov order.

As mentioned previously, until the recent introduction of
the process tensor, there was no meaningful way to develop
a sensible notion of Markov order, because the statistics
that can be deduced depend on how one probes the process
and are thus inherently instrument dependent. Despite this
concern, the alternative characterizations of Markov order in
the classical setting described above can easily be generalized
to the quantum realm. This has led to quantum Markov chains
being defined throughout the literature as quantum states
with vanishing quantum CMI [56,57], or, equivalently, those
that satisfy quantum generalizations of recoverability [58–63].
On the other hand, the general theory of quantum Markov
order for processes introduced here is captured by the condi-
tional independence statement of Eq. (10). This instrument-
dependent statement is in stark contrast with the existing
definitions on quantum states, which make no mention of the
instrument sequence of choice. Therefore, it is unclear how
such characterizations concretely relate to temporal processes
with finite quantum Markov order. Nonetheless, the Choi-
Jamiołkowski isomorphism allows us to consider temporal
processes in terms of their corresponding Choi state. We now
explore the behavior of quantities used in analyzing spatial
correlations in quantum states, such as the quantum CMI, for
the Choi state of the process tensor and explore its relation to
finite quantum Markov order.

Understanding where processes with vanishing quantum
CMI fit within our more general theory of finite quantum
Markov order is also of significant practical interest. Unlike
the classical case, proving the equivalence between quantum
states with vanishing quantum CMI and those tripartite states
that are recoverable through action on the conditioning sub-
system alone is nontrivial and the proof is a highly celebrated
result [57,64]. Another important result on the structure of
such states arises by studying the set of states that remain
unperturbed under action of such a recovery map [58,65].
In light of this, it is natural to seek processes whose future
can, in principle, be simulated without disturbance through
action of a map on the memory block alone. In addition,
recent bounds on the fidelity of recovery for such states with
approximately vanishing quantum CMI have been established
[60–63], potentially providing a degree of confidence in
approximately simulating processes with small memory ef-
fects. We have the following theorem that establishes a
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relation between vanishing quantum CMI and finite Markov
order.

Theorem 3. Vanishing quantum CMI guarantees the pro-
cess has finite quantum Markov order; the converse does not
hold.

We noted this statement as Proposition 5 in Ref. [22]; here,
we prove it concretely. The structure of processes with vanish-
ing quantum CMI can be deduced from that of quantum states
with vanishing quantum CMI, with the additional causality
constraint imposed to ensure a valid process. The CMI of
a quantum process is defined by I (F : H |M ) := S(ϒFM ) +
S(ϒMH ) − S(ϒFMH ) − S(ϒM ), and it vanishes iff there exists
an orthogonal decomposition of the composite M Hilbert
space as HM = ⊕

m H(m)
ML ⊗ H(m)

MR , such that [58]

ϒCMI=0
FMH =

⊕
m

P(m)ϒ (m)
FML ⊗ ϒ

(m)
MRH . (21)

Here, the decomposition of HM does not necessarily respect
the temporal ordering of the underlying process. Specifically,
the Hilbert spaces {H(m)

ML } do not need to describe events that

occur strictly before or after those described in {H(m)
MR }.

The proof of Theorem 3 is given in Appendix C; the
basic strategy is to explicitly construct a history-blocking
instrument sequence for processes of the form in Eq. (21) and
show that this structure is a special case of Eq. (13), imply-
ing that there exist processes with finite Markov order but
nonvanishing quantum CMI. The history-blocking sequence
we construct is, in fact, made up of the set of orthogonal
projectors (which form a self-dual set) onto each of the m
subspaces in the decomposition above. This begs the question:
Do processes with finite Markov order with respect to an
instrument sequence comprising only orthogonal projectors
necessarily have vanishing quantum CMI? Here, we provide
an explicit example to show that this is not the case; indeed,
the relationship between Markov order with respect to projec-
tive operations and vanishing quantum CMI is a subtle one.

Example 3: Process with nonvanishing quantum CMI but
finite Markov order for a sequence of rank-1, orthogonal pro-
jectors. Consider the process depicted in Fig. 7 . Begin with
a four-dimensional ancilla qudit in a coherent superposition
|τ 〉A = α|0〉 + β|1〉 + γ |2〉 + δ|3〉 with |α|2 + |β|2 + |γ |2 +
|δ|2 = 1. Controlled on the state of this qudit, the process
implements one of the four Pauli maps (including the identity
map), V := {I,X ,Y,Z}, on a qubit system. The Choi states
of these operations are the (un-normalized) four Bell pairs:

|�±〉 := |00〉 ± |11〉,
|�±〉 := |01〉 ± |10〉. (22)

Suppose that the process continues for n time steps and, at
the nth step, the ancilla is fed out with the system in order to
retain the quantum features of the process. The corresponding
process tensor is ϒn:1 = |ϒ〉〈ϒ |, where

|ϒ〉 := α|0〉A
ni ⊗ |�+

nin−1o . . . �+
2i1o〉

+ β|1〉A
ni ⊗ |�+

nin−1o . . . �+
2i1o〉

+ γ |2〉A
ni ⊗ |�−

nin−1o . . . �−
2i1o〉

+ δ|3〉A
ni ⊗ |�−

nin−1o . . . �−
2i1o〉. (23)

FIG. 7. Process with nonvanishing quantum conditional mutual
information. The environment is a four-dimensional ancilla. Its state
is a coherent superposition of the basis states {|0〉, . . . , |3〉}. The
system-environment evolution is a control unitary, which implements
one of the the four Pauli rotations V := {I,X ,Y,Z} on the system
depending on the state of the ancilla (see top panel). The history-
blocking instrument sequence consists of feeding in one half of
a Bell pair and at the next measuring the system and the other
half in the Bell basis at the next time step. For each outcome of
this instrument, one can infer which of the four Pauli rotations
was applied, and the history and future processes are conditionally
independent. For illustrative purposes, the bottom panel depicts the
conditional processes that arise from successful implementation of
the operation 1

4 �+, which occurs with probability |α|2.

Note that this is not a Markovian process [it is not of the
product form of Eq. (12)], nor is it a classical probabilistic
mixture of such processes; rather, the process tensor is a pure
state representing a coherent superposition of implementing
sequences of the four Pauli maps.

Consider the instrument sequence where, at some time step
k − 1, an experimenter inputs half of one of the Bell pairs,
feeds the other half forward to the next time step k, and
then makes a Bell basis measurement (see Fig. 7). The cor-
responding instrument consists of the Choi states Jkik−1o =
{O(x)

kik−1o} := 1
4 {�+

kik−1o ,�
+
kik−1o ,�

−
kik−1o , �

−
kik−1o}. Since all

cross terms in ϒn:1 are orthogonal to any of these, for each
outcome observed upon their application, the experimenter
observes one of the following four conditional processes:

ϒ
(0)
FH = �+

F ⊗ �+
H , ϒ

(1)
FH = �+

F ⊗ �+
H ,

(24)
ϒ

(2)
FH = �−

F ⊗ �−
H , ϒ

(3)
FH = �−

F ⊗ �−
H ,

where �+
F := |0〉A

ni ⊗ �+
nin−1o ⊗ · · · ⊗ �+

k+1iko
, �+

H :=
�+

k−1ik−2o
⊗ · · · ⊗ �+

2i1o , and the superscript label
corresponds to each possible realization (e.g., the label
(0) corresponds to feeding in half of the state �+/2 and
successfully measuring it, which occurs with probability
P(0|JM ) = |α|2, and similarly for the other quantities
defined).

Intuitively, once an outcome of the instrument described is
observed, one can deduce which of the four control operations
were applied to the system and hence the state of the ancilla
(which collapses onto one of its computational basis states
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and does not change further). This means that the history and
future processes are known with certainty and are therefore
conditionally independent. In contrast, suppose one were to
perform an incoherent operation, such as feeding in the max-
imally mixed state before averaging over all measurement
outcomes at the subsequent time step. In this case, the con-
ditional future-history process is now a probabilistic mixture
of the four control operations being applied, i.e., ϒFH =∑

x P(x)ϒ (x)
FH , with {ϒ (x)

FH } defined in Eq. (24) and P(x) =
{|α|2, |β|2, |γ |2, |δ|2}. Such a mixture of Markovian processes
is non-Markovian due to the correlations between the future
and history: Indeed, in this case one could condition the future
dynamics by performing certain operations in the history.

A simple calculation shows that the quantum CMI between
the history and future given the memory for the process tensor
in Eq. (23) does not vanish; rather, it is equal to the Shan-
non entropy of the distribution P(x) = {|α|2, |β|2, |γ |2, |δ|2}.
Lastly, note that had we chosen to discard the ancilla, rather
than feed it out at the final time step, the corresponding
process tensor is a probabilistic mixture of sequences of the
four Pauli maps applied, i.e., the projector of Eq. (23) without
any cross terms. In this case, the process tensor is of the form
in Eq. (21) and the quantum CMI vanishes.

In summary, here we have an example of a process which
has finite Markov order with respect to an instrument se-
quence comprising only rank-1, orthogonal projectors, but
nonetheless has nonvanishing quantum CMI. As detailed at
the beginning of this section, such a situation cannot occur
for classical stochastic processes; there, as long as an ex-
perimenter can observe realizations of the process at hand
sharply, i.e., resolve d mutually exclusive outcomes for a
d-dimensional system (which can be represented by d rank-1,
orthogonal projectors), then the classical CMI must vanish for
a process with finite Markov order. Thus, the example pre-
sented here represents a fundamentally quantum mechanical
memory effects with no classical analog. Interestingly, in the
study of classical stochastic processes where one allows for
fuzzy measurements, e.g., a measuring device which coarse
grains over some of the outcomes observed (which can be
represented by higher rank, orthogonal projectors), a similar
discrepancy between the Markov order of the underlying pro-
cess and the vanishing classical CMI of the statistics observed
arises, as we now explore.

VI. CLASSICAL STOCHASTIC PROCESSES WITH
FUZZY MEASUREMENTS

As noted by van Kampen, “a physical process . . . may
or may not be Markovian, depending on the variables used
to describe it” [27, p. 91]; and the same is true for the
Markov order. The existence of perceived memory effects
fundamentally depends on our experimental abilities, both in
quantum mechanics (where it is generally acknowledged), as
well as in classical physics, where it is often forgotten. Indeed,
the standard framework for studying classical stochastic pro-
cesses assumes the ability to measure observations of the ran-
dom variables describing the system sharply; it breaks down
when one allows for fuzzy measurements, or, more generally,
experimental interventions. Such invasive operations are at the
core of the theory of classical causal modeling [66] (which

contains classical stochastic processes as a special case [6]):
Here, one is allowed to implement any probing operations
that map probability distributions in the state space to other
valid distributions. As in quantum mechanics, allowing for
interventions in classical physics makes the Markov order of
a process inherently instrument dependent. Consequently, a
comprehensive characterization of memory effects is impor-
tant from an operational perspective, in particular for the case
where one may not be able to resolve measurements at a
sufficient level of granularity [67–69].

We now explore how the characterization of classical
stochastic processes is inherently instrument dependent when
one allows for the possibility of fuzzy measurements. Begin
by noting that Eq. (2) can be reformulated in terms of the
following statement on the conditional statistics:

Pk (xk|xk−1, . . . , x1) = Pk (xk|xk−1, . . . , xk−�), (25)

which must be satisfied at any time step k ∈ {� + 1, . . . , n}.
Suppose that, instead of measuring the random variable X , we
can only measure some Y , which coarse grains over a subset
of the x values, denoted x. The conditional statistics of the
outcomes observed y can be explicitly written in terms of the
fine-grained variable x as

Pk (yk|yk−1, . . . , y1) = Pk:1(yk, . . . , y1)

Pk−1:1(yk−1, . . . , y1)

=
∑

x Pk:1(xk, . . . , x1)∑
x Pk−1:1(xk−1, . . . , x1)

�= Pk (yk|yk−1 . . . , yk−�). (26)

Thus, even if Eq. (25) is satisfied for the random variable X , it
is not necessarily so for Y , nor does the classical CMI of the Y
variables vanish. The fact that coarse graining can increase the
memory length observed by an experimenter arises from the
well-known property that the space of Markovian processes
is not convex. Interestingly, we can also have the opposite
scenario occur, i.e., have a process display finite Markov order
with respect to a fuzzy measurement sequence, but if one
had the ability to realize sharp observations of the process,
they would attribute to it a longer memory length. Explicit
examples for each of these scenarios are given in Appendix
D, with a quantum mechanical analog of the latter provided in
Appendix E.

The instrument-specific definition of Markov order de-
scribed in this paper unambiguously characterizes memory
length in any case of classical processes with fuzzy mea-
surements and/or experimental interventions. In this light,
even in classical physics, we should say that if a classical
process is considered to have Markov order �, it does so with
respect to sharp observations of the process. Even in the
most general classical setting of causal modeling, however,
the instrument dependence of Markov order is liftable, in the
sense that it can be removed by changing perspective. By in-
corporating the experimenter and their choice of intervention
into the description of the process, the standard definitions of
Markov order apply on a higher level. On the other hand,
in the study of quantum stochastic processes, even sharp
quantum measurements look fuzzy when they act on a general
state; thus, the fuzzy-measurement issue is fundamentally
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unavoidable and must be acknowledged accordingly through
an instrument-specific notion of Markov order.

VII. CONCLUSION

In this paper, we have aimed to outline some of the key
features of memory effects, in particular, memory length, in
quantum stochastic processes. We began with a motivating
example in Sec. II that highlights how a certain generalized
collision model exhibits finite-length memory with respect
to a natural trash-and-prepare history-blocking protocol; the
deeper exploration of memory effects in similar models in
Appendix A further motivates the necessity of instrument-
specific Markov order for quantum processes and a better
understanding of the microscopic mechanism for memory
propagation. We then tackled the general problem: Given a
sequence of operations that acts to erase the memory of a
process, what can we say about its structure? After intro-
ducing the necessary formalism in Sec. III, in Sec. IV we
detailed the generic structural constraint on process tensors
with finite quantum Markov order, exhibited, e.g., by a process
whose history is blocked by a sequence of unitary operations
(Example IV A). We then considered processes with finite
memory with respect to IC instrument sequences such as an
IC POVM followed by an independent repreparation of a state
from an IC set (Example IV B). In Sec. V, we showed that,
unlike the classical case, in the quantum realm, processes
with finite Markov order with respect to a sequence of in-
struments need not necessarily have vanishing quantum CMI
(as exhibited by all examples throughout this paper, including
each type of collision model with memory). We provided
an explicit example where the history-blocking instrument
sequence comprises only sharp, orthogonal projectors, but
nonetheless has nonvanishing quantum CMI (Example V).
This is a fundamentally quantum mechanical phenomenon
which has no classical analog. In contrast, when one can ob-
serve realizations of classical processes sharply, finite Markov
order and the vanishing of the classical CMI are equivalent
statements. Indeed, this section highlights that even in the
classical case, we must be more careful in how we model
stochastic processes when we cannot assume that we can
measure realizations of the process sharply, as explored in
Sec. VI. In contrast to the classical case, however, in quantum
mechanics, the fact that perceived memory effects are inher-
ently instrument dependant is fundamentally unavoidable and
must be reconciled, as we have here and in Ref. [22].

Our present work raises some interesting avenues for future
exploration. First, none of the structural constraints imposed
by the finite quantum Markov order condition rely on the
underlying unitary dynamics, and even the generalized col-
lision models we have studied make no assumptions on the
action of such unitaries; our statements hold in general. On
the other hand, realistic physical scenarios are often modeled
by specific forms of interactions, e.g., nearest-neighbor inter-
action spin chains evolving in a time-translationally-invariant
manner. In such a scenario, while a generic sequence of
instruments such as the trash-and-prepare protocol does not
always act to block the historic influence, in practice it may
be the case that such a sequence almost always approximately
blocks the influence of history. A natural extension to this

work would involve a deeper exploration of memory ef-
fects in specific physical models with the instrument-specific
quantum Markov order formalism. Second, here we have
not addressed the important issue of quantifying memory
strength or classifying processes with approximately finite-
length memory. It is clear that, unlike the classical case, the
quantum CMI is a poor quantifier of memory strength, since it
does not necessarily vanish for processes with finite quantum
Markov order. In future work, we aim to address this issue by
proposing instrument-specific measures of memory strength
for quantum processes. Lastly, a better understanding of the
type of memory and resources required to simulate finite-
memory processes is needed. From the entanglement structure
of the process tensor, one should be able to deduce whether the
memory required to simulate a process is quantum or classical
in nature and, from a practical perspective, if one is attempting
to design quantum circuits with finite-length memory, the
structure of the circuit must follow the constraints outlined
in this paper.

We now move to discussing some of the broader implica-
tions of our work. It is clear that the process tensor provides
the most generic description of causally ordered processes
allowable within quantum theory and thereby enables unam-
biguous characterization of complex time evolution. Exam-
ining properties of its structure, as we have in this article,
provides fundamental insight into understanding the space of
quantum processes and temporal correlations. Indeed, similar
objects that are not necessarily causally ordered, such as
the process matrix, are developing into a tool for study-
ing the most general spatiotemporal correlations allowable
[14,16,51], shedding light on the defining features of quantum
and postquantum theories. On the practical side, the process
tensor contains all the information one could ever hope to
learn about a process. This, unfortunately, makes it compu-
tationally daunting to approach. In light of this, its usefulness
lies in our ability to develop compression and extraction meth-
ods to approximate interesting physical evolutions with over-
lapping process tensors of finite length for efficient simulation
of long-term dynamics. Indeed, this is the flavor of many
methods proposed throughout the literature, such as the trans-
fer tensor approach [70–73]. A deeper understanding of this
will naturally begin to answer questions such as the follow-
ing: How can processes be optimally compressed to reduce
complexity in storing and simulating them? What resources
are required for their simulation? How do errors accumulate
if we try to keep reconstructing and disturbing overlapping
parts of a process? These, among others, have significant con-
sequences for efficient quantum simulation and computation.
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APPENDIX A: GENERALIZED COLLISION MODELS
WITH MEMORY

1. Generalized collision model with memory via repeated
system-ancilla interactions

In Sec. II, we introduced a type of underlying system-
environment dynamics that arises from a generalized collision

model, where the system interacts � times with each ancilla
in the order depicted in Fig. 2. We claimed that the state of
the system subject to such dynamics interspersed with the
application of � trash-and-prepare operations can be expressed
as a function of only the last � preparations. In this Appendix,
we explicitly prove this statement.

Consider, without loss of generality, the case for � = 2 (the
extension to larger � is straightforward). The final output state
of the system following two trash-and-prepare instruments,
with the repreparations of the system state at time j repre-
sented by σ S

j , is given by

ρS
3 = trA4A3

{
USA3

3:2 USA4
3:2 σ S

2 trSA2

[
USA2

2:1 USA3
2:1 σ S

1 trSA1

(
USA1

1:0 USA2
1:0 ρS

0 ⊗ τA1 ⊗ τA2 ⊗ τA3 ⊗ τA4
)]}

= trA4A3

{
USA3

3:2 USA4
3:2 σ S

2 ⊗ τA4 trSA2

[
USA2

2:1 USA3
2:1 σ S

1 ⊗ τA3 trSA1

(
USA1

1:0 τA1 ⊗ USA2
1:0 ρS

0 ⊗ τA2
)]}

. (A1)

Now note that we can write the joint SA2 state after the first interaction, i.e., USA2
1:0 ρS

0 ⊗ τA2 , as ρ̃S
0 (ρS

0 , τA2 ) ⊗ τ̃A2 (ρS
0 , τA2 ),

where ρ̃S
0 (ρS

0 , τA2 ) := trA2 [USA2
1:0 ρS

0 ⊗ τA2 ] and similarly for τ̃A2 (ρS
0 , τA2 ). This simply expresses the postinteraction marginal

states (marked with the tilde) as a linear map acting on the preinteraction states. We do this in order to clearly track dependency
of states through the process with respect to arbitrary unitary interactions. Continuing from above and repeatedly applying this
method, we yield

ρS
3 = trA4A3

{
USA3

3:2 USA4
3:2 σ S

2 ⊗ τA4 trSA2

[
USA2

2:1 τ̃A2
(
ρS

0 , τA2
) ⊗ USA3

2:1 σ S
1 ⊗ τA3

]}
= trA4A3

[
USA3

3:2 τ̃A3
(
σ S

1 , τA3
) ⊗ USA4

3:2 σ S
2 ⊗ τA4

]
= trA4A3

[
USA3

3:2 trS
(
USA3

2:1 σ S
1 ⊗ τA3

) ⊗ USA4
3:2 σ S

2 ⊗ τA4
]

= M
[
σ S

1 , σ S
2

]
. (A2)

Here, in the penultimate line, we re-expanded τ̃A3 (σ S
1 , τA3 ) to make explicit the fact that ρS

3 is a function of only the two
previously prepared states, which can be written as a linear map M as in the final line, with no dependency on prior historic
states such as ρS

0 . Through time-translational invariance, the proof method holds for arbitrary time steps and the extension to
longer � is immediate. Indeed, the process depicted in Fig. 2 has a length-� memory with respect to the trash-and-prepare
protocol.

If, on the other hand, one were to apply a different instrument, then the output state here ρ̃S
3 would in general show dependence

on the historic state ρS
0 . Consider for concreteness that an experimenter were to first apply a trash-and-prepare instrument and

then at the second time step a measurement on the system of some outcome m followed by an independent repreparation of the
system into the state σ S

2 . Changing the second operation to a measurement and repreparation amounts to introducing the local
system measurement operator, �

(m)
2 , in Eq. (A2) following the joint unitary dynamics Ũ2:1, which leads to the following state at

the third timestep:

ρ ′S
3 = trA4A3

(
USA3

3:2 USA4
3:2 σ S

2 ⊗ τA4 trSA2

{
�

(m)
2

[
USA2

2:1 τ̃A2
(
ρS

0 , τA2
) ⊗ USA3

2:1 σ S
1 ⊗ τA3

]
�

(m)
2

})
. (A3)

However, since the system and ancillas A2 and A3, in general, build up correlations during the interactions USA2
2:1 and USA3

2:1 , the
ancillary state τ̃A3 (m) that feeds forward into the next step of dynamics will be conditioned upon the measurement outcome m,
which implicitly depends upon the initial system state ρS

0 ; indeed, the future dynamics proceeds differently for distinct histories.
Explicitly, we can write

ρ ′S
3 = trA4A3

[
USA3

3:2 τ̃A3
(
m; ρS

0 , σ S
1 , τA2 , τA3

) ⊗ USA4
3:2 σ S

2 ⊗ τA4
]
, (A4)

where

τ̃A3
(
m; ρS

0 , σ S
1 , τA2 , τA3

)
:= trSA2

{
�

(m)
2

[
USA2

2:1 τ̃A2
(
ρS

0 , τA2
) ⊗ USA3

2:1 σ S
0 ⊗ τA3

]
�

(m)
2

}
. (A5)

Without knowledge of ρS
0 , the output state ρ ′S

3 when this instrument sequence is applied cannot be specified and hence the process
displays memory effects that persist longer than � time steps.

2. Other generalized collision models with memory

The example introduced in Sec. II presents a generalization
of a collision model with memory; however, it is not the only

way to build memory into collision models, which we now
briefly explore. A discrete-time, n-step memoryless collision
model consists of a system S interacting with an environment
E that has a particular structure: it is made up of a number
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FIG. 8. Generalized collision models with memory. In addition to introducing memory into collision models with repeated system-ancilla
collisions (as in Sec. II), memory can be built into collision models by allowing for (i) ancilla-ancilla interactions (top row) and (ii) an initially
correlated environment (bottom row). (Note that the legend is as per Figs. 1 and 2). The top left panel depicts a schematic of the dynamics
where ancilla-ancilla interactions (yellow boundary) are interleaved between the system-ancilla collisions (gray boundary). At the second
time step, A2 already has knowledge of the state of the system at t = 1 mediated via the A1A2 interaction. As such, the future dynamics is
conditioned on the initial system state. The top right panel displays the corresponding circuit diagram. Here, for arbitrary operations on the
system O j , it is clear that the ancilla-ancilla interactions provide a possible path of influence from the history to the future state; hence, such
a process generically displays infinite Markov order with respect to any instrument sequence (as shown by the red path). For instance, even
with the application of a sequence of trash-and-prepare operations, the final output state can still be influenced by the initial preparation. The
bottom left panel depicts a schematic of the dynamics where the ancillas constituting the environment begin in a correlated state (represented
by the orange line connecting them). Here, as soon as the system interacts with a part of the correlated ancillary state, all other ancillary
systems can store information about the initial state of the system, thereby influencing the future dynamics. Finally, the bottom-right panel
displays the corresponding circuit diagram for this case. Again, allowing for arbitrary operations on the system level, the initial correlations in
the environment provide a mechanism for the history to influence the future over an infinite length of time.

of constituent ancillary subsystems, Aj , with the dynamics
proceeding through successive unitary collisions between the
system and ancillas (see the top panel in Fig. 1). A memory-
less collision model assumes the following:

(1) The system only interacts with each ancilla once.
(2) There are no ancilla-ancilla interactions.
(3) The ancillas are initially uncorrelated.
Such a model has surprising power in describing dynam-

ics which, in the continuous-time limit, are governed by
a Lindbladian master equation [30,32]. Although any such
process looks Markovian at the system level, the necessary
and sufficient Markov condition introduced in Ref. [21] only
deems a process to be Markovian if the underlying SE dy-
namics is exactly as described above. Breaking any one of the
above assumptions (while satisfying the other two) endows
the process with a different type of memory mechanism [46]
(see Figs. 1, 2, and 8 for illustration). We now examine
such memory effects in terms of the structure of the under-
lying dilation, without any assumptions on the action of the
unitaries.

Case 1: Repeated system-ancilla interactions. As shown
in Sec. II and Appendix A 1, in the case where one allows
for repeated system-ancilla interactions, as in Refs. [40,41],
the memory effect depends on the nature of these repeated
collisions. For example, if they occur in the nested order
depicted in Fig. 2, then the process has Markov order � with

respect to the trash-and-prepare protocol. If the interactions
are simply repeated between the system and a given ancilla
multiple times between each time step, then the process is
Markovian on an appropriate coarse graining of time steps.
In general, however, repeated system-ancilla interactions give
rise to infinite-length memory (even with respect to the trash-
and-prepare protocol). This can be seen by considering the
dynamics depicted in Fig. 2 with the order of any pair of
joint unitary operations flipped: now, a continuous path can
be drawn from the history to the future across a length-� trash-
and-prepare protocol, indicating a possible historic influence
on the future dynamics.

Case 2: Ancilla-ancilla interactions. This includes the sce-
narios considered in Refs. [35–39] and is depicted in the top
row of Fig. 8. In the case where ancilla-ancilla interactions are
allowed, the historic influence can, in principle, last forever,
since it can permeate continuously through the environment
by ancilla-ancilla interactions. Consider specifically the case
where at the first step, S is swapped with A1 through the
swap map USA1

1:0 = SSA1 , and then during each successive
ancilla-ancilla interaction, the initial system state is continu-
ally swapped into the next ancilla via SAj A j−1 , before finally
An, which now stores the initial system state, is swapped
back to the system level through USAn

n:n−1 = SSAn . Suppose
that all but the first and last system-ancilla interactions are
identity transformations and we allow for the application of
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arbitrary probing operations on the system at each time step
in between (represented by O j , which could, e.g., be trash-
and-prepare operations). It is clear that the output system is

(trivially) a function of its initial state, regardless of what-
ever intermediary operations an experimenter applies on the

system:

ρS
n = trAn

[
SSAnOS

n−1trAn−1

(
SAnAn−1OS

n−2trAn−2

{
. . . trA2

[
SA3A2OS

1 trA1

(
SA2A1SSA1ρS

0 ⊗ τA1 ⊗ · · · ⊗ τAn
)]})]

= trAn:A1

[
SSAnSAnAn−1 . . .SA2A1OS

n−1 . . .OS
1SSA1ρS

0 ⊗ τA1 ⊗ · · · ⊗ τAn
]

= trAn

[
SSAnρ

An
0 OS

n−1:1τ̃
S
] = ρS

0 . (A6)

Here, we made use of the composition property of the
swap map SABSBC = SAC , defined OS

n−1:1 := OS
n−1 . . .OS

1 ,
and τ̃ S := trA1 [SSA1ρS

0 ⊗ τA1 ] is the initial state of A1 that
is swapped into the system space during the first joint
interaction.

Despite the generally infinite-length memory, from the
perspective of simulation, this type of memory is not complex:
here, given control over part of the environment, one only
needs to track one additional ancilla to efficiently simulate
such processes, hence the classification of a “memory depth”
of 1 [39], even though the memory length here is infinite.
Memory depth is the number of additional ancillas required
to embed a non-Markovian process as a Markovian one; in
other words, a process with a single ancilla-ancilla interaction
between time steps evolves in a Markovian fashion with
respect to treating the system and the ancilla it interacts with
at each time step as a single larger system. In distinction,
memory length concerns the number of time steps back one
needs to store information about the state of the system that
could influence future dynamics.

Case 3: Initially correlated environment. Lastly, consider
the case of an initially correlated environment, as is studied
in Refs. [33,34] and is depicted in the bottom row of Fig. 8.
Again, there is no generic way to erase the influence of the
state’s history on its future evolution by action on the system
alone: This is because the ancillary states in the environment
begin correlated, and so as soon as the system interacts with
the first ancilla, in principle all of the ancillas that will interact
with the system at some time in the future already store knowl-
edge of the initial system state. Thus, through later interac-
tions, this information can feed back to dictate the future evo-
lution of the system, giving rise to non-Markovian behavior.

In the case of an initially correlated environment, one re-
quires control over the entire collection of ancillas to simulate
general processes. Again, consider the situation where A1 and
An−1 begin correlated, at the first interaction S and A1 are
swapped, and due to the A1–An−1 correlation An−1 also stores
knowledge of the initial system state, which can be swapped
back to the system level at the final interaction to give the
final output. At all intermediate time steps, the dynamics
looks like the initial state of A1 interacting with each other
ancilla pairwise in succession. It is clear that, as in case 2, the
final state of the system will be identical to its initial state,
regardless of the operations one might perform. However, in
contrast, simulation of such processes is generically highly
complex, as it requires control over a large number of ancillary
subsystems in the environment.

APPENDIX B: CHOI-JAMIOŁKOWSKI ISOMORPHISM
FOR THE PROCESS TENSOR

In this Appendix, we explicitly construct the Choi state of
the process tensor, which is depicted in Fig. 9 and achieved as
follows. Referring to Eq. (7), we abstract everything in the
dynamics that is uncontrollable as a multilinear map, Tn:1,
which takes the control operations implemented to the final
state of the system, i.e., ρS

n := Tn:1[On−1, . . . ,O1]. Begin with
2n ancillary systems {Aj, Bj} of the same dimensionality as
S prepared as n (un-normalized) maximally entangled pairs,
{�Aj B j }. At each time step of the process, one half of each
pair is swapped with the system state through SSAj

j . The
resultant d2n−1-dimensional system-ancillary (un-normalized)
state ϒn:1 ∈ B(HS

⊗n−1
j=1 HAj B j ) encodes equivalent informa-

tion as the temporal map Tn:1 and is explicitly written as
follows:

ϒn:1 = trE
[
Un:n−1SSAn−1

n−1 . . .U2:1SSA1
1(

ρSE
0 ⊗ �A1B1 ⊗ · · · ⊗ �AnBn

)]
= Tn:1 ⊗ L[SSA ⊗ IB], (B1)

where in the first equality, the U j: j−1 maps act only on the
SE space. The second equality makes the connection to the
process tensor map Tn:1 explicit; its action is extended to
the ancillary space via a number of superchannels, L :=⊗n−1

j=1 LAj B j , describing the initial maximally entangled pairs
�AB, with A accessible at time step j, before both being
subject to trivial evolution. This entire mapping acts on a
number of swap operations SSA := ⊗n−1

j=1 S
SAj

j between the
system and the A ancillas at each time step, in addition to a
trivial evolution of all of the B ancillas, IB.

Although any temporal process can be represented by a
many-body quantum state through the above construction, as
mentioned in the main text, not all quantum states correspond
to a process. Equation (8) encodes the causality constraint re-
quired to ensure that the Choi state represents a valid temporal
process. Since the process tensor acts on sequences of CP
maps, it makes no sense per se to speak of the standard desired
properties of a valid process such as complete positivity and
trace preservation; on the other hand, there are natural exten-
sions of these concepts that must be satisfied [11,20]. The
notion of complete positivity means that for any sequences
of input CP maps, including those acting on an arbitrarily
extended ancillary Hilbert space, the output of the process
tensor is a valid CP map: This leads to the positivity and
Hermiticity of the Choi state ϒn:1 � 0 and ϒ

†
n:1 = ϒn:1. The
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FIG. 9. Choi-Jamiołkowski isomorphism for the process tensor. The process tensor map, Tn:1, for any quantum stochastic process can be
represented as a many-body state, ϒn:1, through the extended Choi-Jamiołkowski isomorphism depicted above and as described in Eq. (B1).
For each time step j ∈ {1, . . . , n}, half of an ancillary system that has been prepared as an un-normalized maximally entangled state, �A j B j , is
swapped into the process, represented by the blue crosses. The resulting (2n − 1)-body quantum state ϒn:1 contains equivalent information to
the map Tn:1.

trace-preservation property translates to the statement that for
any deterministic sequences of operations applied, i.e., CPTP
maps, the output state has unit trace: This is encoded naturally
in Eq. (8) by the fact that the partial trace over the final system
yields an identity operator on the output space of the previous
time step (rather than a subnormalized state proportional to
the identity). Indeed, positive, Hermitian operators satisfying
Eq. (8) are the most general (un-normalized) quantum states
that represent physically allowable evolutions through the
(inverse of the) Choi-Jamiołkowski isomorphism defined in
Eq. (B1).

The action of the process tensor map on a sequence of
operations can be expressed in terms of its Choi state (and
that of the sequence of operations it acts upon),

Tn:1[On−1:1] = trn−1:1
[(
1in ⊗ OT

n−1:1

)
ϒn:1

]
, (B2)

where On−1:1 represents the most general correlated sequence
of CP maps an experimenter could apply. Indeed, any such
sequence of CP maps must be physically implementable, and
so are themselves similar objects to the process tensor and
subject to a complementary set of causality constraints. Gen-
eralizing the notion of an instrument, an instrument sequence
is any such collection of (possibly correlated across time
steps) CP maps Jn−1:1 := {O(xn−1:1 )

n−1:1 } that, overall, give rise to a

valid process, i.e., Õn−1:1 := ∑
xn−1:1

O(xn−1:1 )
n−1:1 with Õn−1:1 being

a valid quantum state satisfying Eq. (8).
Lastly, we present a summary of the notation consistently

used throughout this paper to aid the reader. Time steps
are labeled as subscripts with Latin letters; to ease notation,
sequences are often grouped as j : k := { j, . . . , k}. The labels
i/o refer to the input (respectively output) Hilbert spaces
associated to each time step (from the perspective of some-
body applying operations to the system state). Uppercase
script Latin letters denote temporal maps and their nonscript
counterparts represent their corresponding Choi state. Super-
scripts in parentheses label outcomes of probing instruments.

Capitalized Latin superscripts are used to denote spaces of
operators where they may be potentially ambiguous.

APPENDIX C: VANISHING QUANTUM CMI IMPLIES
FINITE QUANTUM MARKOV ORDER

Proof. (Theorem 3). From the structure of Eq. (21), it is
clear that there exists a history-blocking instrument sequence:
namely, that constituting the projectors onto each of the
m orthogonal subspaces. Begin by rewriting Eq. (21) as a
regular sum by projecting onto the constituent subspaces of
the decomposition:

ϒCMI=0
FMH =

⊕
m

P(m)ϒ (m)
FML ⊗ ϒ

(m)
MRH

=
∑

m

P(m)�(m)
ML ϒ

(m)
FML �

(m)
ML ⊗ �

(m)
MR ϒ

(m)
MRH�

(m)
MR .

(C1)

Consider now the instrument made up of the projectors in the
above decomposition, i.e., JM = {�(m)

ML ⊗ �
(m)
MR }. This consti-

tutes a valid instrument sequence as it sums to an identity
on HM . It also constitutes a history-blocking sequence for
the process described by ϒCMI=0

FMH , as for each realization
of the instrument, the future and history are conditionally
independent:

trM
[(

�
(m′ )
ML ⊗ �

(m′ )
MR

)
ϒCMI=0

FMH

]
= trM

[∑
m

P(m)�(m)
ML ϒ

(m)
FML �

(m)
ML

⊗�
(m)
MR ϒ

(m)
MRH�

(m)
MR

(
�

(m′ )
ML ⊗ �

(m′ )
MR

)]
= trM

[
ϒ

(m′ )
FML �

(m′ )
ML ⊗ ϒ

(m′ )
MRH�

(m′ )
MR

]
= trML

[
ϒ

(m′ )
FML

] ⊗ trMR

[
ϒ

(m′ )
MRH

]
= ϒ

(m′ )
F ⊗ ϒ

(m′ )
H , (C2)
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where we use the orthogonal projector identity �(m)�(m′ ) =
δmm′�(m) and the trace properties of cyclicity and linearity.

We now examine the structure of vanishing quantum CMI
processes in further detail: This serves to illuminate the
connection between processes with finite Markov order with
respect to instruments comprising only orthogonal projectors
and those with vanishing quantum CMI, which we explore
further in Sec. V. Continuing from Eq. (C1), note that the
projectors in the decomposition are not necessarily rank 1; we
thus further expand the conditional process tensor parts on a
basis within each m subspace as

ϒ
(m)
FML ⊗ ϒ

(m)
MRH = ϒ

(m)
F ⊗ �

(m)
ML ⊗ �

(m)
MR ⊗ ϒ

(m)
H

+
∑
ss′

ϒ
(m,s)
F ⊗ ξ

(s)
ML ⊗ ξ

(s′ )
MR ⊗ ϒ

(m,s′ )
H .

(C3)

The ξML/R encode the off-diagonal elements within each m
subspace (since the projector �

(m)
ML ⊗ �

(m)
MR encodes all of

the diagonal elements), and can thus be chosen such that
tr[ξML/R ] = 0 and �

(m)
ML/Rξ

(m′ )
ML/R = δmm′ξ

(m)
ML/R . In this expansion,

the ϒ
(m,s)
F and ϒ

(m,s′ )
H are not required to be proper processes,

since the ξML/R do not necessarily represent physical operators.
We therefore have

ϒCMI=0
FMH =

∑
m

P(m)ϒ (m)
F ⊗ �

(m)
ML ⊗ �

(m)
MR ⊗ ϒ

(m)
H

+
∑
m,s,s′

ϒ
(m,s)
F ⊗ ξ

(m,s)
ML ⊗ ξ

(m,s′ )
MR ⊗ ϒ

(m,s′ )
H . (C4)

Note that if the M subspaces in the decomposition of Eq. (21)
are all one dimensional, i.e., the projectors in Eq. (C1) are all
rank 1, we only have the first term:

ϒCMI=0
FMH =

∑
m

P(m)ϒ (m)
F ⊗ �

(m)
ML ⊗ �

(m)
MR ⊗ ϒ

(m)
H . (C5)

Regarding the converse statement of Theorem 3, we have
shown examples of processes with finite Markov order with
nonvanishing quantum CMI (see Examples IV A and IV B and
the generalized collision model of Sec. II); processes with
finite Markov order must only satisfy the structure outlined
in Theorem 1. This shows that it is insufficient to conclude
that the process has vanishing quantum CMI. Furthermore,
even if a given process has finite Markov order with respect to
an instrument sequence comprising only rank-1, orthogonal
projectors, the process can still have nonvanishing quantum
CMI: In this case, since the projectors form a self-dual set, we
can construct the process as

ϒFMH =
∑

m

ϒ
(m)
F ⊗ �

(m)
M ⊗ ϒ

(m)
H + ϒ̃FMH , (C6)

with tr[�(m)
M ϒ̃M] = 0 ∀ m. Even though the projectors in the

history-blocking instrument are not necessarily the same as
those that project onto the subspaces defined in the decom-
position of Eq. (21), this condition does not imply that the
process tensor is block diagonal in some basis of M; rather,
the process can have off-diagonal elements with respect to the
subspaces defined by {�(m)

M } and satisfy Eq. (C6). This implies
that there are processes with nonvanishing quantum CMI but
finite Markov order.

To summarize, the salient points from this analysis are
as follows. First, suppose that a process has finite Markov
order with respect to an instrument sequence comprising
only orthogonal projectors that are not rank 1: In this case,
there is no reason that the future-history correlations within
each m subspace must obey the product structure outlined
in Eq. (C5), and hence the process can have nonvanishing
quantum CMI. This is shown explicitly in Example E of
Appendix E. However, similar behavior also arises in an
operational interpretation of classical stochastic processes, as
explored in Sec. VI: If one cannot measure realizations of
the process sharply, i.e., with sequences of rank-1 projectors,
then the statistics observed do not necessarily have vanishing
classical CMI, even if the true underlying process is one of
finite Markov order (see Appendix D).

Second, suppose that a process has finite Markov order
with respect to an instrument sequence comprising sharp,
orthogonal projectors. The condition tr[�(m)

M ϒ̃M] = 0 ∀ m of
Eq. (C6) does not imply that the process must be block diago-
nal in some basis of HM , as required for the quantum CMI to
vanish [see Eq. (C1)]. It follows that there exist such processes
with nonvanishing quantum CMI, as shown in Example V. In
contrast to the earlier point regarding instrument sequences
comprising higher rank projectors, the present statement is
indeed a fundamentally quantum mechanical phenomenon. In
the classical setting, finite Markov order with respect to sharp
realizations of the process and the classical CMI vanishing are
equivalent statements (see Sec. VI).

It is lastly interesting to consider why these two notions
are equivalent in the classical setting but not for quantum
processes. Suppose that a classical process has finite Markov
order with respect to the sequence of sharp projectors {�(m)

M };
then, the process can be written of the form in Eq. (C6).
However, in the classical setting, where there can be no
off-diagonal terms, tr[�(m)

M ϒ̃M] = 0 implies ϒ̃M = 0. Alter-
natively, d orthogonal projectors are informationally complete
in the classical setting; thus, the process must be of the form
of Corollary 2, with the projectors on the M block. In either
case, the process is then of the form of Eq. (C5) (by choosing
either HML or HMR to be trivial), meaning the quantum CMI
vanishes.

APPENDIX D: CLASSICAL STOCHASTIC PROCESSES
WITH FUZZY MEASUREMENTS

Here we provide two examples, depicted in Fig. 10, of
classical processes where an experimenter has only access to a
fuzzy measuring device which coarse grains over some of the
outcomes of the process at hand: In either case, the perceived
memory length of the process is instrument dependent. The
first example is a process that is Markovian but exhibits
non-Markovian statistics to the experimenter, while the sec-
ond example is a process that is non-Markovian but looks
Markovian on average, i.e., with respect to the coarse-graining
instrument.

Example 4: Fuzzy measurements can increase classical
Markov order. Consider the process depicted in the left panel
of Fig. 10. At each time step, the random variable of interest
Xk can take one of three distinct values: xk ∈ {ak, bk, ck}.
Between each step of dynamics, the transition probabilities
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FIG. 10. Instrument dependence of classical Markov order with fuzzy measurements. Here we depict two classical processes to highlight
the instrument dependence of Markov order when sharp measurements are not assumed (a legend is provided in the rightmost panel). On
the left, the process of Example 4 is shown, defined by the transition probabilities depicted at each time step. Here, if one is able to record
observations sharply, i.e., measure the random variable X = {a, b, c}, the process is clearly Markovian; however, if one cannot measure at that
resolution and, e.g., the measurement apparatus only records fuzzy statistics of the random variable Y = {a, b ∪ c}, as depicted by the blue,
dashed box, the process would be classified as non-Markovian. In the middle panel, the process of Example 5 is shown. Here, three bits are
initially prepared as described in the text, and each bit is fed out of the process at successive time steps. The preparation is such that if the
second bit is sharply measured to be in the state 0, bits 1 and 3 are perfectly correlated; if the second bit is in state 1, bits 1 and 3 are perfectly
anticorrelated; while on average, i.e., with respect to the fuzzy measurement coarse graining over everything in the blue, dashed box, bits 1
and 3 are completely uncorrelated.

are given by Pk (bk|ak−1) = Pk (ck|bk−1) = 1, Pk (ak|ck−1) =
p, Pk (bk|ck−1) = 1 − p [with p ∈ (0, 1)], and all other transi-
tions are forbidden. Such a process is clearly Markovian in the
random variable X , as knowledge of any current state suffices
to deduce the probability of the next. Now suppose that for the
same process, one could not distinguish between outcomes
bk and ck at each time step; i.e., instead of X , we observe
the random variable Y , which takes values yk ∈ {ak, dk =
bk ∪ ck}. In this case, when the state at some time is a, the
next state is for sure d; while if the state is d , with probability
p it will transition next to a or with probability 1 − p it
will remain d (alternating between b and c deterministically,
although we are ignorant of this fact). Thus, conditioned on
any consecutive j observations of outcome d following an
observation of a:

Pk (ak|dk−1, . . . , dk− j, ak− j−1) =
{

0 j odd
p j even. (D1)

With this fuzzy measurement apparatus at hand, one would
consider the process to be non-Markovian with respect to
realizations of Y . Lastly, note that given an instrument that
alternatively measures X and then Y at each consecutive time
step, the experimenter would determine the Markov order to
be � = 2.

Example 5: Fuzzy measurements can decrease classical
Markov order. Consider the process depicted in the right
panel of Fig. 10. Here, three bits described by random
variables {X1, X2, X3} are fed out in succession over three
time steps. Suppose that these bits are initially prepared ac-
cording to the probability distribution P3:1(X3, X2, X1), which
is such that P3:1(0, 0, 0) = P3:1(1, 0, 1) = 1

4 , P3:1(0, 1, 1) =
P3:1(1, 1, 0) = 1

4 , and the rest of the terms vanish. The process
is such that if the bit output at the second step is measured
to be 0, then the first and third bits are perfectly (classically)
correlated; while if bit at the second step is measured to be 1,
then the first and third bits are perfectly (classically) anticor-
related. Thus, the process is perceived to be non-Markovian
with respect to sharp measurements of the second bit value.
On the other hand, on average, there is no correlation between

the first and third bits; thus, with respect to a coarse-grained
measurement of the second bit value, the process is perceived
to be Markovian.

We conclude this Appendix by explicitly phrasing these
ideas in terms of the process tensor and instrument sequences
that block the history. First, any classical stochastic process
can be encoded in process tensor that is diagonal in a fixed,
local product basis of sharp, orthogonal projectors represent-
ing each outcome:

ϒCl
FMH =

∑
x

PFMH (xF , xM , xH )|x〉〈x|iFMH ⊗ 1oFMH , (D2)

where |x〉〈x|iFMH = |x〉〈x|ni ⊗ · · · ⊗ |x〉〈x|1i . Suppose that we
can measure sharply in the correct basis: This corresponds
to applying projective operators of the form Pk = |x〉〈x|ko ⊗
|x〉〈x|ki over a sequence of time steps; overall, if we observe
some realization of the process, we have implemented the
instrument that is a collection of these operators. Indeed, the
process tensor defined in Eq. (D2) is diagonal with respect to
the classical reference basis defined by {|x〉FMH } and yields
the correct statistics upon application of such sharp classical
measurements.

Now, suppose that the classical process at hand is one of
finite Markov order; then, the joint probability distribution
must satisfy Eq. (2). It is straightforward to show that any
length-� instrument sequence comprising sharp, orthogonal
measurements {Pk−�, . . . , Pk−1} provides a history-blocking
sequence, rendering the history and future processes con-
ditionally independent. On the other hand, fuzzy classical
measurements correspond to operators of the form |y〉〈y|ko ⊗
|x〉〈x|ki , where |y〉〈y|ko := ∑

x |x〉〈x|ko is a coarse graining
over some of the outcomes labeled by |x〉〈x|ki . In other words,
although we measure outcome y, the true state of the system
that is fed forward into the process is, unbeknownst to us, x. In
this case, the statistics observed would not satisfy Eq. (2), but
would rather be a mixture of statistics that do. Consequently,
it would, in general, have a different Markov order than
detected by the fine-grained measurements, and the classical
CMI computed on the statistics observed would not vanish.
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FIG. 11. Process with nonvanishing quantum conditional mutual information but finite Markov order with respect to (fuzzy) orthogonal
projectors. The tripartite state ρ3i2i1i as defined in Eq. (E4) is depicted on the left. Here, if an experimenter cannot distinguish between
measurement outcomes in the {|0〉, |1〉} subspace of H2i , represented by the blue, dashed boxes, then the conditional state ρ

(x)
3i1i for each

outcome is product. If, on the other hand, the experimenter can resolve sharp measurements in the {|0〉, |1〉} subspace and implement, e.g.,
the operations {O(x)

2i } = {�(x)
2i }, then for each outcome realized, the conditional state ρ

(x)
3i1i is a (correlated) Werner state, defined in Eq. (E1).

The process is such that this state is initially prepared, with subsystems fed out to the experimenter over a sequence of time steps. Whatever
is fed back into the process is discarded by the process itself; hence, the process tensor is written as per Eq. (E5). As described above, the
fuzzy (orthogonal) measurement at time step 2i blocks the influence of history on the future, although a sharp measurement resolving all three
outcomes does not. Lastly, the quantum CMI for this process does not vanish.

APPENDIX E: QUANTUM ANALOG OF EXAMPLE 5

Example 6: Process with nonvanishing quantum CMI but
finite Markov order for a sequence of fuzzy, orthogo-
nal projectors. Consider the process depicted in Fig. 11.
Begin with the four two-qubit Werner states,

ρ
(x)
3i1i (r) := rβ (x) + (1 − r)12 , (E1)

where r ∈ (0, 1) and each β (x) is one of the four Bell pairs,

|ψ±〉 := (|00〉 ± |11〉)/
√

2 and

|φ±〉 := (|01〉 ± |10〉)/
√

2. (E2)

Take some symmetric, IC qubit POVM {�(x)
2i }, and, in terms

of its dual set {
(x)
2i }, construct the following state:

μ3i2i1i (r) :=
∑

x

1

4
ρ

(x)
3i1i (r) ⊗ 


(x)
2i . (E3)

This object is positive (and therefore a valid state) only for
r ∈ (0, 1/3], which corresponds to the values for which the
Werner states defined in Eq. (E1) are separable. Now, let the
system H2i represent a qutrit; the first two levels are described
by Eq. (E3), which is mixed with probability q ∈ (0, 1) with
an arbitrary tensor product state ρ3i ⊗ ρ1i in product with the
third-level basis state |2〉, giving the overall initial system-
environment state:

ρ3i2i1i (q, r) = qμ3i2i1i (r) + (1 − q)ρ3i ⊗ |2〉〈2|2i ⊗ ρ1i .

(E4)

The process proceeds by initially preparing this state and
feeding out the ρ ji marginal state at each time step j =
{1, 2, 3}. No matter what operations are implemented on the
system at these time steps, the process acts to discard whatever
is fed back into it; thereby, it has trivial output spaces and the
corresponding process tensor is

ϒ3i:1i (q, r) = ρ3i2i1i (q, r) ⊗ 12o1o . (E5)

Now, consider the instrument made up of the following
two fuzzy, orthogonal operations O(1)

2i = (1 − |2〉〈2|)2i and
O(2)

2i = |2〉〈2|2i . With respect to this instrument, the condi-
tional process tensors for each outcome are

ϒ
(1)
3i2o1o1i = 13i

2
⊗ 12o1o ⊗ 11i

2
and

ϒ
(2)
3i1o1i = ρ3i ⊗ 12o1o ⊗ ρ1i . (E6)

Thus, Eq. (10) is satisfied and the process has Markov order
1 with respect to this instrument comprising only (fuzzy)
orthogonal projectors (note that this process is not Markovian,
as an IC instrument of causal breaks will not block the
history). However, had the experimenter been able to resolve
measurements in the {|0〉, |1〉} subspace of H2i , e.g., apply
the instrument comprising the operations O(x)

2i = �
(x)
2i for x ∈

{1, 2, 3, 4} and O(5)
2i = |2〉〈2|2i , then the conditional process

tensors for each outcome are

ϒ
(x)
3i1o1i = ψ

(x)
3i1i ⊗ 12o1o and

ϒ
(5)
3i1o1i = ρ3i ⊗ 12o1o ⊗ ρ1i . (E7)

For each outcome x observed in the {|0〉, |1〉} subspace, the
conditional future and history processes exhibit correlations
via one of the four Werner states (which are separable, but not
product, and thereby correlated). Similarly, if an experimenter
applied the sharp constituent projectors that make up the fuzzy
history-blocking instrument, i.e., measure the three outcomes
associated to {|0〉〈0|, |1〉〈1|, |2〉〈2|}, the conditional states for
outcomes (0) and (1) are again correlated. Lastly, note that
this process has nonvanishing quantum CMI: A straightfor-
ward calculation shows that I (F : H |M ) = q for ϒ3i:1i (q, r)
defined in Eq. (E5).
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