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The duration, strength, and structure of memory effects are crucial properties of physical evolution.
Because of the invasive nature of quantum measurement, such properties must be defined with respect to
the probing instruments employed. Here, using a photonic platform, we experimentally demonstrate this
necessity via two paradigmatic processes: future-history correlations in the first process can be erased by an
intermediate quantum measurement; for the second process, a noisy classical measurement blocks the
effect of history. We then apply memory truncation techniques to recover an efficient description that
approximates expectation values for multitime observables. Our proof-of-principle analysis paves the way
for experiments concerning more general non-Markovian quantum processes and highlights where

standard open systems techniques break down.
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Introduction.—Memory effects are ubiquitous in nature
[1], including disease spreading [2], biochemical processes
[3-5], and optical fiber transmission [6]. Characterizing
stochastic processes with memory is difficult because past
events can impact the future, so long-term history must be
recorded for accurate prediction. This necessitates developing
memory truncation techniques for efficient approximation.

Stochastic processes arise from the inability to track all
relevant degrees of freedom, which partitions the Universe
into an accessible “system" and an inaccessible*“environ-
ment,” leading to open dynamics. A classical stochastic
process on discrete times {7y, ..., #, } is characterized by the
n-point joint probability distribution over event sequences,
P,(xy,t5- -3 x,,t,). For a process with approximately
finite-length memory, this distribution conditionally factors

over any length-£ sequence of memory events
{Xks1s -os Xy}, with small error. This error is quantified
by the conditional mutual information between the history
{x1,...,x;} and future {x;,,,,...,x,} events given the

memory, which bounds the prediction accuracy when the
history is truncated.

A key assumption here is that measurements do not affect
the system. When invasive measurements are permitted in
classical theory, such as in causal modeling [7], a joint
probability distribution no longer describes the process [8].
Quantum theory is similar; however, here one cannot assume
that noninvasive measurements could be made in principle
[9], obfuscating the line between “process” and “observer”
[10,11]. Many descriptions of open quantum dynamics have
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thus been restricted to two-time considerations [12,13],
where an operational picture of correlations between prep-
arations and measurements arises via the dynamical map
formalism [14]. However, such approaches necessarily over-
look multitime correlations; these methods provide witnesses
of memory, but are insufficient to determine its presence
[15-18] or properties [19-24].

These issues have hindered the precise formulation of
quantum stochastic processes and led to a “zoo” of
definitions for memorylessness [16], some of which are
contradictory [25-27]. Recently, the process tensor for-
malism [17-19], which captures all detectable multitime
correlations, has been developed (see also Refs. [28-37]).
This framework separates the controllable impact on
system dynamics due to an agent from the uncontrollable
environmental influence: the former is described by quan-
tum instruments, which capture the postmeasurement states
for each (probabilistically occurring) outcome; the process
comprises the latter. This provides a consistent operational
description of multitime quantum stochastic processes that
generalizes and unifies open quantum dynamics [19].
The process tensor correctly generalizes classical
stochastic processes via a generalized Kolmogorov exten-
sion theorem [8], and all memory properties such as
Markovianity (memorylessness) and Markov order
(finite-length memory) can be rigorously defined and
recover classical definitions [18-22,38].

It was recently shown that there do not exist non-
Markovian processes with finite-length memory for all

© 2021 American Physical Society
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instruments (although for any particular instrument, the
memory length can be finite); thus operational descriptions
of memory length must specify the probing instruments
[20-22]. In this Letter, we experimentally demonstrate this
instrument-specific nature of quantum memory via two
three-time quantum processes on a photonic platform. Both
processes are non-Markovian; however, by performing
specific intermediate instruments, we show that future-
history correlations can be deterministically erased, exem-
plifying finite-length memory for instruments. We then use
memory truncation techniques developed in Ref. [22] to
approximate non-Markovian processes with small memory
strength and show this recovered description to accurately
predict multitime expectation values. Our results provide
the first demonstration of multitime quantum memory
effects beyond the two-time setting [39—-41]; while our
proof-of-principle experiment focuses on ‘“common-cause
processes” [42,43], in which correlations arise from an
initial state, the methods employed are readily adaptable to
the analysis of more general non-Markovian processes.

Multitime quantum processes.—See the Supplemental
Material [44] for an introduction to the process tensor; here,
we outline its key features. The process tensor is a linear
mapping from sequences of quantum instruments—collec-
tions of completely positive (CP) maps that sum to a
completely positive, trace-preserving (TP) map [28]—to
the joint probability of their realization. Just as a density
operator contains all necessary information to compute the
probability of any measurement event via the Born rule, the
process tensor encapsulates all information required to
calculate the probability of realizing any sequence of events
through a generalized Born rule [47]. Any process tensor
that decomposes into independent channels between
time steps is Markovian; by considering the distance to
the nearest Markovian process, one can quantify the
memory [18]. The process tensor can be tomographically
reconstructed, constituting an operational description of
quantum stochastic processes [48]. Conversely, any oper-
ator satisfying generalized notions of complete positivity
and normalization, and a causality condition ensuring
temporal order, represents some underlying open quantum
dynamics [19,32], i.e., can be dilated to a joint system-
environment state evolving unitarily between times, with
the environment finally discarded.

While it is straightforward to compute the process tensor
from a dilation, i.e., an underlying system-environment
model (which is nonunique), it is difficult to engineer
processes with certain memory properties. This is because
correlations play a dynamical role and it is often unclear
how to best design them within practical constraints.
Moreover, the output states of each measurement generally
influence future dynamics, presenting another experimental
difficulty. To circumvent these problems, we examine two
processes of a similar type, depicted in Fig. 1: ones for
which subsystems of an initially correlated state are fed out

FUTURE

) HISTORY MEMORY

FIG. 1. Process schematic. Parts of an initial state y ,pc are sent
to Alice, Bob, and Charlie in a time-ordered fashion. Alice and
Bob’s outputs are discarded, corresponding to an identity matrix
in the Choi representation, where each time step has two Hilbert
spaces (input and output). The resulting process tensor is

Fagc = 7amic' ® Tacpe.

over time, with the output states discarded after each step.
Such common-cause processes are a subset of general
quantum processes that are amenable to current laboratory
methods, as all correlations are encoded in the initial
state. In particular, we examine the memory effects of
two processes over three time steps, which is the minimal
setting for analyzing multitime phenomena. We denote
the initial 3-qubit state of Process 1 by Axpc €
BL(H? ® H?> ® H?) and the corresponding process tensor
by Aapc. Process 2 is from Appendix E of Ref. [21]; we
denote its initial qubit-qutrit-qubit state by wapc €
BL(H? ® H?> ® H?) and its process tensor by Q,pc, note
BL denotes the set of bounded linear operators. Both
common-cause states exhibit complicated correlations with
nontrivial ~off-diagonal elements (see Supplemental
Material [44]). The distinct memory effects displayed are
due to the types of history-blocking instruments: for the
former process, these are three-outcome qubit measure-
ments with no classical analog, demonstrating a genuinely
quantum effect; for the latter process, these are noisy
classical measurements, highlighting how coarse graining
can hide memory and positing Markovianity as an emer-
gent phenomenon.

Experimental setup.—The processes considered com-
prise an initially correlated state with parts sent out first to
Alice (history), then to Bob (memory), and finally to
Charlie (future), with each agent permitted freedom of
choice and an optical delay line ensuring temporal order.
The post measurement states of Alice and Bob are
discarded. The initial correlations encode the common-
cause memory effects of the process [35,43,49,50]; thus,
state preparation is crucial to our experiment. We use a
linear photonic system (see Fig. 2). The “source” prepares
tripartite states encoded in path and polarization degrees of
freedom of photon pairs. Although various techniques to
construct multipartite states exist [51-54], many require
distinct systems. We opt for a hybrid approach that encodes
information in various degrees of freedom. This choice is
motivated by the development of linear optical methods
[55-57], which provide a high-fidelity and postselection-
free approach. The second critical element to our
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FIG. 2. Experimental setup. An entangled photon pair is generated via spontaneous parametric down-conversion (SPDC) at ppKTP1
in a Sagnac interferometer pumped by a 404 nm laser. For Process 1, the polarization acts as history and memory and path qubits as
future and herald. For Process 2, an additional SPDC at ppKTP2 constructs a third level. Conditional Alice-Charlie correlations for each
of Bob’s outcomes encode memory effects. Inset: Bob’s measurement apparatus [58,59]. Abbreviations: ODL—optical delay line; HWP
—half-wave plate; QWP—quarter-wave plate; RM/BS—reflection mirror/beam splitter; PBS—polarizing beam splitter; FC—fiber
coupler; SPD—single photon detector; and ppKTP—periodically poled potassium titanyl phosphate.

experiment is implementing positive operator-valued mea-
surements (POVMs). We use a discrete-time quantum walk
protocol [58,59] (see Supplemental Material [44]).

Results.—Non-Markovianity: For  both  processes
Capc € {Aapc, Qapc), the non-Markovianity is the dis-
tance to its nearest Markovian counterpart

N = min D(FABCHFI\A/IﬁerOV)' (1)

"Markov
IﬁAB C

Choosing the quantum relative entropy S(X|Y):=
tr[X(log X —logY)] as the distance [60], the minimum
is achieved by the process constructed from its marginals
[611, yx = tryzlyxyz]s ie, TNGEY =y @ Tao @ 7p ®
Tge ® yci. The following results hold for any CP-contrac-
tive (pseudo-)distance; the choice of the relative entropy
bypasses optimization over Markovian processes and has
an operational interpretation: P opsusion = €Xp (—nN) is the
probability of confusing the process with a promised
Markovian one after n measurements [18,62]. In the
Supplemental Material [44], we present the experimental
tomographic data based on temporally ordered measure-
ments performed on the common-cause state at the
three laboratories for both processes. For Appc, the non-
Markovianity is 0.285 4+ 0.004 and for Qupc it is
0.458 £ 0.004, with theoretical predictions 0.329 and
0.5, respectively.

Both processes are, however, CP divisible, meaning all
two-point dynamics can be described by composition of
(fictitious) CPTP channels, i.e., Apoci = AgocioApopi. AS
the output states discarded, one has Apogi = 1o ® ypi and
Apgoci = 1o @ yci; similarly, any common-cause process
is CP divisible, which is often used as a proxy for quantum
Markovianity [12,13]. Nonetheless, CP divisibility only

considers two-point correlations; thus, while it can witness
non-Markovianity, it is insufficient to conclude that a
process is Markovian, which requires checking multitime
conditions [24]. For more general non-Markovian
quantum processes than the common-cause ones consid-
ered here, all such two-point techniques necessarily fail,
whereas the process tensor formalism is tailor-made for
their analysis.

Markov order: We now demonstrate that both proc-
esses—although non-Markovian—have finite Markov
order for particular instruments. The Markov order is the
minimum number of times over which an agent must act to
block history-future correlations [63]. Both processes have
Markov order 1 [642, meaning that Bob can apply an
instrument Jp = {OBX>} such that, for each event, Alice
and Charlie are conditionally independent

x)T X X
75 [0 Tapc] =TV @ I, 2)

By performing Jy, Bob deterministically erases the
memory. Deviation from Eq. (2), i.e., a correlated condi-
tional process for any event of an instrument, evidences
longer memory with respect to said instrument.

For Process 1, Appc, the history-blocking instrument is a

POVM @ = {@l(gx )} comprising

o = 2 iy,
1++2

V2

@ _ _ _
S —2(1+\/-2-)(|0> 1)) ({0] = (1))
o)) =1-0)) —ef. (3)
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FIG. 3. Non-Markovianity and memory strength of (a) Process 1
and (b) Process 2. Experimental results for the non-Markovianity
N (black, left), the (nonvanishing) memory strength

for (a) the computational-basis measurement Zp = {Z,(; >}, and
(b) POVM T = {11} (red, middle) [Eq. (4)], and the (vanish-
ing) memory strength for (a) the POVM O = {@1(; >} [Eq. (3)] and
(b) noisy measurement Zp = {E.g )} (yellow, right). Each bar
shows the mutual information between Alice and Charlie, con-
ditioned on Bob’s event. Gray edges show theoretical predictions.

Figure 3(a) depicts the mutual information,
Sac = Sa + Sc — Sac, with Sy the von Neumann entropy,
of the conditional processes. The memory strength for each
event of @ is 0.0042 £+ 0.0010,0.0053 =+ 0.0010,
and 0.0098 £ 0.0014, signifying negligible Alice-Charlie
correlations, with an average memory strength of
(6.3 4 1.1) x 1073, Conversely, if Bob measures in the
computational basis Zg = {|0)(0|, [1)(1|} then Alice and
Charlie’s conditional processes are correlated; for instance,
the first event of Zy has memory strength 0.0410 4 0.0015
[see middle bars in Fig. 3(a)]. The fact that this history-
blocking instrument comprises a three-outcome POVM,
which has no classical analog, signifies that the approxi-
mate recovery we construct below represents a genuinely
quantum approximation, in the sense that no recovery with
respect to projective measurements would be as accurate or
versatile. Nonetheless, for this process, certain projective
measurements can render Alice and Charlie approximately
conditionally independent (see Supplemental Material
[44]). We conjecture that in higher dimensions, there exist
processes for which no set of orthogonal projectors block
the history, but certain POVMs do.

Process 2, Qupc, highlights how coarse graining can
block memory. If Bob performs a noisy classical measure-
ment Eg = {Elgx )} = {1y, ]2)(2|} that cannot distinguish
events on the first two levels of his qutrit, the process has
Markov order 1, depicted by the rightmost bars in Fig. 3(b),
which vanish for each event (the experimental value is
0.004 £ 0.002). On the other hand, if Bob performs a three-
level measurement that resolves events in the first two levels,
then Alice’s and Charlie’s conditional processes can be

correlated. For instance, consider the POVM Il = {Hg( )},

w _1 1 &)

where {1,0y,0y,0,} are Pauli matrices with coefficients
{eW} ={(1,1,1),(1,=1,=1), (=1, 1,=1), (=1,=1, 1) }.
The measurement events, respectively, have memory
strength 0.216 £ 0.001, 0.171 £ 0.0009, 0.165 =+ 0.001,
and 0.188 +0.0009, as shown by the middle bars in
Fig. 3(b) (see Supplemental Material [44]). These memory
effects are close to maximal and one expects that some
memory will be present for generic three-level POVMs;
however, it is also likely that there exist fine-grained
measurements that approximately render Alice and
Charlie uncorrelated for each outcome. Our results are
relevant toward understanding Markovianity as a conse-
quence of coarse graining.

Knowledge of any approximately history-blocking
instrument allows one to “recover” an efficient and accurate
description, as we now demonstrate.

Efficient recovery: In general, the conditional proc-
esses for an instrument applied by Bob are correlated.
Aggregating the mutual information of the conditional
processes to the instrument level quantifies the memory
strength in an instrument-specific manner [22]. One can
then upper bound the difference between a class of multi-
time expectation values calculated with the actual process
(i.e., with common-cause state y,pc) versus a recovered
process (see below), which efficiently approximates the
true one by discarding future-history correlations (see
Supplemental Material [44]).

Since both processes have vanishing memory strength
for some instrument, one can reconstruct an accurate such
recovered processes. For common-cause processes, the
reconstruction with respect to Bob’s history-blocking

measurement Jgi = {Ol(;,»)} has the common-cause state
riie = > 7 @Ay @y, (5)

where {yg), y(cx,)} are the marginals of Alice and Charlie
for each outcome Bob yields and {Ag)} satisfies

tr[A](sx,)Og,-)T] = &,, [65]. We tomographically reconstruct
the marginals from local measurements of Alice and

Charlie for Bob’s outcomes. The approximate process

[Zﬁc = ngc ® T4-p- accurately predicts expectation val-

ues for any observable of the form Cppc = Zy chgl)3C

where X0 =37 E) @ OF, with arbitrary E{%; this
ensures that Bob’s observable is in the span of the original
instrument, as required for the recovered process to make
sensible predictions [22].

In Fig. 4 we consider projective measurements for Alice
and Charlie, with Bob performing any nonselective meas-
urement. This choice permits arbitrary product Alice-
Charlie observables; more complicated temporally corre-
lated observables would require higher levels of control that
are not presently available. We scan the parameter space
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FIG. 4. Multitime expectations for (a) Process 1 and (b) Process
2. Alice and Charlie project onto orthogonal states {|¢) =
cos 0,|0) + e sin 6,]1), |p)* = sin0,|0) — e" cos §,|1)} and
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respectively, and Bob performs any nonselective measurement.
The difference of expectation values via the recovered and true
process is plotted for fixed phase (a) ¢ =0 and w =0 and
(b) ¢ = 1.9207 and y = 7.

and compare the expectation values calculated from the
recovered and true process, finding maximum deviations of
0.048 and 0.022 for processes 1 and 2, respectively; the
maximum difference for an arbitrary process is 1, high-
lighting the approximation accuracy. Finally, the memory
strength with respect to Bob’s instrument 5 bounds the
inaccuracy of approximating any observable of the form
below Eq. (5); this includes, e.g., correlated Alice-Charlie
observables [22]. Calculating the memory strength for Op
and Eg for the two processes, respectively, gives a bound of
0.450 £ 0.017 and 0.348 £ 0.015.

Conclusions and outlook.—In this Letter, we have
demonstrated the instrument-specific nature of quantum
memory. Our experiment provides the first report of finite
quantum Markov order for non-Markovian common-cause
processes, i.e., the ability to erase future-history correla-
tions, stored in a correlated initial state, via a specific
instrument. This has implications for the approximation of
quantum processes with memory, which we highlighted by
reconstructing the recovered process that disregards neg-
ligible correlations and showing this to accurately predict
multitime expectation values. Such memory truncation
techniques are pivotal to efficiently characterizing near-
term quantum devices.

Our Letter opens some important avenues: we have
posed the question of whether there exist processes for
which no orthogonal measurement blocks the history, but
certain POVMs do, and that concerning the emergence of
Markovianity via coarse graining. Analyzing the relative
volumes of measurement space that lead to finite Markov
order, as well as the tightness of the bounds, is warranted to
develop more robust approximations.

The common-cause processes analyzed here are an
important class of non-Markovian processes; in particular,
they display global memory properties that could not be
characterized from standard two-point measurement tech-
niques. On the other hand, all correlations arising from such
processes can be computed from measurements on the

initial common-cause state, as the postmeasurement states
play no role, making them more amenable to current
experimental platforms. By phrasing the analysis of such
memory effects in the operational process tensor formalism
and highlighting where other techniques would fail, our
Letter provides a starting point for the analysis of more
general processes (e.g., those for which postmeasurement
states play a role). Such experiments will require high
levels of quantum control and the ability to implement
multi-input to multi-output gates. As such technical chal-
lenges are overcome, a holistic analysis of multitime
quantum memory effects will become possible.
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