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Non-Markovian memory strength bounds quantum process
recoverability
Philip Taranto 1,2✉, Felix A. Pollock 3 and Kavan Modi 3✉

Generic non-Markovian quantum processes have infinitely long memory, implying an exact description that grows exponentially in
complexity with observation time. Here, we present a finite memory ansatz that approximates (or recovers) the true process with
errors bounded by the strength of the non-Markovian memory. The introduced memory strength is an operational quantity and
depends on the way the process is probed. Remarkably, the recovery error is bounded by the smallest memory strength over all
possible probing methods. This allows for an unambiguous and efficient description of non-Markovian phenomena, enabling
compression and recovery techniques pivotal to near-term technologies. We highlight the implications of our results by analyzing
an exactly solvable model to show that memory truncation is possible even in a highly non-Markovian regime.

npj Quantum Information           (2021) 7:149 ; https://doi.org/10.1038/s41534-021-00481-4

INTRODUCTION
Our ability to manipulate quantum systems underpins potential
advantages over classical technologies1. Their dynamics are often
idealized as noiseless or, if unavoidable, noise is assumed to be
uncorrelated. However, interactions with the environment gen-
erally perpetuate past information about the system to the future,
thereby serving as a memory. Memory effects thus pervade
physical evolutions, resulting in non-Markovian dynamics2. The
complexity of describing processes grows exponentially with
memory length; therefore many simulation techniques invoke
memory cutoffs3. Although several metrics have been proposed to
quantify memory (and the consequences of neglecting it)4, most
do not consider the influence of interventions, overlooking the
operational reality of sequentially probed dynamics. Indeed, the
impact of memory depends on how a system is controlled3–14:
generically, the system–environment state at any time is
correlated, so an interrogation directly influences the system
state and conditions the environment, both of which affect the
future. Detected memory properties are thus naturally related to
the interrogation method14. This operational perspective has
important consequences for dynamical decoupling15–17, erasure
or transmission of information18,19, correlated error correction
and characterization20,21, and (operational) quantum thermody-
namics22–27.
This can be illustrated with the shallow pocket model16,17,28,29,

comprising a qubit coupled to a continuous degree of freedom
(see Fig. 1 and Supplementary Methods A). The joint dynamics
induces pure-dephasing Lindblad evolution for the qubit, with
exponentially decaying coherences. Non-classical correlations
between any preparation and measurement similarly vanish, so
the reduced dynamics forgets the initial state. However, the
evolution following a σx unitary reverts the system to its original
state; in this sense, the process displays infinitely long memory.
This example highlights that although certain temporal correla-
tions of the unperturbed system may decay rapidly, they do not
account for the whole story; more generally, there exist detectable
correlations between the history and future processes.

Disentangling the non-Markovian memory, carried by the
environment, from the temporal correlations that result from
probing the system is a challenge that has only recently been
resolved through an operational framework for describing
quantum stochastic processes10,11. Subsequently, a notion of
memory length—or quantum Markov order—was introduced,
which reduces the complexity of describing processes with short-
term memory by only retaining the minimal number of recent
timesteps relevant to the dynamics12,13. Higher-order Markov
models capture all memory effects below the Markov order and
are therefore more accurate than Markovian approximations.
However, a missing element from this theory so far has been a
method for quantifying the strength of non-Markovian memory
and developing efficient approximations accordingly: truncating
weak temporal-correlations will yield a more efficient description
for a process without comprimising the accuracy.
In this article, we construct an operational notion of memory

strength for quantum processes. That is, we quantify the
correlations between history and future processes with respect
to an intermediate (multi-time) probing schema (see Fig. 2). Our
main result links said memory strength with process recoverability:
with respect to any interrogation sequence, one can approximate
the process by discarding future-history correlations. If the
memory strength is small for some instrument (family), then
the approximate process accurately predicts expectation values
for related observables, namely those in the linear span of the
original instrument elements. This connection is akin to that
between the conditional mutual information (CMI) and the fidelity
of recovery for quantum states30,31, and involves a generalization
of the measured relative entropy32 to quantum stochastic
processes. A corollary follows for the “do nothing” instrument—
which many approximations assume—which bounds the accuracy
of predicting future states. Moreover, the memory strength for an
informationally complete instrument bounds the distinguishability
between the actual and recovered process for any experimental
protocol. Lastly, we demonstrate our results via a solvable non-
Markovian model, highlighting the complex memory structures
amenable to our framework.
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Classical stochastic processes
We begin by reviewing the pertinent ingredients from the theory
of classical stochastic processes before turning our attention to
quantum stochastic processes. A classical stochastic process over a
discrete set of times T :¼ ft1; ¼ ; tng is described by an n-point
joint probability distribution Pðxn; ¼ ; x1Þ. A process has finite-
length memory whenever the probability of each event xk at time
tk 2 T only conditionally depends upon the past ℓ events

Pðxk jxk�1; ¼ ; x1Þ ¼ Pðxk jxk�1; ¼ ; xk�ℓÞ: (1)

Here, ℓ, the minimum number for which Eq. (1) holds, denotes the
Markov order; a Markovian process has ℓ ≤ 1. Markov order
captures the complexity of characterizing a process, which grows
exponentially in ℓ. Although ℓ may be large for many processes,
their memory can be truncated, permitting efficient approxima-
tion. Grouping the times into three segments: the history H= {t1,
…, tk−ℓ−1}, memory M= {tk−ℓ,…, tk−1} and future F= {tk,…, tn}
(see Fig. 2), Markov order ℓ implies the conditional factorization

PFHðxF ; xHjxMÞ ¼ PFðxF jxMÞPHðxHjxMÞ; (2)

i.e., the future and history are conditionally independent given
memory events. The Markov order condition is equivalently
expressed by the vanishing classical CMI

IðF : HjMÞ :¼ hFM þ hMH � hFMH � hM; (3)

where hX :¼ �
P

xPXðxÞlog ½PXðxÞ�. The CMI is interpreted as the
memory strength of the process. For processes with Markov order
ℓ, I(F : H∣M)= 0 by Eq. (2); however, in general PFMH does not
conditionally factorize, and the CMI quantifies the correlations
between F and H, given M.

The significance of approximately-finite Markov order is best
encapsulated through the recovery map, RM!FM , that acts
only on M to approximate the correct future statistics:
PFMHðxF ; xM; xHÞ ’ RM!FM½PMHðxM; xHÞ�, with equality holding
for processes with Markov order ≤ℓ. Intuitively, the recovery
map discards conditional future–history correlations and uses
the r.h.s. of Eq. (2) as an approximate description. Importantly,
the recovery map approximates the process with an error that is
bounded by the CMI30,31, with complexity reduced to the
approximate Markov order. Thus, whenever the memory is
weak, the recovery map provides an accurate and efficient
approximation.

Quantum stochastic processes
We now move to the realm of quantum stochastic processes.
To quantify the strength of memory in quantum processes,
we begin by introducing the process tensor framework,
detailed in “Methods”, which generalizes Eq. (1) to the
quantum domain. Consider a joint system-environment SE,
with (correlated) initial state ρSE1 . The system is interrogated
at t1 and a quantum event x1 is observed, with an associated

completely positive (CP) transformation Oðx1Þ
1 on S. The events

are described by an instrument J 1 ¼ fOðx1Þ
1 g, which is trace

preserving (TP), i.e., OJ 1
1 :¼

P
x1O

ðx1Þ
1 is CPTP33. Following this

intervention, SE evolves unitarily for time t2− t1 according to
the superoperator USE

2:1. Then, S is probed at t2, and so on,
until tn. The probability to observe x1,…, xn = : xn:1 using
instruments J 1; ¼ ;J n ¼: J n:1 is

Pðxn:1jJ n:1Þ ¼ tr OðxnÞ
n USE

n:n�1 ¼USE
2:1O

ðx1Þ
1 ρSE1

h i
: (4)

As per Fig. 2, abstracting everything outside of experimental
control defines the process itself and yields a multi-linear map
from instruments to probability distributions called the process
tensor10,11. On the other hand, the instruments on S are

collected to define the generalized instrument J n:1 ¼ fOðxn:1Þ
n:1 g.

A generalized instrument can be temporally correlated,
although we focus on uncorrelated instrument sequences for
simplicity. Intuitively, the process tensor encapsulates the
uncontrollable effect of the environment, i.e., the process
per se, whereas the generalized instrument represents the
controllable influence. Any open quantum dynamics probed at
a (causally ordered) number of times can be described by a
process tensor, and any probing sequence by a generalized
instrument8,34. (These objects are commonly known as quan-
tum combs and have appeared elsewhere8,29,33–41.)
Both the process tensor and the instrument elements

are higher-order quantum maps8,34,36,42 that can respectively be
represented as quantum states ϒn:1 and fOðxn:1Þ

n:1 g via the
Choi–Jamiołkowski isomorphism. The joint probability of realizing
any sequence of events is given by the generalized Born-rule43

(see Methods)

Pn:1ðxn:1jJ n:1Þ ¼ tr Oðxn:1ÞT
n:1 ϒn:1

h i
¼: hOðxn:1Þ

n:1 iϒn:1
: (5)

The process tensor encodes all probabilities for any choice of
instruments and thus characterizes the process. Grouping the
times as before, the quantum generalization of the l.h.s. of Eq. (2)
is obtained by projecting the memory of ϒFMH onto the
conditioning element of J M ¼ fOðxMÞ

M g. The result is the condi-
tional future–history process (see Fig. 2)

eϒðxMÞ
FH ¼ trM OðxMÞT

M ϒFMH

h i
: (6)

The tilde in Eq. (6) signifies that the conditional objects are not
necessarily proper process tensors, since realizing memory events
post-selects the history35,44; nonetheless, summing these yields a

Fig. 1 Memory in shallow pocket dynamics. The mutual informa-
tion I(S:A) between a system and auxilliary initially in a Bell pair
decays exponentially as the system undergoes shallow pocket
evolution (black). However, this is not the case if an intervention is
applied at t1 (=5 above). We depict σx (blue); an offset rotationffiffiffiffiffiffiffiffiffi
0:95

p
σx þ

ffiffiffiffiffiffiffiffiffi
0:05

p
σz (green); measurement of + in the x-basis (red);

and trash-and-reprepare (purple).

Fig. 2 Quantum stochastic process. An open quantum process
with an initial system–environment state and unitary evolutions
(green) can be represented as a process tensor ϒFMH (outline). For
each event of a memory instrument sequence, J M ¼ fOðxMÞ

M g
(purple), a conditional future–history process eϒðxMÞ

FH (blue, red)
results; future–history correlations evidence memory effects across
ℓ≔ ∣M∣.
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proper process tensor ϒJ M
FH :¼

P
xM
eϒðxMÞ
FH . Mirroring the classical

setting, if the conditional processes are uncorrelated, i.e.,eϒðxMÞ
FH ¼ ϒðxMÞ

F � eϒðxMÞ
H , then the process has Markov order ℓ with

respect to JM
12 [see r.h.s. of Eq. (2)]. The causality constraint on

the process tensor ensures that ϒðxMÞ
F is causally ordered for each

event. This operational notion means that by applying J M, no
future-history correlations are possible for any history and future
instruments, i.e., no memory lasting longer than ℓ is detectable. In
general, the conditional processes are correlated. However, long
memory does not imply strong memory; we now show how
weak correlations can be truncated for accurate and efficient
approximation.

RESULTS
The first ingredient to developing finite Markov order approxima-
tions is to quantify the memory strength over a block of length ℓ,
which we provide in Eq. (7). We then construct an approximate
process that neglects long-term memory. We first use the
knowledge from the interrogation to (partially) tomographically
reconstruct the process on the memory block, ensuring that the
approximate process acts correctly on all instruments lying in the
span of the original one. This reconstruction typically exhibits
future–history correlations, which are subsequently discarded to
yield the more efficient approximate process of Eq. (10). We then
bound the error of expectation values computed with the
approximate process in terms of the memory strength, thereby
endowing it with operational meaning. By iterating our procedure
over translations of the memory block, significant savings in the
complexity of description are possible.

Memory strength and recoverability
Given a particular realization xM of instrument J M, the future and
history can be more or less correlated. Such correlations can be
detected by applying any choice of instruments J F ;J H on the
conditional future-history process. Taking the supremum over
such instruments provides an operational definition of memory
strength, quantifying the largest detectable conditional
future–history correlations. We thus define

ΘðJ MÞ :¼ sup
J F ;J H2J

X
xM

pðxMjJ MÞIJðF : HjxMÞϒ; (7)

where pðxMjJ MÞ :¼ tr eϒðxMÞ
FH

h i
is the probability of observing xM

and the supremum is taken over uncorrelated instruments J Y :¼
fOðxY Þ

Y g for Y∈ {F, H} belonging to a set J. We have defined the
measured CMI

IJðF : HjxMÞΓ :¼ IðF : HÞPΓðxF ;xH jxMÞ; where (8)

PΓðxF ; xHjxMÞ :¼ tr ðOðxFÞ
F � OðxHÞ

H Þ
TeΓðxMÞFH

h i
(9)

is the conditional probability distribution for any process Γ and
independent future and history instruments conditioned on a
fixed memory event. Intuitively, the memory strength in Eq. (7)
captures the largest detectable future-history correlation, condi-
tioned on the outcomes recorded on the memory block,
aggregated to the level of J M by averaging over xM.
Unlike classical memory, quantum memory effects depend

upon the choice of probing scheme, suggesting that a universal
quantum recovery map may not exist. However, we now
construct a quantum process recovery map that efficiently builds
up longer processes from shorter ones whenever the process is
stationary. We begin with an ansatz process with finite quantum

Markov order with respect to J M ¼ OðxMÞ
� �

:

ΛJ M
FMH :¼

X
xM

ϒðxMÞ
F � DðxMÞ

M � eϒðxMÞ
H ; (10)

where the DðxMÞ
M are dual operators satisfying

tr DðxMÞT
M O

ðx0MÞ
M

h i
¼ δxMx0M

7,8. This is the tomographic representation

of the process via linear inversion of the instrument outcomes,
with conditional FH correlations discarded. The recovered
process can exhibit correlations between H and M, M and F (as
well as within each block), but not between H and F. By
construction, ΛJ M

FMH is positive on its domain, which is the span of
J M. When J M is not informationally complete, i.e., does not span
the full space, then ΛJ M

FMH only approximates the original process
in said subspace, which we denote by the underline. Such
processes are called restricted process tensors45 and are
commonly encountered in experiments46–49. Nevertheless, its
action on its domain is guaranteed to reproduce the correct
statistics for any multi-time observable of the form C ¼

P
xc

J
x O

ðxÞ

with OðxÞ ¼
P

xM
Eðx;xMÞFH � OðxMÞ

M , with arbitrary Eðx;xMÞFH . This is a
consequence of linearity, as the observable form ensures a linear

decomposition in terms of OðxMÞ
M , upon which the recovered

process acts correctly due to tr DðxMÞT
M O

ðx0MÞ
M

h i
¼ δxMx0M .

The above ansatz is the process analogue of a quantum Markov
chain state30,31, which is widely studied in the context of Petz’s
recovery map50,51. Like a quantum Markov chain state, the process
above is generally not separable, as F and H can share
entanglement with M, as per the example in Supplementary
Methods B. However, since the dual elements here can be non-
positive and cannot necessarily be decomposed into orthogonal
parts, care must be taken in defining the recovery map RJ M

M!FM :

ΛJ M
MH ! ΛJ M

FMH (see Supplementary Methods C). The concept of the
quantum recovery map is analogous to the classical case [see
below Eq. (3)]. The key advantage of the quantum process
recovery map is that its repeated action on the ansatz propagates
the process arbitrarily far into the future with fixed ℓ-dependent
complexity. If the process ϒFMH has weak memory ΘðJ MÞ,
the expectation value of any valid observable calculated
from the recovered process ΛJ M

FMH accurately approximates that of
the original:

Theorem 1. For any multi-time observable C with support on M
within the span of the elements of J M,

hCiϒFMH
� hCi

Λ
JM
FMH

��� ��� � jCj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΘðJ MÞ

p
; (11)

with jCj :¼ infJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x jcJx j
2

q
.

This and the following statements are proven in the Methods
section. Thm. 1 is fully general inasmuch as it holds without any
assumptions on the dynamics or instruments employed. The r.h.s.
involves a supremum over instruments on the future and history;
as the memory strength takes the form of a generalized
divergence, recent numerical techniques can be used for its
estimation52–54. In Supplementary Methods D, we provide an
easier-to-compute (and looser) bound based on the relative
entropy between the original and recovered process—which
foregoes the requirement for optimization—by adapting results
from refs. 30,32,51,55 to first bound a generalized measured relative
entropy and then the l.h.s. of Eq. (11) via Pinsker’s inequality. We
also prove another bound, which is tighter in some cases, by
restricting to unbiased instruments satisfying trM OJ

FMH

� �
/ 1FH .

Such instruments have the unconditional action of a completely
depolarising channel, e.g., a randomly sampled Clifford gate.
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Deriving tighter bounds under various assumptions remains an
open problem.
While Thm. 1 applies to multi-time observables, often one only

requires the time-evolved density operator; a corollary bounds its
prediction error:

Corollary 2. Let ρðxMÞj be the true density operator at any time tj∈ F

following outcome xM of J M applied to the memory, and ρ0
ðxMÞ
j be

the approximated one. Then:

ρ
ðxMÞ
j � ρ0

ðxMÞ
j

��� ���
1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΘðJ MÞ

p
8 tj 2 F: (12)

The future states result from applying identity maps at all
history and future times except tj and the instrument J M to the
memory block to both the true and recovered process. See ref. 48

for a detailed analysis of using finite Markov order approximations
to accurately prepare future states.
Whenever J M spans the full space, i.e., is informationally

complete, then any multi-time expectation value can be
accurately approximated. In this case the distinguishability, by
any means, is bounded by the memory strength:

Theorem 3. For informationally complete J M, the recovered process
ΛJ M
FMH gives sensible predictions for any instrument on M and

ϒFMH � ΛJ M
FMH

�� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΘðJ MÞ

p
; (13)

where kXk :¼ supJ¼fOðxÞgk
P

xtr½OðxÞX � 1� xj i xh j k1 generalizes the
diamond norm56 to quantum processes.

The memory strength thus provides an operationally-clear
measure: if there exists some informationally complete instrument
for which ΘðJ MÞ is small, then Thm. 3 states that one can closely
approximate the process for all instruments, even those for which

the memory strength is large. If, additionally, ϒðxMÞ
FH � ϒðx0MÞ

FH 8 xM; x0M
in the informationally complete instrument, then the process has
small memory strength for all instruments; such processes resemble
similar properties to approximately finite-memory classical stochas-
tic processes (where there is only one instrument).

Case study
Consider a qubit S coupled to another qubit E, which is cooled by
an external bath. The joint evolution follows:

∂ρSEt
∂t

¼ �iξ½σS
x � σEx ; ρ

SE
t � þ κL½σE

��ðρSEt Þ; (14)

where the dissipator acts on E: L½σE
��ðρSEt Þ :¼ σE

�ρ
SE
t σE

þ�
1
2 fσE

þσ
E
�; ρ

SE
t g, with σE

± :¼ σE
x ± iσE

y . In ref. 57, it was shown that

for κ2 ≥ 64ξ2, the process is CP-divisible, which is a common proxy
for quantum Markovianity58,59; however, CP-divisibility only
implies an absence of some kinds of memory60,61. Non-
Markovianity ‘measures’ built upon two-time considerations—
many of which are contradictory4—overlook multi-time effects.
Indeed, this model contains higher-order correlations; by con-
structing the process tensor, we quantify the (non-vanishing) non-
Markovianity for all (ξ, κ)∈ [0, 2] × [0, 10] (see Supplementary
Methods E). We then examine the memory strength in various
regimes by constructing three 6-time process tensors ϒ6:1(ξ, κ):
one CP-divisible, one strongly non-Markovian, and one inter-
mediate, and let M range from t2 to t5. We consider: (i) the identity
map, which captures the natural memory strength; (ii) the “causal
break” instrument, where the system is measured and indepen-
dently reprepared in an informationally complete manner, break-
ing information flow through the system; and (iii) the completely
noisy instrument, which replaces the state with white noise,
quantifying noise-resistant memory14.
All processes have vanishing memory strength for the

completely-noisy instrument, which can be implemented by
applying random unitaries sampled from a set whose average is
the depolarizing channel, providing a convenient way to bound
memory46. For cases (i) and (ii), in Fig. 3 we plot the error in the
multi-time expectation value (i.e., l.h.s. of Thm. 1) and a memory
strength proxy based on the relative entropy between the Choi
states of the true and recovered processes (see Supplementary
Methods D) which upper bounds the r.h.s. of Thm. 1. The
observable C is chosen as an initial preparation, followed by doing
nothing for four steps, before a final measurement. Each process
displays significant memory strength for the identity instrument,
indicating that unperturbed memory does not decay rapidly. In
contrast, the effects of interventions are seen for the causal break
here, all memory effects detected result from environmental
interactions since the causal break ensures no temporal correla-
tions can be transmitted through the system (cf. the identity
instrument). The CP-divisible process exhibits negligible memory
strength, the intermediate process some, and the strongly non-
Markovian one stronger still. We emphasize that the unperturbed
evolution is better approximated by the process recovered from
the informationally complete recovery scheme than that from the
identity instrument, demonstrating Thm. 3.

DISCUSSION
We have introduced the concept of memory strength for quantum
stochastic processes, which is shown to bound process recover-
ability. Its applicability is exemplified by the case study, where we
are able to accurately and efficiently reconstruct dynamics with
a memory cutoff, even in a highly non-Markovian regime. We
expect these tools to be broadly applicable to modern techniques
for efficient simulation, where operationally motivated memory
approximations with quantitative error bounds are desired, such
as transfer tensor62–66 and machine-learning methods that either
attempt to learn non-Markovian features67,68 or compress the
memory to low-dimensional effective environments69,70. Our
notion of memory strength and the associated concept of
recoverability will play an important role in the characterization
and mitigation of noise in quantum experiments where multi-time
memory effects are present46–49. Of particular relevance in this
direction, in ref. 46, the authors recovered the restricted process
tensors on four IBM quantum computers and reported a
reconstruction fidelity of order 10−3. In addition, in refs. 48,49,
the authors directly applied our tools to drastically reduce the
number of conditional circuits required to be estimated to
characterize a multi-time process on the IBM quantum computer.
In particular, they demonstrate that a finite Markov order model of
length ℓ= 2, 3 suffices to prepare future target states on a five
step non-Markovian process with approximately 88% and 93%

Fig. 3 Case study. We plot jhCiϒFMH
� hCi

Λ
JM
FMH

j (hollow, dashed) and
the proxy memory strength based on the relative entropy between
the Choi states of the true and recovered processes (see
Supplementary Methods D) (solid) for (i) the identity map and (ii)
a causal break. We construct a six-step process tensor in the strongly
non-Markovian (red, circles), CP-divisible (blue, squares), and
intermediate (green, diamonds) regimes, and consider the memory
strength over ℓ applications of said instruments.
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fidelity, respectively, in the presence of correlated noise. This is a
huge improvement over previous ‘gold standard’ techniques
using gate-set tomography to mitigate state-preparation-and-
measurement errors, which gives fidelity values of around 75% in
the same circumstances. Our present work lays the conceptual
foundations for approximating processes with finite memory with
requirements only as large as the complexity of the memory and
these examples highlight the efficacy of our framework in realistic
settings. Further developments in this direction will bridge the
gap between efficient characterization and simulation of quantum
processes with memory48,49,71,72.

METHODS
Introduction to process tensor
Here we provide an introduction to the process tensor formalism; for
details, see, e.g., refs. 8,11,34,73.
A discrete-time classical stochastic process is characterized by the joint

probability distribution P over all sequences of events, Pðxn; ¼ ; x1Þ,
where we drop the explicit time labels with the understanding that xj
represents an event at time tj. In multi-time quantum processes, it is
important to not only capture the outcome of a measurement, but also the
transformation induced on the state, which together constitute an event.
Thus, an interrogation of a quantum stochastic process at time tj is

described by an instrument J j ¼ fOðxjÞ
j g, which is a collection of

completely positive (CP) maps that sum to a completely positive and
trace preserving (CPTP) map. Instruments represent general quantum
operations, including projective measurements, unitary transformations,
and anything in between. Each CP map corresponds to a particular event
realized and the fact that the maps sum to a CPTP one encodes the
assumption that some event is observed. A discrete-time quantum
stochastic process is uniquely described once the probability
Pðxn; ¼ ; x1jJ n; ¼ ;J 1Þ for all possible events {x1,…, xn} for all possible
instruments fJ 1; ¼ ;J ng are known. As a consequence of the linearity of
mixing principle43, there exists a multi-linear functional T n:1 that takes any
sequence of CP maps to the correct probability distribution via

Pðxn; ¼ ; x1jJ n; ¼ ;J 1Þ ¼ T n:1½OðxnÞ
n ; ¼ ;Oðx1Þ

1 �, known as the process
tensor11. The process tensor generalizes classical stochastic processes9 and
reproduces classical properties appropriately74,75. As it encodes all
detectable memory effects, it has been used to develop operationally
meaningful notions of quantum Markovianity10,11 and memory length12–14.
Since all of the CP maps constituting the instruments, as well as the

process tensor itself, are linear maps, they can be represented as matrices
through the Choi–Jamiołkowski isomorphism (CJI)8. Any map
O : BðHiÞ ! BðHoÞ, where BðXÞ denotes the space of bounded linear
operators on X , can be mapped isomorphically to a matrix O 2 BðHo �
HiÞ through its action on half of an (unnormalized) maximally entangled
state Ψþ :¼

P
i;j iij i jjh j 2 BðHi �HiÞ, i.e., O :¼ ðO � IÞ½Ψþ�. Note that the

time of the event is associated to both an input and output Hilbert space,
and the Choi matrix is a supernormalized bipartite state. In this
representation, the properties of CP and TP for the maps respectively
translate to O≥ 0 and tro O½ � ¼ 1i . To aid intuition, note that the
output state ρ0 :¼ O½ρ� of the map O acting on an arbitrary input
state ρ is computed in the Choi picture via ρ0 ¼ tri ð1o � ρTi ÞO

� �
. If

the initial state is not subject to a (CPTP) quantum channel but
instead a particular event is observed, associated to a CP map of
an instrument J ¼ fOðxÞg, then the corresponding probability is
computed via

PðxjJ Þ ¼ tr ð1o � ρTi ÞO
ðxÞ
oi

h i
: (15)

Similarly, the action of a process tensor map T n:1 on a sequence of

instrument elements fOðx1Þ
1 ; ¼ ;OðxnÞ

n g can be expressed in terms of a
multiplication of their Choi matrices and a trace as follows43

Pðxn; ¼ ; x1jJ n; ¼ ;J 1Þ ¼ tr ðOðxnÞ
n � ¼ � Oðx1Þ

1 Þ
T
ϒn:1

h i
; (16)

where ϒn:1 2 BðHni �Hn�1� � ¼ �H1i Þ is the (2n− 1)-partite Choi

matrix of the process tensor map T n:1 and each Oðxj Þ
j is the Choi matrix

ofOðxjÞ
j . The Choi state of the process ϒn:1 plays the role of a quantum state

over time, insasmuch as it encodes all observable probability distributions

for all possible instrument sequences (just as a quantum state encodes all
observable probability distributions for any choice of POVM). In the
(one-time) spatial setting, ϒ1 ¼ 1o � ρTi and Eq. (16) reduces to
Eq. (15). Note that we label the Hilbert spaces logically from the perspective
of the experimenter (i.e., the experimenter receives a state from the process
that is “input” into their instrument of choice, transforming it into an
“output” state that is fed back into the process); hence, i denotes outputs of
the process and o denotes inputs to the process. Whenever a process
tensor acts on an instrument sequence, the degrees of freedom with the
same labels (timestep and input/output) are contracted over.
The natural generalisation ϒn:1 of the CJI applied to the multilinear map

T n:1 is constructed by feeding one half of an (unnormalized) maximally
entangled state into the dynamics at each time8. More precisely, begin
with the system-environment dilated dynamics shown in Fig. 2 (green),
and denote the initial system-environment state by ρ and the unitary maps
describing the joint evolution between times tj−1 and tj by U j:j�1. Now
consider n− 1 additional maximally entangled pairs, Ψþ

j� j� associated to

auxilliary systems Aj� ’ S, collectively described as Ψþ
n�1 :¼

Nn�1
j¼1 Ψ

þ
j� j� .

Letting the unitary maps between each timestep act on the environment
and one half of the appropriate auxilliary systems, i.e., U j:j�1 : BðHj�1� �
HEÞ ! BðHji �HEÞ yields the Choi state of the process tensor

ϒn:1 ¼ trE ½Un:n�1 ¼U2:1ðρ� Ψþ
n�1Þ�: (17)

It is straightforward (albeit arduous) to verify the correctness of Eq. (16) via
direct insertion of Eq. (17). Natural generalizations of complete positivity
and trace preservation to multi-time processes translate respectively to
ϒn:1 ≥ 0 and the following hierarchy of trace conditions

trji ϒj:1
� �

¼ 1j�1� � ϒj�1:1; 8j: (18)

Conversely, any operator satisfying the above represents some (causally-
ordered) quantum dynamics inasmuch as it corresponds to a fixed
underlying system–environment circuit11,34.
Eq. (16) constitutes a special case of how (higher-order) quantum maps

act on each other: here, we are contracting all open slots of the process
tensor with an operation associated to each time in order to yield a
probability distribution. More generally, it is possible to consider applying
instruments to only a subset of times, yielding a conditional process
defined upon the remaining times, which describes the correct behaviour
of the concatenated dynamics. In other words, it contains all of the
information required to compute the correct probability distribution for
any instruments applied to the remaining times. To compute such an
object in the Choi representation, one uses the link product defined in
ref. 36. Essentially, this amounts to restricting both the trace and the
transposition in Eq. (16) to only the common Hilbert spaces associated to
the relevant subset of times where the instrument is being applied.
For instance, grouping the times into history H ¼ ft1; ¼ ; tkg, memory

M ¼ ftkþ1; ¼ ; tkþℓg and future F ¼ ftkþℓþ1; ¼ ; tng and choosing an
instrument J M ¼ fOðxMÞ

M g on the memory block, the conditional future-
history process that occurs given any particular event sequence OðxMÞ

M on M
alone is

eϒðxMÞ
FH ¼ trM OðxMÞT

M ϒFMH

h i
: (19)

Such a conditional process is generically correlated across F and H;
however, if it is of tensor product form eϒðxMÞ

FH ¼ ϒðxMÞ
F � eϒðxMÞ

H for each event
xM of the instrument J M , the process has Markov order ℓ≔ ∣M∣ with
respect to said instrument12. (In general, each OðxMÞ

M may act on only a
subspace of M, with the history and future retaining the rest, to yieldeϒðxMÞ

FMFMHH , whereMF andMH can depend on xM (see Supplementary Methods
B); for brevity, we absorb these into F and H.)
Lastly, a Markovian process corresponds to one for which the process

tensor has the specific tensor product structure of an uncorrelated
sequence of CPTP maps fΛji :j�1� g connecting adjacent timesteps, and an
initial quantum state ρ1i

10

ϒMarkov
n:1 ¼ Λni :n�1� � Λn�1i :n�2� � Λ2i :1� � ρ1i : (20)

Preliminaries
To begin with, we introduce the following definition:
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Definition 4. (Instrument relative entropy). For any family of instruments J
and process tensors ϒ; Γ,

SJðϒkΓÞ :¼ sup
J2J

S PJ ½ϒ�kPJ ½Γ�ð Þ; (21)

where SðAkBÞ :¼ tr AðlogA� log BÞ½ � is the quantum relative entropy and
PJ is a CP map from process tensors to classical pointer states, whose
elements form a probability distribution over outcomes of the instrument
J ¼ fOðxÞg

PJ ½ϒ� :¼
X
x

tr OðxÞTϒ
h i

xj i xh j: (22)

Proposition 5. For any ϒFMH;J M and ΛJ M
FMH as defined in Eq. (10),

ΘðJ MÞ ¼ SJ\spanðJ MÞ ϒFMHkΛJ M
FMH

	 

; (23)

withΘðJ MÞ taken to be the measured CMI, J \ spanðJ MÞ a family of
instruments whose elements have support on M only in the linear span of the
elements ofJ M.

Proof. Consider first the measured conditional probability distributions for
a fixed memory instrument J M and arbitrary (independent) J F ;J H arising
from the process tensor ϒFMH and the recovered process ΛJ M

FMH , which are
respectively given by:

PϒFMH ðxF ; xHjxMÞ ¼ tr ðOðxF Þ
F � OðxHÞ

H Þ
TeϒðxMÞ

FH

h i
(24)

and

P
Λ
JM
FMH

ðxF ; xH jxMÞ ¼ tr ðOðxF Þ
F � OðxHÞ

H Þ
TeΛðxMÞ

FH

h i
: (25)

Here, we have defined eΛðxMÞ
FH :¼ trM OðxMÞT

M ΛJ M
FMH

h i
, which, by construction,

factorizes as

P
Λ
JM
FMH

ðxF ; xHjxMÞ ¼ tr ðOðxF Þ
F � OðxHÞ

H Þ
T
ðϒðxF Þ

F � eϒðxHÞ
H Þ

h i
¼ PϒFMH ðxF jxMÞPϒFMH ðxH jxMÞ;

(26)

since eΛðxMÞ
FH ¼ ϒðxF Þ

F � eϒðxHÞ
H .

With this, we can express the mutual information in the correlated
distribution IðF : HÞPϒðxF ;xH jxMÞ ¼ IJðF : HÞϒ [see Eq. (8)] in terms of the
relative entropy between said distribution and the uncorrelated one
arising from measurements on the recovered process, i.e.,

IJðF : HÞϒ ¼ S½PϒFMH ðxF ; xHjxMÞkPΛ
JM
FMH

ðxF ; xHjxMÞ�: (27)

Thus, beginning with the definition of Eq. (7), we have

ΘðJ MÞ ¼ sup
J F ;J H2J

X
xM

pðxMjJ MÞIJðF : HjxMÞϒ

 !
¼ SJFmH ðϒJ M

FmHkΛ
J M
FmHÞ:

(28)

Here JFmH is the original set of uncorrelated instruments J on FH,
combined with a POVM on the pointer space m, i.e., the supremum
in the measured relative entropy is taken over J ¼ fOðxÞ

FmHg 2 JFmH of
the form

OðxÞ
FmH ¼

X
xM

Eðx;xMÞFH � xMj i xMh jm; (29)

where Eðx;xMÞFH can be any operator, OJ
FmH ¼

P
xO

ðxÞ
FmH satisfies the relevant

trace conditions on the FH part and trFH OJ
FmH

� �
¼ Di

FH1m . Since, for

J M ¼ fOðxMÞ
M g,

trm xMj i xMh jmΓ
J M
FmH

� �
¼ trM OðxMÞ

M

X
yM

Γ
ðyMÞ
FH � DðyMÞ

M

" #
;

with Γ ∈ {ϒ, Λ} and fDðxMÞ
M g the dual set to J M , we have

SJFmH ðϒJ M
FmHkΛ

J M
FmHÞ ¼ SJ\spanðJ MÞðϒFMHkΛJ M

FMHÞ;

with ΛJ M
FMH ¼

P
xM
ϒðxMÞ

F � DðxMÞ
M � eϒðxMÞ

H . Hence, the claim is asserted. □
We are now in a position to prove our main results.

Proof of Thm. 1
First, we note that, for any set of instruments J and process tensors
ϒ and Γ,

SJðϒkΓÞ ¼ sup
J2J

X
x

pJx ðlog pJx � log qJx Þ; (30)

with pJx :¼ tr OðxÞTϒFMH
� �

and qJx :¼ tr OðxÞTΛJ M
FMH

� �
the probabilities asso-

ciated with the instrument J ¼ fOðxÞg. We can then use Pinsker’s
inequality to write

SJðϒkΓÞ � 1
2 sup
J2J

P
x jpJx � qJx j

	 
2

¼ 1
2 sup

J2J

P
x tr OðxÞTðϒ� ΓÞ
� ��� �� !2

:

(31)

Any multi-time operator C can be decomposed in terms of the elements
of a single instrument J ¼ fOðxÞg 2 J, as long as those elements span a
sufficiently large space. That is, C ¼

P
xc

J
x O

ðxÞ with cJx 2 C; in general, the

norm jCjJ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x jcJx j
2

q
will vary with the instrument involved in the

decomposition. We therefore have, using the Cauchy–Schwarz inequality

tr CΞ½ �j j � inf
J2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x jcJx j

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x tr OðxÞTΞ
� ��� ��2q� �

� inf
J2J

jCjJ
P

x tr OðxÞTΞ
� ��� ��	 


� inf
J2J

jCjJ
	 


sup
J2J

P
x tr OðxÞTΞ
� ��� ��	 


;

(32)

for any operator Ξ. Choosing Ξ ¼ ϒFMH � ΛJ M
FMH and restricting the set J to

J \ spanðJ MÞ, such that tr CΞ½ � ¼ hCiϒFMH
� hCi

Λ
JM
FMH

, and combining Eqs.

(31) and (32) leads to the bound

hCiϒFMH
� hCi

Λ
JM
FMH

��� ��� � jCj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SJ\spanðJ MÞðϒFMHkΛJ M

FMHÞ
q

; (33)

where jCj ¼ min
J2J\spanðJ MÞ

jCjJ (equivalent to the definition given in Thm. 1).

Invoking Prop. 5 proves Thm. 1. □
Cor. 2 follows directly as shown below.

Proof of Cor. 2

Choose C ¼ Pj � Ψþ�j�k�2 � OðxMÞ
M � Ψþ�k�ℓ�2, with Ψþ :¼

P
αβ ααj i ββh j

the Choi state of the identity map and Pj a projector. Then ∣C∣= 1, since
C is an element of the instrument where the system
is left to freely evolve on H, J M is applied, it again freely evolves
to time tj and then the POVM {Pj, 1− Pj} is applied. It follows that

hCiϒ ¼ tr Pjρ
ðxMÞ
j

h i
, with ρ

ðxMÞ
j :¼ trFMHnj Ψþ

H � OðxMÞ
M � Ψþ

Fnj


 �
ϒFMH

h i
the state, at time tj, of the system undergoing the
process specified by ϒFMH , acted on by J M with outcome xM
occurring, and with no other active interventions. Similarly, the

predicted state is ρ0ðxMÞj :¼ trFMHnj Ψþ
H � OðxMÞ

M � Ψþ
Fnj


 �
ΛJ M
FMH

h i
. Here,

Ψ+ denotes the Choi state of the identity map and Ψþ
X is

shorthand for a sequence of identity maps applied at all times in
the block X, and j corresponds to a subspace of the future Hilbert
space associated to time tj. The l.h.s. of Eq. (11) of the main text
then reduces to jtr½PjðρðxMÞj � ρ0

ðxMÞ
j Þ�j; since the bound must be

true for any Pj, it must be true for the one for which the l.h.s. is
largest; i.e., supPj jtr½Pjðρ

ðxMÞ
j � ρ0

ðxMÞ
j Þ�j ¼ kρðxMÞj � ρ0

ðxMÞ
j k1 is

bounded. □
For informationally complete instruments, a combination of the results

derived above leads to Thm. 3.

Proof of Thm. 3
When J M is informationally complete, ΛJ M

FMH is a full process tensor and any
instrument can be applied to it, since J \ spanðJ MÞ ¼ J by definition.
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Therefore, we can use Eq. (31), along with Prop. 5, to write:

sup
J2J

X
x
tr OðxÞðϒFMH � ΛJ M

FMHÞ
h i��� ���

 !2

� 2ΘðJ MÞ (34)

The square root of the l.h.s. of this equation is the generalized diamond
distance ϒFMH � ΛJ M

FMH

�� �� with ∥X∥◇ defined in Thm. 3. Equation (13) and
hence Thm. 3 follows. □
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