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ABSTRACT

Understanding temporal processes and their correlations in time is of paramount im-

portance for the development of near-term technologies that operate under realistic

conditions. Capturing the complete multi-time statistics defining a stochastic process

lies at the heart of any proper treatment of memory effects. This is well-understood in

classical theory, where a hierarchy of joint probability distributions completely charac-

terises the process at hand. However, attempting to generalise this notion to quantum

mechanics is problematic: observing realisations of a quantum process necessarily dis-

turbs it, breaking an implicit, and crucial, assumption in the classical setting. This issue

can be overcome by separating the experimental interventions from the underlying pro-

cess, enabling an unambiguous description of the process itself and accounting for all

possible multi-time correlations for any choice of interrogating instruments.

In this thesis, using a novel framework for the characterisation of quantum stochas-

tic processes, we first solve the long standing question of unambiguously describing the

memory length of a quantum processes. This is achieved by constructing a quantum

Markov order condition that naturally generalises its classical counterpart for the quan-

tification of finite-length memory effects. As measurements are inherently invasive in

quantum mechanics, one has no choice but to define Markov order with respect to the

interrogating instruments that are used to probe the process at hand: different memory

effects are exhibited depending on how one addresses the system, in contrast to the

standard classical setting. We then fully characterise the structural constraints imposed

on quantum processes with finite Markov order, shedding light on a variety of memory

effects that can arise through various examples. Lastly, we introduce an instrument-

specific notion of memory strength that allows for a meaningful quantification of the

temporal correlations between the history and the future of a process for a given choice

of experimental intervention.

These findings are directly relevant to both characterising and exploiting memory

effects that persist for a finite duration. In particular, immediate applications range from

developing efficient compression and recovery schemes for the description of quantum

processes with memory to designing coherent control protocols that efficiently perform

information-theoretic tasks, amongst a plethora of others.
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Memory is not an instrument for surveying the past but its theatre

— Walter Benjamin.

ACKNOWLEDGEMENTS

First of all, I must thank my supervisors, Kavan Modi and Felix Pollock, for their support

and guidance throughout my journey. Both of them have provided a perfectly balanced

atmosphere of ongoing encouragement, diligent rigour and healthy scepticism that has

undoubtedly helped me develop as a scientist and as a person. Kavan’s quick-witted

counterexamples to my many outlandish claims saved me from pursuing countless dead-

ends and taught me that often the problem is your friend. Felix’s attention to details

and grammatical pedantry immensely improved my abilities in scientific communication

and cured my unhealthy obsession with semi-colons.

Secondly, my deepest thanks goes out to my de facto supervisor, Simon Milz. It has

been a pleasure to have learnt many fun facts about an undisclosed European nation

thanks to you... oh, and a thing or two about physics. It’s been a wild ride so far and

now we set sail for tomorrow!

I would like to express my gratitude to the School of Physics and Astronomy at

Monash University. I couldn’t have asked for a more supportive environment in which

to study both my undergraduate and masters degrees. In addition, I appreciate the

financial support of the Australian Government Research Training Program (RTP) and

the J. L. William Scholarships.

I especially thank the entire MonQIS group for their friendship, in particular Simon

Milz, Francesco Campaioli, Josh Morris, Top Notoh and the honorary member, Cody

Duncan. I am yet again thankful to Simon Milz for his thorough revisions of this thesis,

Lee Miles for providing inspiration in times of need, and Ashley Bransgrove, Vanessa La

Delfa and John Farrugia for their thoughtful comments on an early draft.

Lastly, thanks to my family and friends for their support throughout this journey.

Melbourne, 13 March, 2019.

ix





Contents

contents xiii

list of figures xv

list of tables xv

acronyms xvi

i a kind of glory

1 introduction 3

1.1 Reading Guide 7

ii narrative on the edge

2 classical and quantum dynamics with noise 13

2.1 Classical Stochastic Processes 15

2.1.1 Probability Spaces 15

2.1.2 Stochastic Processes 18

2.1.3 Modelling Stochastic Processes 22

2.1.4 Markovian Stochastic Processes 24

2.1.5 Non-Markovian Stochastic Processes 27

2.1.6 Classical Markov Order 29

2.2 Open Quantum Dynamics 33

2.2.1 Open Quantum Systems 35

2.2.2 Dynamical Maps 39

2.2.3 GKSL Equation 43

2.2.4 Tomographic Reconstruction of Quantum Channels 44

2.3 A Problem of Formalism 45

2.3.1 A Hierarchy of Notions of Non-Markovianity 48

2.3.2 Limitations of Traditional Approaches 49

3 quantum stochastic processes 53

3.1 Process Tensor Framework 54

3.1.1 Multi-time Quantum Experiments 55

3.1.2 Process Tensor 59

xi



contents

3.2 Representing Linear Maps 65

3.2.1 Choi-Jamiołkowski Isomorphism 65

3.2.2 Choi Representation of Process Tensor 68

3.2.3 Properties of the Process Tensor 70

3.3 Spatio-temporal Born Rule 72

3.4 Markovian Quantum Processes 77

iii unspoken words

4 memory length 87

4.1 Quantum Markov Order 89

4.1.1 Instrument-specific Quantum Markov Order 90

4.1.2 Finite Memory Constraint on the Process Tensor 92

4.2 Relation to Classical Markov Order 97

4.2.1 Classical Stochastic Processes with Interventions 97

4.3 Memory Length of a Generalised Collision Model 100

4.4 Chapter Summary 106

5 processes with finite memory length 109

5.1 Structure of Quantum Processes with Finite Markov Order 110

5.1.1 Unitary History-Blocking Instrument Sequences 112

5.1.2 Informationally-Complete History-Blocking Sequences 114

5.2 Quantum Markov Order and Conditional Mutual Information 118

5.3 Chapter Summary 122

6 memory strength 125

6.1 Quantifying Memory Strength 126

6.1.1 Instrument-specific Memory Strength 127

6.1.2 Memory Length for an Exactly Solvable Model 130

6.2 Chapter Summary 135

iv envoi

7 summary 139

7.1 Outlook 142

v appendix

a notation summary 145

b classical and quantum dynamics with noise 149

b.1 Classical Master Equation 149

xii



contents

b.2 Tomography of a Dynamical Map 150

c memory length 153

c.1 Quantum Markov Order Constraint on Process Tensor 153

c.2 Demanding Finite Quantum Markov Order for all Instruments Implies

Markovianity 156

c.3 Classical Markov Order with Fuzzy Measurements 157

c.4 Memory Length of a Generalised Collision Model with Memory via Re-

peated System-Ancilla Interactions 159

c.5 Other Generalised Collision Models with Memory 161

d processes with finite memory length 165

d.1 Process with Finite Markov Order and Non-zero Quantum CMI 165

d.2 Finite Markov Order does not Imply Vanishing Quantum CMI 167

d.3 Fuzzy Orthogonal Projective Measurements on a Quantum Process 170

bibliography 173

xiii



List of Figures

Figure 2.1 Continuous and discrete-time stochastic processes 19

Figure 2.2 Containment property for classical stochastic processes 21

Figure 2.3 Perturbed coin 25

Figure 2.4 Random walk conditioned on marbles drawn 28

Figure 2.5 Markov order as the natural notion of memory length 31

Figure 2.6 Breakdown of KET in a Stern-Gerlach experiment 34

Figure 2.7 Dynamical map 39

Figure 2.8 Complete-positivity 41

Figure 2.9 Stinespring dilation of a quantum channel 42

Figure 2.10 Tomographic reconstruction of a quantum channel 44

Figure 2.11 Dilation of a quantum process interrogated in time 46

Figure 2.12 Measuring the system conditions the environment and influences

future dynamics 47

Figure 2.13 Initial correlation problem 51

Figure 3.1 Multi-time quantum experiment 56

Figure 3.2 Superchannel: resolution to the initial correlation problem 60

Figure 3.3 Process tensor: an operational description of quantum stochastic

processes 61

Figure 3.4 Doing nothing vs. averaging over measurements 62

Figure 3.5 Consistency condition for the process tensor 63

Figure 3.6 CJI of a linear map 66

Figure 3.7 The unique trace-preserving effect 68

Figure 3.8 CJI for the process tensor 69

Figure 3.9 Complete-positivity for the superchannel 71

Figure 3.10 Graphical representation of a POVM 72

Figure 3.11 Graphical representation of an instrument 74

Figure 3.12 Graphical representation of a tester 76

Figure 3.13 Causal break 79

xiv



Figure 3.14 Markovian process tensor 81

Figure 4.1 Instrument-specific quantum Markov order 93

Figure 4.2 Generalised collision model with memory 101

Figure 4.3 Finite memory with respect to trash-and-prepare protocol 103

Figure 5.1 Finite memory for a unitary instrument sequence 113

Figure 5.2 Finite memory for an informationally-complete sequence 116

Figure 5.3 Process with non-vanishing quantum CMI 120

Figure 6.1 Instrument-specific memory strength 130

Figure 6.2 Abrupt transition between CP-divisible and non-divisible dynam-

ics 132

Figure 6.3 Heatmap of non-Markovianity 133

Figure 6.4 Instrument-specific memory strength 134

Figure C.1 Instrument-dependence of classical Markov order with fuzzy mea-

surements 158

Figure C.2 Generalised collision models with memory 162

Figure D.1 Process with finite quantum Markov order but non-vanishing quan-

tum CMI 166

Figure D.2 Process with non-vanishing quantum CMI but finite Markov order

with respect to (fuzzy) orthogonal projectors 171

List of Tables

Table A.1 Notational conventions 148

xv



ACRONYMS

ME Master equation

P Positive

CP Completely-positive

TP Trace-preserving

CJI Choi-Jamiołkowski isomorphism

CPTP Completely-positive and trace-preserving

KET Kolmogorov extension theorem

IC Informationally-complete

POVM Positive operator-valued measure

CMI Conditional mutual information

GKSL Gorini, Kossakowski, Sudarshan and Lindblad

xvi



Part I

A K I N D O F G L O RY

Sometimes a kind of glory lights up the mind of a man. It happens to nearly

everyone. You can feel it growing or preparing like a fuse burning toward dy-

namite. It is a feeling in the stomach, a delight of the nerves, of the forearms.

The skin tastes the air, and every deep-drawn breath is sweet.

— John Steinbeck, East of Eden.
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INTRODUCTION

Although physical laws are fundamentally local in time, memory ef-

fects are ubiquitous in processes observed in nature [3–5]. We see such effects

when we try to predict the weather or the stock market, describe transport pro-

cesses at the microscopic level or understand the random motion of particles suspended

in a fluid, to name but a few examples. Memory arises because, in reality, no system

is truly isolated; our inability to capture interactions between the system of interest

and its environment leads to dynamics that can exhibit complex temporal correlations.

Through these interactions, information about the system’s past can be stored in the

environment, which carries it forward to dictate the future evolution of the system.

In classical physics, should an experimenter be equipped with sufficient resources

to track the evolution of all relevant degrees of freedom—including those of the

environment—a deterministic, memoryless description of the evolution could, in prin-

ciple, be derived. In practice, however, resource constraints quickly banish such lofty

ambitions to the realm of the idyllic. A priori, one does not know the structure of

system-environment interactions concerning complex phenomena in precise detail; even

if one did, for sufficiently large environments, such a description rapidly defies feasi-

bility with respect to the amount of data required to be stored and manipulated in a

reasonable time on a reasonable computer.

From an operational perspective, it is desirable to understand properties of a stochastic

process from information that can be inferred from probing the system of interest alone.

Intuitively, in this sense a stochastic process refers to the joint probability distribution

that expresses the likelihood of a quantity taking certain values: the probability for a

certain stock to have price x1 and x2 and x3 on three consecutive days, for instance.

Fluctuations of the stock price on any given day can directly influence the rest of the

market (i. e., its environment), which in turn impacts the price of the original stock at

a later time.
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introduction

Such memory effects are encoded as correlations in the joint probability distribution

over the relevant timesteps and can manifest themselves as genuinely multi-time corre-

lations. In the simplest non-trivial memoryless scenario, a process can exhibit only two-

point correlations: the probability distribution of tomorrow’s stock price only depends

upon today’s price, and not any further back in the history. However, more generally,

when memory effects are at play, all multi-time correlations must be considered to un-

ambiguously describe the process, as joint effects between sequences of events can play

a significant role in the future evolution.

When attempting to generalise this understanding of stochastic processes to the quan-

tum realm, perhaps unsurprisingly, the intricacies involved come to light. Just like in

the classical realm, any realistic phenomenon must be described within the theory of

open systems to account for the stochasticity that arises due to our subjective ignorance

of the degrees of freedom of the environment [6–8]. In this formalism—as is the case

for classical processes—dynamical phenomena are described solely in terms of accessi-

ble quantities that are derivable from the system of interest alone. The open systems

framework has enjoyed tremendous recent success, translating fundamental theories into

real-world predictions, and has led to a multitude of tools and techniques for manipulat-

ing quantum processes which have fostered many technological advances.1 However, in

stark distinction to the classical setting, here we must also deal with the fact that addi-

tional randomness arises at an elementary level through the very nature of measurement

at the microscopic scale.

In quantum mechanics, measurements are fundamentally invasive, which seemingly

leads to incompatibility of measurement statistics observed in time [12, 13]. Indeed, such

invasiveness leads directly to a breakdown of the Kolmogorov extension theorem [14],

which importantly links the operational description of a classical stochastic process in

terms of joint statistics measured over a set of times to an underlying continuous-time

mechanism [15]. Whenever measurements can directly influence the state of the system,

it becomes seemingly impossible to define the process independently of the experimental

interventions. This scenario is pertinent to both classical causal modelling [16], where

an experimenter intervenes with the system in order to deduce causal relations between

events, and quantum theory more generally [14, 17–19]. In any such theory, the hierar-

chy of joint probability distributions alone does not tell the entire story regarding the

1 See, for instance, early work regarding the development of error-correcting codes for resilient quantum
computing and the dynamical decoupling protocol for effective quantum control in Refs. [9, 10] and [11]
respectively.
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introduction

underlying process; thus, we are seemingly at a loss in answering what we really mean

when we talk about a quantum stochastic process.

The lack of equivalence between the accessible and the underlying physical descrip-

tions of quantum stochastic processes has irked the open systems and quantum infor-

mation theory communities for some time, leading to nonequivalent definitions of key

concepts pertinent to open quantum evolution; the most relevant to our present inter-

ests being that of memorylessness. Classically, a memoryless process is one for which

the statistics observed at any point in time only depend on the most recent state of the

system. Satisfaction of this condition has profound implications that importantly lead

to a significantly simplified description of the process; indeed, the study of memoryless

processes forms an entire branch of mathematics, and the evolution of many systems

is frequently approximated to be memoryless, because of both the relative ease with

which they can be analytically and computationally manipulated and the experimental

evidence supporting this simplification [3–5, 20, 21].

However, the complications discussed above regarding a multi-time description for gen-

eral quantum processes make it challenging to define the process independently of the

interventions applied by the experimenter. Without such a description, there is no mean-

ingful way to take intermediate measurements into account and check for conditional

independence of the future evolution from the history. Thus, until recently, there has

been no unique condition to define memorylessness in quantum mechanics. Nonetheless,

many traditional approaches of the open systems formalism focus on the time-evolving

state of the system of interest, which can provide valid witnesses for the presence of

memory effects [22–24]. Whilst of immense practical importance, such descriptions do

not serve to fully characterise the process, as they are limited in scope to capturing two-

time correlations, specifically those between that of the state prepared at some point

in time and the subsequent measurement statistics deduced at any later time. As is

also true in the classical setting [25], when memory effects play a non-negligible role, all

multi-time correlations must be considered.

Various frameworks circumvent the crucial problem of formalism that arises due to

the invasiveness of measurements in quantum mechanics by actively taking measure-

ments and controllable manipulations of the system of interest into account, enabling

the separation of the underlying, uncontrollable process per se and the influence en-

acted by the experimenter. These were initially introduced by Lindblad [26] and Ac-

cardi, Frigerio and Lewis [27]. Modern variants of similar formalisms have been applied

to study general quantum circuit architectures [28–31], foundational aspects of causal-

5



introduction

ity in quantum theory [32–37], quantum causal modelling [17–19, 38], quantum theory

in spacetime [39–41], quantum game theory [42, 43], generalised communication proto-

cols [44], non-equilibrium quantum thermodynamics [45, 46], and quantum processes

with memory [1, 2, 14, 47–55].

Indeed, this school of thought has led to the development of a generalised Kolmogorov

extension theorem that holds in any generalised probabilistic theory—including quan-

tum theory—crucially giving rise to an operational definition of quantum stochastic

processes [14, 27]. Most relevant to our present purposes, the breakthrough result of

Ref. [49] provides an unambiguous criterion for a quantum process to be memoryless,

thereby unifying all previous approaches. With this comprehensive mathematical lan-

guage that captures all possible multi-time correlations at hand, one can properly de-

scribe quantum stochastic processes with memory independently of the experimenter

and accurately understand important phenomena in which temporal correlations play a

significant role, such as, e. g., the emission spectra of quantum dots [56] and the vibra-

tional modes of interacting fluids [57].

The discussion so far has centred on the existing literature; now we move to focus on

the developments of this thesis. While the previously discussed frameworks are perfectly

tailored to unambiguously define memory effects in quantum mechanics—and describe

processes that display them—a thorough analysis of their structure, length, and strength

is still missing. In particular, the concept of Markov order, which is regularly invoked

in the study and simulation of classical stochastic processes with finite-length memory

effects, has not been generalised to, or analysed in the context of, quantum mechanical

processes. Such an investigation is of tremendous practical importance, as, although tem-

poral correlations in complex phenomena are exhibited over various timescales, Markov

order provides a natural notion of memory length that emerges in the context of statis-

tical modelling, namely the amount of a system’s history that directly affects its future

dynamics [4].

Classically, the concept of Markov order, `, dictates that the statistics describing a

system of interest at a given time only depend upon knowledge of its past ` observed

states. Processes with finite Markov order therefore permit a significant reduction in

modelling complexity: one must only estimate the conditional transition probabilities

from the most recent set of observations, rather than the exponentially many more

parameters for each additional timestep further back in the history [58–60]. Fortunately,

many complex processes typically have an effectively finite-length memory, allowing for

an efficient description that only considers the relevant portion of history necessary to

6



1.1 reading guide

optimally predict the future [3–5]. In these cases, it is our understanding of the memory

strength across a given duration of time that justifies the suitability of invoking finite-

memory approximations

A thorough understanding and characterisation of memory effects in general stochastic

processes is of crucial importance from both a theoretical and practical standpoint. Many

theoretical developments regarding quantum systems have shown a superiority over their

classical counterparts with respect to the successful enactment of certain information-

processing tasks [11, 61–63]. Explicit understanding of memory effects will be of ever

increasing importance and it is clear that future quantum technologies will need to

embrace memory in order to display these advantages under realistic conditions [64].

The aforementioned modern frameworks pave the way for an unambiguous foray into

the study of memory effects in quantum processes and provide the starting point for

this thesis. There are, as we see it, a number of aspects regarding memory that must be

considered for a holistic comprehension, namely the duration of time over which memory

effects persist, the strength of their impact and the complexity of their simulation. The

main concern and achievement of the present work regards extending the concept of

finite memory length and the quantification of memory strength to quantum stochastic

processes, and investigating the subsequent implications. Leveraging this vantage point,

these concepts serve to provide a cohesive framework pertaining to the characterisation,

simulation and exploitation of memory.

1.1 reading guide

The outline of this thesis is as follows. In Part II, we present the story so far: the current

understanding of physical processes in the presence of noise and memory effects therein.

No new results are presented here; rather, the purpose of this part is to interrogate

why a proper characterisation of memory effects in quantum processes has hitherto

seemed an insurmountable task, and elucidate how recent theoretical advancements

have provided a resolution, thereby suitably equipping us to overcome this concern. We

begin in Chapter 2, where we first discuss classical stochastic processes in order to

lay the foundations of some core concepts, before turning our attention to the quantum

realm. Here, as we shall see, things become slightly more nuanced: although the standard

approaches of the open systems paradigm are adequate to describe memoryless processes,

they turn out to be fraught with problems in describing those with memory, as explored

throughout the culminating discussion of this chapter. Chapter 3 formally presents the
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mathematical formalism that circumvents the issues at hand by way of the process tensor

framework. The first half of this thesis is thus deliberately pedagogical: many of these

modern ideas have emerged in the context of a variety of disparate studies, but with

a recently revamped understanding of quantum stochastic processes, we are now in a

position to synthesise them into a cohesive story, as we attempt to undertake here.

With this unambiguous description of quantum stochastic processes at hand, we are

then ready to present the novel results of this thesis, which are contained in Part III.

We begin, in Chapter 4, by formalising the notion of memory length: we first generalise

the concept of Markov order to open quantum processes, before exploring in detail

the structure of processes with finite-length memory in Chapter 5. Many of the results

presented here are developed through a number of illustrative examples that aim to build

intuition rather than through general mathematical analysis, although the conclusions

hold generically. Following this examination, in Chapter 6 we quantify the memory

strength of a given process, analysing our proposed measures through application to an

exactly solvable dynamics.

The main original contributions in this work are summarised as follows. In Chapter 4,

we show that the introduced notion of quantum Markov order can be expressed as a

constraint on the process tensor, provided in Eq. (4.4). We prove that only memoryless

quantum processes can display finite Markov order with respect to all possible sequences

of interrogations in Theorem 4.2. Nonetheless, it is sensible to consider the memory

length in quantum processes with respect to specified choices of instruments; indeed,

the classical notion of Markov order is one such special case. In Chapter 5, we provide

the general description of a process with finite quantum Markov order in Theorem 5.1.

Examples 5.1–5.3 highlight the implications for processes with finite memory length

with respect to natural choices of manipulations applied to the system, including uni-

tary transformations, measurements followed by independent repreparations, and sharp,

projective measurements. In light of the general structure deduced, we subsequently show

that such processes do not necessarily have vanishing quantum conditional mutual infor-

mation through Theorem 5.3. In Chapter 6, we introduce a number of measures for the

memory strength of a process with finite quantum Markov order, particularly focusing

on various important operational scenarios, such as when an experimenter does nothing

to the system or, on the other extreme, actively tries to erase temporal correlations. The

chapter culminates with an explicit study of the behaviour of this instrument-specific

memory strength for a tuneable two-qubit model.

8



1.1 reading guide

Lastly, in Part IV, we conclude with a summary of our present work and a brief

outlook. Note that in Appendix A we provide a synopsis of the notational conventions,

as well as explicitly define a number of common functions and outline a conceptually

important colour-coding scheme, that we employ throughout this thesis in order to aid

the reader. Before proceeding, we wish to make the following disclaimer: to enhance

legibility, we tend to cite references in which conceptual points of interest have been

studied at their initial introduction, and refrain from repeatedly citing such references

throughout subsequent discussion, except for the cases where direct results are pertinent

or the citation is particularly poignant.

9





Part II

N A R R AT I V E O N T H E E D G E

The nature of parties has been imperfectly studied. It is, however, generally

understood that a party has a pathology, that it is a kind of individual and

that it is likely to be a very perverse individual. And it is also generally

understood that a party hardly ever goes the way it is planned or intended.

— John Steinbeck, Cannery Row.
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CLASS ICAL AND QUANTUM DYNAMICS WITH NOISE

Any realistic model of observed phenomena must take into account the

possibility of randomness. That we are often interested in quantities that are

not deterministically predictable in advance, but rather exhibit some random

variation, dictates that our descriptions be built from probabilistic models. Stochastic

processes are ubiquitous in nature: they arise in a number of ways throughout the phys-

ical, biological and social sciences [3–5]. One way is through our subjective ignorance.

Consider, for instance, a coin toss. Here, the classical laws of mechanics deem the under-

lying process to be deterministic—if an experimenter were to flip a coin in exactly the

same fashion with exactly the same external conditions every time, they could predict

each outcome with certainty.

However, realistically, this is not possible to achieve. Even if the experimenter could

precisely apply the same force at the same point on the coin when initiating each flip,

in each trial the coin is subject to different external factors that influence its trajectory,

e. g., those due to relentless collisions with molecules in the air. Although it is possible, in

principle, to track enough variables to account for all of the additional degrees of freedom

that the coin interacts with—thereby deterministically modelling the evolution—this is

practically unfeasible due to sheer weight of numbers. Although the process is funda-

mentally deterministic, we are forced to deal with the fact that the outcomes observed

look random to us due to our subjective ignorance, which is the root of all classical

randomness.

Classical stochastic processes are thus characterised by a joint probability distribution

over sequences of events in time. Crucially, from the correlations encoded in this multi-

time distribution, all memory effects of the process can be deduced. For instance, a

special case that has been extensively studied due to its particularly simple structure

are Markovian or memoryless processes, in which only two-point correlations between

events on adjacent timesteps are present. Here, the statistics observed at any point in

time are completely determined by the most recently observed state. A more general

13



classical and quantum dynamics with noise

scenario where memory effects persist for a finite length of time is captured by the notion

of Markov order, `, in which the conditional statistics at any point in time only depend

upon the most recent ` observations. In this case, multi-time effects can play a significant

role, and the complexity of describing such processes grows exponentially in the length of

the memory. Nonetheless, when the memory length is substantially less than the number

of timesteps over which the process is defined, higher-order Markov models provide an

alluring reduction in the computational resources required for accurate simulation [3–5].

Perhaps unsurprisingly, describing stochastic processes in quantum mechanics is some-

what more challenging. Here, in addition to randomness that arises from subjective ig-

norance, the outcomes of measurements are fundamentally random. Even in the static

scenario, i. e., when repeatedly measuring one and the same quantum state, we cannot

describe the properties of any quantum system with certainty—the best we can do is

to repeatedly perform experiments and make measurements to build up statistics that

allow us to infer the quantum state. Just as in the classical case, our subjective igno-

rance can also lead to randomness, which necessitates treating realistic evolutions with

the theory of open quantum systems [7, 8]. This formalism considers a joint system-

environment state evolving in accordance with the laws of quantum mechanics, with the

environmental degrees of freedom being regarded as inaccessible.

One way to understand correlations in time is via the dynamical map formalism. It

bypasses the underlying details of the system-environment dynamics by expressing the

effective mapping of the instantaneous quantum state of the system from some point in

time to a later one. By preparing input states and performing subsequent measurements

on the output states, the dynamical map prescribing the evolution between the two

timesteps can be uniquely determined [8, 51, 65]. Importantly, any such description

of a stochastic process, which only captures correlations between pairs of timesteps—

as are frequently used in the experimental study of open quantum systems [22–24]—

do not tell the whole story. Indeed, many non-Markovian processes can lead to two-

point measurement statistics that could be incorrectly classified as Markovian [25, 49].

Specifically, when there is no memory in the process, two-point characterisations suffice

to provide the correct description of the process at hand, but are insufficient otherwise.

As summarised by van Kampen [25]: “non-Markovian processes. . . cannot be consid-

ered merely as corrections to the class of Markov processes but require special treat-

ment”. What is meant by this quote is that, in order to properly characterise processes

with genuine memory effects, one must take into consideration all of the possible multi-

time correlations, as two-point descriptions necessarily lack such information, which may

14



2.1 classical stochastic processes

prove vital in the evolution. However, as discussed in Chapter 1, the invasiveness of mea-

surements in quantum theory make it difficult to delineate between the active influence

of the experimenter and the underlying process, which proves problematic in develop-

ing a multi-time description of quantum processes [14]. Since our aim is to understand

memory effects in such processes, the first problem we must address in this thesis is

an unambiguous understanding and operationally meaningful description of quantum

stochastic processes that explicitly captures multi-time correlations.

In this chapter, we formally introduce classical stochastic processes and the formalism

of open quantum systems in Sections 2.1 and 2.2 respectively. Stochastic processes are

well-understood in classical theory, but not so in the quantum realm: there, for instance,

a hierarchy of notions of non-Markovianity abound, which do not agree with each other

in general. We present a brief literature review of such witnesses for non-Markovianity

in order to highlight important gaps in the previous state of knowledge in Section 2.3.

The incompatibility of the myriad of such definitions has been artificially reconciled by

many through the belief that there exists no unique condition for Markovianity in the

quantum realm. The overarching goal of this chapter is to explain why this is not true:

we reiterate how the problems at hand arises from a breakdown of the standard formal-

ism to properly describe quantum processes with memory, rather than a fundamentally

irreconcilable problem. This motivation leads us naturally to an operationally meaning-

ful framework for unambiguously describing quantum stochastic processes, which is the

focus of Chapter 3.

2.1 classical stochastic processes

We begin this section by presenting the key concepts needed to describe states of classical

physical systems, before focusing on how these evolve over time. Most of the notions

introduced here are explored within various contexts in a number of excellent textbooks,

especially Refs. [3–5, 15, 20, 21].

2.1.1 Probability Spaces

The first primitive concept we need is that of a sample space, Ω, denoting the set

of all possible outcomes for an experiment. This set can either be discrete—e. g., the

experiment of flipping two coins, each with outcomes heads (H) or tails (T), has the

sample space Ω = {HH, HT, TH, TT}—or continuous—e. g., the experiment of randomly
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selecting a chord on a circle of given radius, which has the sample space Ω = {a, b :

a and b are points on the circle}.

Any subset of the sample space ω ⊆ Ω can correspond to an event, which represents

something that an experimenter can resolve or might be interested in. In the experi-

ment of tossing two coins, the event that at least one head occurs is represented by

ω = {HH, HT, TH}. The collection of such events describes the overall event space of the

experiment, G, which constitutes a σ-algebra.

Definition 2.1 (σ-Algebra). Given some set Ω, let ℘(Ω) represent its power set. A

subset G ⊆ ℘(Ω) is a σ-algebra if it satisfies:

1. G contains the set Ω itself: Ω ∈ G.
2. G is closed under complement: if g ∈ G, then (Ω\g) ∈ G.
3. G is closed under countable unions: for {gi} ∈ G, their union g = ∪i gi ∈ G.

These properties immediately imply that the emptyset is an element of G and that G

is also closed under countable intersections (via De Morgan’s law) [4].

A set Ω and a σ-algebra G together constitute a measurable space, (Ω, G). The spe-

cific σ-algebra pertinent to an experiment is dictated by the events of interest, or, put

differently, the questions deemed important by the experimenter or by what can be re-

solved. Regarding the example of tossing two coins and asking question: did at least one

head occur?, the particular σ-algebra chosen is G = {∅, TT, {HH, HT, TH}, Ω}, with the

interpretation of individual events respectively being: the experiment was not performed,

no, yes, and the experiment was performed.

The final necessary ingredient is the assignment of probabilities to events through a

probability measure, µ : G → R+ ∪ {0}, which maps each event to non-negative real

numbers in the following logical manner.

Definition 2.2 (Probability measure). A measure µ defined on a measurable space

(Ω, G), where Ω is some set and G ⊆ ℘(Ω) is a σ-algebra, is a probability measure if

it satisfies:

1. The probability of any event is non-negative and real: µ (g) ∈ R+ ∪ {0} ∀ g ∈ G.
2. Some event occurs with certainty: µ (Ω) = 1.
3. The probability associated to any union of pairwise disjoint subsets of the

event space is the sum of probabilities associated to each subset (σ-additivity):

µ (∪i gi) =
∑
i µ (gi).
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These axioms immediately imply the following elementary properties:

1. Probability of the Emptyset: µ(∅) = 0.
2. Monotonicity: if gA ⊆ gB ∈ G then µ(gA) ≤ µ(gB).
3. Boundedness: 0 ≤ µ(g) ≤ 1 for all g ∈ G.

Overall, the triple (Ω, G,µ) formally describe a probability space, providing the mathe-

matical underpinning of any probabilistic theory [15].

In describing properties of a physical system, an experimenter is often interested in

some function of the outcomes of an experiment rather than the outcomes themselves,

such as average values. These scenarios are best encapsulated with the notion of a random

variable, Y : Ω → Γ (these are usually taken to be real-valued functions, i. e., Γ = R,

as is assumed from now on), which labels possibly abstract events in a meaningful way,

i. e., such that

Y −1(y) = g ∈ G ∀ y ∈ Y, (2.1)

where Y is a new σ-algebra generated by a collection of subsets of Γ. Since Ω is the

sample space of a probability space, the new measurable space (Γ, Y) naturally inherits

the probability measure µ through a pushforward relation, which defines a probability

distribution P : Y → [0, 1] via1

P(y) = µ(Y −1(y)). (2.2)

The properties of the probability measure ensure that any such probability distribu-

tion is non-negative, normalised and additive over its σ-algebra. In summary, a random

variable provides a logical relabelling, allowing us to begin with some abstract proba-

bility space (Ω, G,µ) and end up with a probability space (Γ, Y,P) that is potentially

more amenable to further computational manipulation. Although random variables in-

troduce versatility into the description of stochastic processes, we will ultimately only

be concerned in probabilities of events and so the choice of random variable will not

be of particular interest. The probability distribution P, which is directly accessible via

statistical measurements, defines what we will call a state of a classical system.

1 Typically, such a distribution is labelled PY (y); in this thesis, we omit such unnecessary labels wherever
possible for the sake of notational economy. Moreover, we are somewhat lax in often allowing the values
x, y, . . . to represent either events or individual elements in the sample space, and using the same symbol
P to denote either a probability measure or a probability density.
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2.1.2 Stochastic Processes

In describing stochastic processes, one can build time into the picture by way of a pa-

rameterised random variable. Just as a classical state is described by a probability distri-

bution assigning probabilities to events, a classical stochastic process can be defined as

a function allocating probabilities to sequences of events over time. This formulation is

as follows. Firstly, upon defining a random variable, Y , an infinite collection of random

variables automatically arises, namely any quantity X := f(Y ) that is some function

of Y . Selecting a value Y = y ∈ Y gives a deterministic value for X = f(y) =: x ∈X;

specification of an event in this way is referred to as a realisation or sample. The trans-

formation law relating the probability distributions over two such random variables is

P(x) =
∫

dy δ(x− f(y))P(y), (2.3)

where δ denotes the Dirac-delta distribution. One could then consider a function that

involves Y and some auxiliary parameter, t ∈ R, usually taken to denote time: XY (t) :=

f(Y , t). Upon inserting for Y one of its possible values y, we obtain a deterministic

function of time XY =y(t) = f(y, t) =: x(t) ∈ (X,R), representing a realisation of the

process or sample trajectory. The stochastic process itself is, overall, regarded as the

probability distribution over trajectories

P(x(t)) =
∫

dy δ(x(t)− f(y, t))P(y(t)). (2.4)

So far, we have introduced classical stochastic processes on axiomatic grounds. We

now consider their relation to what is typically measured in experimental procedures.

In practice, it is often sensible to store information about the sample trajectories ob-

served in a discrete manner by specifying a finite number n ∈ N of timesteps, denoted

Λn := {t1, . . . , tn}, at which observations are made in order to build up a statistical

description of the process.2 The choice of these timesteps is, in principle, entirely up to

the experimenter, although may be dictated by experimental capabilities. By repeatedly

performing experiments, the experimenter yields statistics that describe the probability

for the system of interest to take the value x1 at t1, x2 at t2, and so on, until xn at tn.

2 When such a set Λn is taken to be an ordered sequence, we will indicate this with the subscript label n : 1.
In some cases, we will find it convenient to consider unordered sets of timesteps of a given cardinality,
which we will indicate with the label Λn.
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Figure 2.1: Continuous and discrete-time stochastic processes. In the continuous time picture,
a stochastic process is characterised by a probability density P(x(t)) over all possible sample
trajectories x(t) (purple). Alternatively, by measuring the system to be some regions x1, . . . ,x5

at times t1, . . . , t5 (green), for instance, one deduces the multi-time statistics of the discrete-time
joint probability distribution P5:1(x5, t5; . . . ,x1, t1) that characterises the process on the chosen
timesteps. Only the bold trajectory can be measured to be in the regions depicted, and hence
occurs with unit probability, although considering all possible different spatial measurement
settings assigns non-zero probabilities for each trajectory to be realised.

This gives rise to a hierarchy of joint probability distributions written as

P1(x1, t1) (2.5)

P2(x2, t2;x1, t1)

. . .

Pn:1(xn, tn; . . . ;x1, t1).

For example, Pn:1(xn, tn; . . . ;x1, t1) might represent the probability to find a randomly

moving particle in regions {x1, . . . ,xn} respectively at times {t1, . . . , tn}. We call a joint

probability distribution over n timesteps an n-point distribution, since it contains the

necessary information to calculate all n-point correlations. Insofar as the experimenter

is concerned, the hierarchy of finite joint probability distributions above serves to char-

acterise the stochastic process over the chosen timesteps.

It is not clear, a priori, that these two notions of stochastic processes are equivalent.

This is a subtle point, but worth considering in some detail, as it will become crucial to

our understanding of quantum stochastic processes. For the moment, we will distinguish

between an underlying continuous stochastic process, as described by Eq. (2.4), and that
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which is constructed on a finite number of timesteps, characterised by Eq. (2.5). Since the

fundamental laws of physics are continuous in time, we are always implicitly assuming

the existence of an underlying process that leads to the discrete-time statistics observed.

In other words, we assume the existence of a continuous stochastic process that has all

the finite ones that the experimenter measures as marginals. Beginning with Eq. (2.4)

and specifying a finite set of timesteps, we can derive the hierarchy of joint distributions

for all tj ∈ Λn as

Pj:1(xj , tj ; . . . ;x1, t1) =
∫

dy δ(xj − f(y, tj)) . . . δ(x1 − f(y, t1))P(y). (2.6)

It is easy to show that Eq. (2.6) implies that the n-point distribution Pn:1 contains

within it the correct descriptor of the process on any subset of times, which is deducible

via marginalisation. To derive the statistics of the process on any subset Λk ⊆ Λn, one

simply marginalises over the outcomes on the timesteps that are no longer of interest

PΛk(xΛk , Λk) =
∑

Λn\Λk

PΛn(xn, tn; . . . ;x1, t1). (2.7)

Here the summation
∑

Λn\Λk runs over all realisations on the timesteps included in Λn

but not Λk and xΛk refers to the subset of possible outcomes corresponding to the times

Λk. Thus, if a joint probability distribution arises from an underlying physical process,

it necessarily satisfies this so-called consistency or containment property of Eq. (2.7),

which allows one to derive the entire hierarchy of joint distributions in Eq. (2.5).

One of the pioneers of probability theory, Kolmogorov, was concerned with proving

equivalence between the continuous and discrete descriptions of stochastic processes

by establishing the alternate implication. That is, he endeavoured to understand the

conditions a collection of finite joint probability distributions must satisfy in order for

an underlying continuous process, with all of the finite ones as marginals, to exist. The

Kolmogorov extension theorem (KET) says that satisfaction of the consistency condition

outlined above implies the existence of such an underlying process, thereby proving

equivalence between the descriptions given in Eqs. (2.4) and (2.5) [15]. Thus, practical

motivations notwithstanding, the KET bridges the gap between the experimental reality

we must face and solid mathematical underpinnings, importantly providing a definition

of stochastic processes as the limit of families of finite probability distributions in time.

Intuitively, satisfaction of the consistency conditions means that once a process has

been characterised on a set of timesteps, all behaviour on any subset of timesteps can

be deduced by marginalising over the outcomes at the excessive times, as per Eq. (2.7)

and depicted in Fig. 2.2. Thus, for a stochastic process over n timesteps, the n-point
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2.1 classical stochastic processes

Figure 2.2: Containment property for classical stochastic processes. Given a joint proba-
bility distribution describing a classical stochastic process over some finite set of timesteps,
e. g., P5:1(x5, t5; . . . ,x1, t1), the correct description of the process on any subset of timesteps
is calculated by marginalising over the outcomes at the excessive times. For example,
the 3-step process over timesteps Λ3 = {t1, t2, t4} is characterised by PΛ3(xΛ3 , Λ3) =∑
x3x5

P5:1(x5, t5; . . . ,x1, t1). Only the bold paths depicted have non-zero probabilities to be
measured in the intervals xΛ3 shown above, the weights of each of which are calculated from the
original description by summing the five-step joint probabilities over all possible spatial intervals
at t3, t5, shown here as the extended vertical lines labelled x3,x5.

joint probability distribution Pn:1 completely characterises the process since it contains

within it the entire hierarchy of Eq. (2.5). The fact that marginalisation is the correct way

to obtain the contained description of a classical stochastic process is, loosely speaking,

because there is no difference between having measured the statistics over all timesteps

Λn and then discarding the observations we no longer care about, i. e., summing over

those on Λn\Λk (as per the r.h.s of Eq. (2.7)), and not having measured outcomes at

those irrelevant timesteps anyway (as per the l.h.s).

To see this, consider tossing three fair coins consecutively, described by the joint distri-

bution P3:1(x3, t3;x2, t2;x1, t1) = 1
8 for each possible length-3 binary outcome sequence

(e. g., HHT). Given this distribution, if we are subsequently interested in describing the

process at timesteps t1 and t3 only, we simply marginalise over the outcomes at t2,

which gives: P3,1(x3, t3;x1, t1) =
∑
x2 P3:1(x3, t3;x2, t2;x1, t1) = 1

4 for each length-2

binary outcome sequence. This procedure indeed provides the correct description of a

process where two coins are tossed at times t1 and t3. Marginalisation works because the

state of the coin at time t2 was some outcome, and it makes no difference whether we
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average over all such possibilities or they are not even measured in the first place. The

containment property, and indeed Eq. (2.6), implicitly assumes that we can measure re-

alisations of outcomes throughout the process consistently without influencing the state

of the system upon each interrogation. This is not fulfilled in more general stochastic

frameworks such as classical causal modelling and quantum mechanics [14].

In summary, the connection between the continuous and discrete descriptions of a

stochastic process is provided by the KET, which justifies our ability to work in either

picture. For the purpose of this thesis, due to our operational perspective, we consider

a classical stochastic process to be defined as follows.

Definition 2.3 (Classical stochastic process). A classical stochastic process over n

timesteps is characterised by a joint probability distribution Pn:1(xn, tn; . . . ;x1, t1) sat-

isfying the containment property of Eq. (2.7) for all subsets of timesteps.

From now on, we drop the explicit labelling of the timesteps as arguments of the distri-

bution and write Pn:1(xn, . . . ,x1) to describe the process, with the subscripts indicating

the timesteps on which the outcomes are observed. Additionally, although the sample

space can be infinite, throughout this thesis we restrict our focus to the finite case.3

2.1.3 Modelling Stochastic Processes

Perhaps the most important reason for understanding stochastic processes from a practi-

cal perspective is to model them. Developing models that accurately simulate the statis-

tics observed allows us to predict future behaviour of complex systems, e. g., future stock

market fluctuations or evolving population dynamics, amongst other applications [3–5].

While the joint probability distribution Pn:1(xn, . . . ,x1) characterises the process at

hand, containing all possible multi-time correlations between outcomes observed at dif-

ferent times, we are rarely, if ever, privy to such a detailed and resource-exhaustive de-

scription [3, 21]. Rather, what is typically feasible is to measure statistics describing the

state of the system at each timestep, i. e., the single-point marginals Pk(xk) ∀ tk ∈ Λn,

and perhaps some lower order correlation terms (two- or three-point marginals), which

describe how the state at some time is correlated with that at some others.

The complete description of the process contains significantly more information than

can be deduced from such lower-order marginals; Indeed, any higher-order marginal

3 Almost all of the results presented in this chapter are extendable to the continuous case by replacing
sums with integrals.
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such as PΛk(xΛk) for any proper subset Λk ⊂ Λn remains insufficient to characterise

a generic stochastic process [25]. Consequently, a computationally feasible model of a

stochastic process does not generally specify the process at hand. Our assumption when

modelling stochastic processes is that we can approximate the joint statistics from a

manageable set of lower-order distributions. Put simply, the aim of modelling is to

accurately reconstruct the joint distribution of the process from smaller ones [3, 4].

An important concept pertinent to modelling is that of conditional probability distri-

butions. Consider a process characterised over n timesteps by PΛn(xΛn) and suppose we

observe a specific realisation over a subset of times Λk ⊆ Λn. Then

PΛn\Λk(xΛn\Λk |xΛk) =
PΛn(xΛn)

PΛk(xΛk)
(2.8)

represents the conditional probability distribution over outcomes on the remaining

timesteps Λn\Λk given that it took the values xΛk on timesteps Λk. That we can cal-

culate conditional distributions for stochastic processes in this way implicitly relies on

the fact that PΛk(xΛk) on the r.h.s is the correct descriptor of the process on timesteps

Λk, i. e., that the KET holds.

From Eq. (2.8), we can iteratively decompose any joint distribution as

Pn:1(xn, . . . ,x1) = Pn(xn|xn−1, . . . ,x1)Pn−1:1(xn−1, . . . ,x1) (2.9)

= Pn(xn|xn−1, . . . ,x1)Pn−1(xn−1|xn−2, . . . ,x1)Pn−2:1(xn−2, . . . ,x1)

= · · · = Pn(xn|xn−1, . . . ,x1) . . .P2(x2|x1)P1(x1).

It is clear from this decomposition that we can build up the joint distribution from

its constituent conditional distributions. Although a conditional distribution such as

PΛn\Λk(xΛn\Λk |xΛk) is technically an (n− k)-point joint probability distribution, we

will refer to them as n-point correlations, since we assume the ability to calculate the

k-point distribution PΛk(xΛk) over the conditioning argument, which together provide

the n-point distribution PΛn(xΛn).

Such conditional distributions are often referred to as transition probabilities, as, e. g.,

P2(x2|x1) represents the probability for the system to change its state from x1 to x2.

For a complete description of the process, one requires successively higher-order transi-

tion probabilities, e. g., P3:1(x3,x2,x1) = P3(x3|x2,x1)P2(x2|x1)P1(x1), and so forth.

Clearly, a complete description of a stochastic process contains a large amount of infor-

mation. We can understand the complexity of the process in terms of the number of

parameters needed to describe it. Suppose that a system of interest can take d distinct

outcomes. For the initial distribution P1(x1), we must specify d− 1 numbers (i. e., the
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probability associated to each outcome, with the normalisation condition constraining

one value); the joint distribution over two steps P2:1(x2,x1) = P2(x2|x1)P1(x1) re-

quires d2 − 1 specifications; and so on. In general, modelling an n-timestep evolution

of a d-level classical system requires estimating O(dn) transition probabilities. This ex-

ponential scaling in the number of timesteps quickly becomes intractable, hence the

allure of developing accurate models built upon estimating lower-order transitions. In-

deed, modelling means to fix the transition probabilities, which can be meaningfully

done under the assumption that the memory is finite in length. We now consider the

simplest case of such finite-memory processes.

2.1.4 Markovian Stochastic Processes

Example 2.1 (Perturbed Coin). Consider the toy classical process of a perturbed coin,

depicted in Fig. 2.3. Here we have a coin resting on a piece of cardboard, which is being

gently shaken at discrete times tk ∈ Λn, resulting in a time-independent probability,

p > 1 − p, for the coin to retain its previous orientation between each shake; with

probability 1− p, the coin flips from H to T, or vice versa. The probability of the coin

being in a particular state at arbitrary timestep tk depends entirely on its most recent

state, i. e., the process is completely characterised by the family of two-point conditional

distributions

Pk(Hk|Hk−1) = Pk(Tk|Tk−1) = p (2.10)

Pk(Hk|Tk−1) = Pk(Tk|Hk−1) = 1− p.

Of course, temporal correlations between observations can be exhibited over various

timescales; if one begins such a process with the coin facing H up, a few steps later it

is more likely than not to be found in the same state. The crucial point is that, once

we know the state at timestep tk, we may as well discard any observations of previous

states since they tell us no additional information.

The dependence of the future statistics on only the most recent outcome dramatically

simplifies the complexity of any algorithm predicting its behaviour. This type of process

is known as aMarkovian ormemoryless process, since the process itself stores no memory

of historic outcomes; the only temporal correlations that can arise are mediated through

the most recent state of the system. Markovian processes are formally defined as follows.
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Definition 2.4 (Classical Markov process). A classical Markov process is described by

a joint probability distribution Pn:1(xn, . . . ,x1) whose conditional distribution at each

timestep tk ∈ Λn only depends on the statistics of the most recent distribution at time

tk−1:

Pk(xk|xk−1, . . . ,x1) = Pk(xk|xk−1). (2.11)

Figure 2.3: Perturbed coin. The per-
turbed coin is characterised by the tran-
sition probabilities prescribing the likeli-
hood to retain its state or to flip at each
shake.

Note that for a Markovian process, the

statistics depend conditionally on no more

than the most recent timestep. A completely

memoryless process is one in which the con-

ditional statistics are independent of even the

current state, such as a fair coin flip. Such pro-

cesses are often said to be super-Markovian [4];

in this thesis, we generally drop this distinc-

tion and refer to both types of processes as

Markovian or memoryless synonymously.

In contrast to the general case (see

Eq. (2.9)), Markovian processes can be com-

pletely characterised with only an initial con-

figuration P1(x1) and the collection of two-point transition probabilities Pk(xk|xk−1),

which specify the present state in terms of the most recent realisation of the system

at each timestep. This is because for a Markovian process the overall joint distribution

factorises as

Pn:1(xn, . . . ,x1) = Pn(xn|xn−1) . . .P2(x2|x1)P1(x1). (2.12)

Since each transition map is specified by d2 − d conditional probabilities and the initial

single-point distribution by d− 1, we require at most (n− 1)(d2− d) + d− 1 parameters

to describe a memoryless process, providing a significant reduction in complexity; this is

perhaps the primary reason for the popularity of invoking the Markov assumption when

modelling stochastic processes.

Equivalently, considering a discrete-time Markovian process on Λn and specifying an

initial condition at t1, the state at an arbitrary later time tk ∈ Λn can be calculated via

Pk = Sk,1P1. (2.13)

Here, Sk,1 is a d× d matrix filled with conditional probabilities representing the likeli-

hood of transition from each x1 value to each xk and Pk is the d-dimensional vector
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representing the probability distribution at tk. Comparing Eq. (2.13) with the entire

description of the process up until the time specified, i. e., Eq. (2.12) written up to tk
and marginalised over the outcomes on all timesteps except tk, it is clear that transition

matrix from some t1 to tk is simply a matrix multiplication of all of the intermediary

transition matrices

Sk,1 = Sk,k−1Sk−1,k−2 . . .S2,1. (2.14)

Clearly, by grouping any sequence of matrix multiplications on the r.h.s of Eq. (2.14)

into two stochastic matrices, we have satisfaction of the following divisibility property [4]

Sk,1 = Sk,jSj,1 ∀ tk > tj > t1. (2.15)

That the transition maps for a Markovian process are indeed conditional probability

distributions dictates that their matrix representations have non-negative entries whose

columns sum to unity, known as stochastic matrices. From an axiomatic perspective,

stochastic matrices are of significant importance in classical physics, as their properties

ensure that for any input probability distribution, the output of the map is always a

valid probability distribution, thereby providing the most general unconditional trans-

formation allowable in classical theory between two points in time. For reasons that will

become clear, we refer to such processes that can be described by a divisible family of

stochastic maps as (positive) P-divisible processes [66, 67].

As a brief aside, note that for a stationary P-divisible process, one can derive a closed

form continuous-time equation of motion for the instantaneous state of the system, as

is provided in Appendix B.1 for the sake of completeness. The classical master equation

(ME) derived provides the most general form of an equation whose solution is guaranteed

to provide a divisible single-parameter semi-group of stochastic maps [68].

We have seen already that a Markovian process lends itself to a complete description

in terms of a divisible family of such two-point stochastic transition maps. However, it is

well-known that P-divisibility is insufficient to classify a process as Markovian [67, 69–72].

The fact that non-Markovian processes can satisfy the P-divisibility criteria is emblem-

atic of a deeper issue, namely that two-point information does not adequately capture

the dynamics at hand. In other words, the core reason that the P-divisibility criteria does

not imply Markovianity is because the former is based solely on two-point correlations

which fail to capture multi-time effects and therefore do not provide full information

about a generic process. Consequently, an experimental reconstruction of the two-point

stochastic maps does not necessarily correspond to the actual (potentially multi-time)
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conditional probabilities of the process. In other words, satisfaction of Eq. (2.15) does

not imply Eq. (2.11): for a given process, one might be able to construct a stochastic

map description satisfying Eq. (2.15) even when the process is non-Markovian.

The crucial point is that in such cases, in contradistinction to Markovian processes,

the constituent divided portions of the stochastic maps cannot be identified with the

actual conditional probabilities of the process; for a non-Markovian P-divisible process,

these sequences of stochastic maps are sensitive to initial conditions. The conditional

probabilities in a non-Markovian process generally depend on multiple previous out-

comes, which is necessarily overlooked by the two-point P-divisibility criteria. We will

return to this point with a more detailed discussion in Section 2.3; for now, the key

message is that a proper description of non-Markovian processes must take into account

all multi-time correlations and cannot simply be an extension to the study of Markovian

processes as we know them.

2.1.5 Non-Markovian Stochastic Processes

From the discussion until now, we have seen that dealing with Markovian processes is

much easier than with their non-Markovian counterparts, with the proper description of

the latter requiring an exponentially-scaling amount of resources. This begs the question:

to what extent do we need to worry about a proper understanding of non-Markovian pro-

cesses? As noted by van Kampen: “non-Markov is the rule; Markov is the exception” [25].

Formally, in the space of all stochastic processes, the Markovian ones form a non-convex

set of measure zero (with respect to any meaningful, non-singular measure); in other

words, they are isolated special cases. The question of whether or not Markov processes

exist in nature—and under which circumstances—is thus of significant interest. For in-

stance, a random walk with the choice of each step being independently and identically

distributed is a Markov process, so too is an experiment of picking coloured marbles

out of a bag with replacement. However, as soon as non-negligible and realistic effects

come into play, such as a direction bias for a random walker or the lack of replacement

of marbles, such processes are almost always rendered non-Markovian.

To illustrate, consider the situation pictured in Fig. 2.4. Suppose an experimenter

picks marbles from a bag whose initial distribution comprises a fraction r of red, b of

blue and g of green coloured marbles, such that r+ b+ g = 1. Suppose that, according

to whether the marble chosen at some timestep tk is red, blue or green, a random walker

will respectively step left (sk = −1), stay put (sk = 0) or move right (sk = 1). The
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position of the walker at tn can be described by the random variable Xn :=
∑tn
tk
sk. If

the marble chosen at each timestep is replaced before the next one picked out, then

the random walk, Pn:1(xn, . . . ,x1), is Markovian, since the probability for the walker to

step in each direction at a given timestep remains unchanged by withdrawing any marble

from the bag. If, on the other hand, the marbles are not replaced, then the probability

for the walker to step in each direction changes with each marble withdrawal, since the

relative proportions of the contents are modified. We cannot determine this change from

the instantaneous position of the walker alone; instead, we require knowledge of the

entire history up until the relevant point in time to determine the current composition

of the bag, hence the probabilities for the walker to step in each direction.

Figure 2.4: Random walk conditioned on
marbles drawn. A bag is filled with a frac-
tion of different coloured marbles: here we
have 1

5 red, 1
2 blue and 1

4 green. A mar-
ble is drawn at each time and depending
on its colour, a walker steps left (red),
stays put (blue) or steps right (green). If
the marble is replaced after each step, the
process is Markovian; otherwise it is not,
since the extracted marbles disrupt the
relative proportions of the bag.

Indeed, in many other physically realistic

situations of interest, similar finite-sized ef-

fects lead to non-negligible memory effects in

the process. For example, processes whose mi-

croscopic equations of motion are second or-

der differential equations in time require two

initial conditions (i. e., position and velocity)

to determine the statistics over future posi-

tions. Hence, processes considering the po-

sition of an initial distribution of particles

can only be considered Markovian at suffi-

ciently long timescales that the initial veloc-

ity is forgotten [4]. This is a special case

of a Langevin-type equation; other continu-

ous time Markovian processes are Wiener pro-

cesses and Cauchy processes. Their extensive

study has shed light on the type of underlying dynamics that give rise to Markovian

processes [4, 5]. Loosely speaking, the essential idea is that the system of interest couples

weakly to a large environment: the weakness of the coupling ensures that the environ-

ment is relatively unperturbed by interactions with the system and the largeness of the

environment ensures that from each timestep to the next, the system interacts with a

fresh portion of the environment. Modelling and designing mesoscopic processes, where

such assumptions are no longer satisfied and finite-sized effects come into significance,

clearly requires an understanding of non-Markovian processes.
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2.1.6 Classical Markov Order

Although generic non-Markovian processes might require knowledge of their entire course

of history to predict the future evolution, there is an important class of non-Markovian

processes that are nonetheless feasible to model with a reasonable amount of resources:

those with finite memory length. Formally, the natural way to account for such memory

effects that are finite in duration is through the notion of Markov order, `, which dictates

that the statistics observed at any given time only depend upon knowledge of the past `

outcomes. For example, we can generalise the random walk process conditioned on mar-

bles considered above to incorporate longer memory effects by holding out the marbles

drawn for a certain number of timesteps before they are replaced. In this case, although

the statistics of the next state depend conditionally upon the most recent sequence of

outcomes, just like in the Markovian case, the salient point is that once we have knowl-

edge of the most recent sequence of outcomes, we may as well discard observations from

the prior history.

By grouping together timestep sequences of length `, such non-Markovian processes

can be tamed into ones that behave like Markovian processes, albeit on a larger state

space extending over a period of time. Although processes with finite Markov order are

close in spirit to Markovian processes, unlike their truly Markovian counterparts, multi-

time correlations can play a crucial role in the future evolution of dynamics, giving rise

to a potentially complex memory that is nonetheless limited in duration. To capture such

behaviour, rather than begin with a straightforward extension of Markovian processes

which do not account for such effects, we are forced to begin with a proper description

of non-Markovian stochastic processes, i. e., Eq. (2.5), and study the circumstances in

which the process displays finite-length memory.

Intuitively, the concept of Markov order boils down to the following question: is knowl-

edge of a portion of the history of a process sufficient to predict the statistics of its future

evolution? In other words, given knowledge of the statistics over a sequence of ` timesteps,

{tk−`, . . . , tk−1}, one can perfectly predict, in principle, the statistics to be expected at

timestep tk for such a process. The conditional distribution for arbitrary tk ∈ Λn of a

process with Markov order-` is therefore expressed as

Pk(xk|xk−1, . . . ,x1) = Pk(xk|xk−1, . . . ,xk−`). (2.16)

In the interest of developing an economical notation for the remainder of this thesis,

given an n-step stochastic process, we demarcate the timesteps into three intervals: the
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future F := {tn, . . . , tk}, the memory M := {tk−1, . . . , tk−`}, and the earlier history

H := {tk−`−1, . . . , t1} (in principle, the history and future can extend to infinitely long

times). The realisations observed over these timesteps xj describing the system of interest

are grouped together similarly as {xF ,xM ,xH}. The Markov order of the process is

defined in terms of the conditional statistics of outcomes as follows.

Definition 2.5 (Classical Markov order). A classical stochastic process has Markov

order-` if the conditional probability for any outcomes xF at or beyond any time tk ∈ Λn

depends only on the realisations xM over the previous ` timesteps, and not on those xH
of the earlier history

PF (xF |xM ,xH) = PF (xF |xM ). (2.17)

As special cases, ` = 1 corresponds to a Markovian process (see Def. 2.4) and ` = 0 a

super-Markovian (completely random) process.

The property of Markov order-` constrains the underlying joint probability distribu-

tion characterising the process, from which the above conditional distributions arise. To

highlight the important reduction of complexity in the description of a process with

finite Markov order, compare the following decomposition with the general expression

of Eq. (2.9)

Pn:1(xn, . . . ,x1) =
n∏

j=`+1
Pj(xj |xj−1 . . . ,xj−`)P`:1(x`, . . . ,x1). (2.18)

To reiterate, ` determines the number of timesteps over which one must observe states

in order to optimally predict, in principle, the next state, thereby providing a natural

and fundamental timescale for memory length in stochastic processes. This property is of

tremendous practical importance, as processes with finite Markov order can be effectively

reduced to Markovian processes upon a suitable grouping of timesteps, allowing for

efficient simulation [25].

An alternative but equivalent way of expressing the notion of Markov order is that any

statistics that an experimenter might deduce over the history and the future timesteps

are conditionally independent with respect to an intermediate sequence of realised values

PFH(xF ,xH |xM ) = PF (xF |xM )PH(xH |xM ). (2.19)

Importantly, it is knowledge of the outcomes on the memory block that renders the

future and history conditionally independent. To prelude the discussion to follow in our

extension to the quantum realm, an alternative way to think of this is as a sequence
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Figure 2.5: Markov order as the natural notion of memory length. Knowledge of the ` = 3
states in the memory block is sufficient to predict the probabilities of future states by way of
the recovery map, RM→FM . In particular, no information about the prior history is required
to determine these probabilities (indicated by the question mark). This property is independent
of which timestep is being considered; holding equally well for steps tk and tk+1. At every step,
any influence the history (beyond ` timesteps ago) has on the future must be mediated through
the memory blocks. Importantly, states observed in the memory can jointly influence the future
statistics. Nonetheless, conditional on the statistics realised in the most recent block, there can
be no correlations between history and future, as indicated by the faded, dashed arrow.

of interventions (for instance, measurements) on the system that serves to block any

possible historic influence on the future dynamics for each outcome realised.

Importantly, while Markov order-` means that the state of the process at any time

only depends conditionally upon the previous ` states, it does not imply an abso-

lute separation of the timesteps into blocks of memory and irrelevant history. In

other words, the probability distribution PFMH(xF ,xM ,xH) factorises conditionally,

but we do not necessarily have PFMH(xF ,xM ,xH) = PF (xF )PM (xM )PH(xH), or

PFMH(xF ,xM ,xH) = PFH(xF ,xH)PM (xM ). Instead, the memory blocks correspond-

ing to different timesteps overlap, allowing for the existence of unconditional correlations

between timesteps with a separation greater than ` in general. These are themselves of-

ten referred to as memory, however, these temporal correlations are always mediated

through overlapping memory blocks as show in Fig. 2.5.

Lastly, a classical stochastic process with Markov order-` can be equivalently char-

acterised by the following two statements. Firstly, from an operational perspective,

the significance of finite Markov order is best encapsulated through the existence of

a so-called recovery map RM→FM , which acts only on M to give the correct future
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statistics: PFMH = RM→FM (PMH). This map can be directly used to simulate fu-

ture dynamics, and the complexity of any predictive model is fundamentally upper-

bounded by the length of the block M on which it acts (as well as by the number

of possible values for each xj). Secondly, an entropic characterisation that is con-

venient to check in practice states that the classical conditional mutual information

(CMI) vanishes: Icl(F : H|M) := H(PFM ) + H(PMH) −H(PFMH) −H(PM ) = 0,

where H(P) := −
∑
xP(x) logP(x) is the Shannon entropy. The equivalence between

these statements is trivial: satisfaction of Eq. (2.17) implies the distribution factorises

as PFMH(xF ,xM ,xH) = PF (xF |xM )PMH(xM ,xH); the recovery map RM→FM can

then be chosen to act as multiplication by the higher-order stochastic transition map

PF (xF |xM ). Equivalence to vanishing classical CMI is obvious by writing the CMI as a rel-

ative entropy between probability distributions (Kullback-Liebler divergence) as follows

Icl(F : H|M) = Dcl(PFH|M‖PF |MPH|M ), where Dcl(P|Q) := −
∑
xP(x) log P(x)

Q(x) . The

relative entropy vanishes iff the arguments are identical. Thus, in the classical setting,

vanishing CMI is equivalent to finite Markov order.

We now briefly summarise the key points of this section that we will examine in de-

tail when attempting to understand quantum stochastic processes. We have seen that

classical stochastic processes can be characterised completely by a joint probability dis-

tribution over a discrete set of timesteps satisfying a natural consistency condition, with

the existence of an underlying continuous-time physical process guaranteed by the KET.

This allows for unambiguous calculation of conditional statistics, which are crucial to

defining memoryless processes by way of the Markov condition. This special class of pro-

cesses are the ones in which two-point information is sufficient for their characterisation.

However, such two-point descriptions are destined to overlook multi-time memory effects

and any criteria based upon them is not suitable for addressing non-Markovian processes.

A particular example of this point is that divisibility does not imply Markovianity. Fol-

lowing this, we considered some properties of a non-trivial but practically important

subset of non-Markovian processes which exhibit finite-length memory, namely those

with finite Markov order. Our goal in the next section is to consider the extensions of

these ideas into the quantum setting, where we will see that a number of subtleties must

be addressed for a meaningful description of quantum stochastic processes.
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2.2 open quantum dynamics

In the classical setting, the finite-length memory approximation underpins the success

of the often-invoked order-` Markov models, which make use of information from only

the past ` states to predict the next. However, even in the simplest non-trivial case of

memoryless dynamics (i. e., ` = 1), the study of stochastic processes is vastly different

in the quantum realm than its classical counterpart. This is mainly because, in quantum

mechanics, one must necessarily disturb the system in order to observe realisations of the

process, breaking an implicit assumption of the classical setting. In quantum mechan-

ics, there is a continuous family of possible non-commuting observables that could be

measured, and the choice of measurement at one point in time (or even whether to mea-

sure at all) can directly affect the future statistics [14, 51, 65, 73–75]. This is in stark

contrast to the consistency conditions satisfied by the joint probability distributions

corresponding to classical stochastic processes.

To highlight this issue explicitly, consider the following quantum experiment which

is represented schematically in Fig. 2.6 (we follow the example presented in Ref. [14]).

Begin with a spin-1
2 particle initially prepared in an equal superposition 1√

2 (|↓〉+ |↑〉)

in the z-direction. Suppose an experimenter were to set up a sequence of Stern-Gerlach

apparata that allows them to measure the spin orientation at successive timesteps in any

direction of their choosing. Consider the case where they measure the system at times

{t1, t2, t3} respectively in the z-, x-, and z-directions, whose outcomes are represented

by {↓, ↑} for z-direction measurements and {→,←} for x-direction measurements. We

assume that the quantum system undergoes trivial dynamics in between measurements.

The first measurement in the z-direction has equal probability of 1
2 to yield the result ↓ or

↑; in either case, once the outcome is observed, the post-measurement state is either |↓〉

or |↑〉 respectively. These states can be expressed as an equal superposition in the x-basis:

|↓〉 = 1√
2 (|→〉+ |←〉) and |↑〉 = 1√

2 (|→〉 − |←〉). Thus, the spin measurement in the x-

direction at the second timestep again yields each possible outcome → or ← with equal

probability, and the subsequent state is either |→〉 = 1√
2 (|↓〉+ |↑〉) or |←〉 =

1√
2 (|↓〉− |↑〉)

accordingly. The statistics of the final measurement are then identical to the first one.

Thus, the probability to measure any sequence of outcomes in this case is uniformly

distributed over the possibilities, e. g., P3:1(↓3,←2, ↓1) = P3:1(↓3,→2, ↓1) = 1
8 .

On the other hand, consider an alternative experiment where the experimenter does

not perform the x-direction measurement at the second timestep. Then, suppose for

concreteness that the outcome ↓ was observed at the first timestep, which occurs with
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Figure 2.6: Breakdown of KET in a Stern-Gerlach experiment. An initial state prepared in
an even superposition is subject to three sequential measurements, in the Z,X,Z directions.
The joint statistics for each possible sequence of outcomes are equal to 1

8 (shown on the right).
However, marginalising over the outcomes observed at the second timestep does not provide the
correct probabilities that are predicted by theory in the case where no measurement is performed
there, highlighting the breakdown of the KET. If the first outcome is ↓ and no intervention is made
at t2, the measurement at t3 yields ↓ with certainty. This gives P3,1(↓3, ↓1) = 1

2 , in contradiction
with the marginalised statistics computed as the sum of probabilities displayed in red.

probability 1
2 and leaves the system in the |↓〉 state. When subsequently measured in

the z-direction at the third timestep, without any intermediary measurement at t2, the

outcome ↓ is realised with certainty; thus we have P3,1(↓3, ↓1) = 1
2 . This is not equal

to a marginalisation over the possible outcomes of the second timestep, which gives

P3:1(↓3,←2, ↓1) +P3:1(↓3,→2, ↓1) = 1
4 . The statistics of the process over the first and

third timestep cannot be deduced by simply marginalising the 3-point distribution P3:1

over the outcomes of the second timestep; the standard KET clearly does not hold on

the level of statistics measured in quantum processes.

The KET breaks down here on the level of measured statistics because implicitly

assumes that there is only one method of probing the degrees of freedom of interest

to observe outcomes, and that this probing does not actively change the state of the

system. Neither of these assumptions are fulfilled in quantum theory (or, e. g., more

general classical stochastic theories with interventions—including causal modelling—

which we briefly return our attention to in Section 4.2) [14, 15, 20]. Loosely speaking,

it is the fact that for quantum processes, there is a difference between averaging over
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all possible measurement outcomes and not having made a measurement at all, which

essentially leads to violation of the KET [14]. Without a consistent method for deriving

the contained descriptors of a process from that of its description defined over more

timesteps, there is inherent ambiguity in what we mean when we talk about a quantum

stochastic process. This leads directly to problems in defining conditional probabilities,

and thus an unambiguous classification of memory in quantum processes.

This problem has irked the open systems and quantum information communities

for some time, leading to various incompatible descriptions of quantum stochastic pro-

cesses [76]. Conventional approaches attempt to sidestep this issue by describing prop-

erties of the process in terms of the time-evolving density operator of the system of

interest, inherently failing to capture memory effects that only appear in multi-time

correlations [22–24]; whilst others impose constraints on general system-environment

interactions to facilitate a specific mechanism for memory transfer throughout the dy-

namics [77–79]. In either case, both types of approach fail to yield a comprehensive

framework of quantum stochastic processes, and the corresponding definitions of mem-

ory are necessary but not sufficient to characterise Markovian processes [49].

As is evident in the classical case, one can only make limited assertions about a

stochastic process from, e. g., functions evaluated in terms of correlations between the

state of the system at any two timesteps, as is provided by the solutions of generalised

master equations. Subsequently, for completeness, we provide a traditional account of

the open quantum systems approach to describing quantum stochastic processes. Along

the way, we will highlight some critical shortcomings in order to motivate the necessity

for the more general and operationally meaningful process tensor formalism to properly

describe quantum processes [50], which we introduce in Chapter 3. Many of the notions

presently introduced can be found in a number of excellent textbooks on the subject,

for instance Refs. [6–8, 80–82].

2.2.1 Open Quantum Systems

The open systems paradigm acknowledges the fact that it is generally impossible to

isolate a system of interest from its surroundings, and, as such, we must consider the

effects of the external environment on the system [6, 7]. As we are typically unable to

track the total evolution of the system and its environment—either by way of exper-

imental limitation or lack of computational resources—the aim is to understand how

the system of interest evolves dynamically. While the overall system and environment
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evolves unitarily according to the standard Schrödinger equation, the evolution on the

level of the system alone need not, due to the environmental influence.

We begin with a brief description of closed quantum dynamics which leads to the open

setting by eventually restricting our consideration to a subsystem of interest. States of a

quantum system, S, are described by bounded linear operators on an associated Hilbert

space ρ ∈ BL(HS) satisfying the following three properties

ρ = ρ†, ρ ≥ 0 and tr [ρ] = 1. (2.20)

This density operator description is nicely tailored for our present purposes as it allows

for the preparation of classical mixtures of pure quantum states which are pertinent to

any stochastic theory, e. g., a stochastic preparation procedure of a spin-1
2 particle where

the |↑〉 state is prepared with probability p and the |↓〉 state is prepared with probability

1− p. Suppose we have a device preparing a system in one of a number of pure states

{|ψ(i)〉} with probabilities {pi}. The density operator of such an ensemble encodes all of

the physically meaningful information about the system and is constructed as follows

ρ =
∑
i

pi|ψ(i)〉〈ψ(i)|. (2.21)

Pure states correspond to extremal states that cannot be written as a convex sum as

above. In general, a density operator decomposition in terms of an ensemble of pure

states is non-unique. The properties of Eq. (2.20) provide an intrinsic characterisation

that holds independently of the ensemble interpretation, guaranteeing that its spectrum

always represents a valid probability distribution. The Hermiticity condition ensures the

eigenvalues are real; the positivity condition ensures they are all non-negative, thus cor-

responding to probabilities; and the trace condition stipulates an overall normalisation

of probabilities. Importantly, density operators form a convex set: consider an ensemble

of density operators {ρ(i)} ∈ BL(HS) distributed with probabilities {pi}. Then

ρ =
∑
i

piρ
(i) (2.22)

is a valid representation of a quantum state.

In the density operator picture, the closed unitary evolution described by the

Schrödinger equation translates into the von Neumann equation
∂ρt
∂t

= −i[Ht, ρt], (2.23)

where [A,B] := AB −BA represents the commutator and we set h̄= 1. Integrating the

von Neumann equation admits a formal solution in terms of a unitary map, Ut:0, that

expresses the time-evolution of the system

ρt = Ut:0ρ0 := Ut:0ρ0U
†
t:0, (2.24)
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where ρ0 is the initial system state and the family of unitary operators are generated by

a Hamiltonian Ht′

Ut:0 = T

{
exp

(
−i
∫ t

0
dt′Ht′

)}
, (2.25)

where T represents the time-ordering operator.

The theory of open quantum systems concerns the evolution of a system, S, and some

uncontrollable and inaccessible environment, E. The environment can describe any de-

grees of freedom that develop in time with the state of the system, e. g., the system

of interest could be a spin-1
2 particle and its environment an infinite field of bosonic

modes. The joint Hilbert space of the system and environment is the tensor product of

each subspace, HSE = HS ⊗HE , with the joint state space described accordingly as the

subset of BL(HSE) satisfying Eq. (2.20). The tensor product operation thus provides a

natural way to represent composite systems: given some quantum states ρS ∈ BL(HS)

and τE ∈ BL(HE), the composition ρS ⊗ τE ∈ BL(HSE) represents the joint system-

environment state. On the other hand, there are elements ρSE ∈ BL(HSE) of the joint

state space that cannot be written as a tensor product of individual constituent quan-

tum states, e. g., convex mixtures
∑
i piρ

S ⊗ τE of product states, which are known as

separable states; or those states that are not of separable form, known as entangled states.

In either case, given knowledge of the joint state of some composite system, ρSE , we can

deduce a description of the subsystems that adequately describes the local properties of

each subsystem, i. e., provides the correct statistics for any local measurement, via the

partial trace operation

ρS = trE
[
ρSE

]
∈ BL(HS) and ρE = trS

[
ρSE

]
∈ BL(HE). (2.26)

The open dynamics framework considers the entire system-environment to evolve

according to Eq. (2.23), and the dynamics of the system alone is deduced by taking the

partial trace over the environment

∂ρSt
∂t

= −i trE
[
[HSE , ρSEt ]

]
, (2.27)

which admits the solution

ρSt = trE
[
USEt:0 ρSE0

]
= trE

[
USEt:0 ρ

SE
0 USE†t:0

]
. (2.28)

In contradistinction to Eq. (2.24), this is not a closed-form equation for the system state,

as it depends on the dynamics of the joint state.

In addition to the evolution of quantum states, an important concept in quantum

theory is that of measurement. A measurement on a quantum system is described by
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a collection of operators, J = {K(x)} ∈ BL(HS), such that
∑
xK

(x)†K(x) = 1S . In

anticipation of later developments, we refer to the entire collection as a measurement

instrument: the index x refers to the possible measurement outcomes that can be ob-

served given that an experimenter interrogates the system with the instrument J . If the

pre-measurement state of the system is ρ, then the probability that outcome x occurs

is given by

P(x|J ) = tr
[
K(x)†K(x)ρ

]
. (2.29)

Upon recording outcome x when using the instrument J to interrogate the system, its

state undergoes the transformation

ρ
x7→ K(x)ρK(x)†. (2.30)

As a special case of this general notion of quantum measurement is when the post-

measurement state is not of interest, but merely the statistics associated to measurement

outcomes are. In this case, it is sufficient to consider only collections of operators defined

via Π(x)T := K(x)†K(x) ∈ BL(HS), where the transpose ( r)T is added to the standard

definition to better align with later notation. By definition, such a collection satisfies∑
x Π(x)T = 1 and contains only Hermitian, positive semidefinite operators, leading to

the standard Born rule

P(x|J ) = tr
[
Π(x)Tρ

]
. (2.31)

Overall, any such set {Π(x)} is known as a positive-operator valued measure (POVM), with

each constituent operator referred to as a POVM-element. The linear functional induced

on quantum states to yield probabilities via the Born rule, i. e., E (x)( r) := tr
[
Π(x)T r], is

known as an effect. A POVM is a special case of a measurement instrument that contains

the necessary information to determine the observed statistics of any measurement on

a normalised quantum state, but is insufficient to deduce the post-measurement state.

Another special case considers projective measurements, where each operator associated

to a measurement instrument is a projector that is orthogonal to every other, i. e., {Π(x)}

such that Π(x) = Π(x)† and Π(x)Π(x′) = δxx′Π(x).
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2.2.2 Dynamical Maps

To reiterate an earlier point, what we often desire when studying a physical evolution is

simply a description of how to map quantum states from one point in time to another.

In the open dynamics framework, where we assume only access to the system, we would

like such a map to act only on the space of the system, in analogy to the action of the

unitary map for closed dynamics in Eq. (2.24). However, due to potentially dissipative

system-environment interactions in the open setting, such a map is no longer restricted to

being unitary. We first aim to understand the properties such a map must have in order

to represent a physical evolution within quantum theory from an abstract perspective,

before providing a connection to the standard open systems framework.

Figure 2.7: Dynamical map. A dy-
namical map, C (yellow), takes input
states ρ to output states σ (green).
Any such transformation in quantum
theory must be linear, completely-
positive and trace-preserving.

In short, we aim to understand the physically

allowable quantum transformations between two

points in time, i. e., the set of maps C : BL(HS)→

BL(HS) that take an arbitrary initial quantum

state ρ ∈ BL(HS) to a valid output quantum state

σ ∈ BL(HS), schematically depicted in Fig. 2.7, as

follows4

σ = C(ρ). (2.32)

In the classical setting, the requirement that a map takes arbitrary input probabil-

ity distributions to valid output distributions serves to constrain their structure to be

stochastic maps. Similarly, the analogous demand in quantum theory imposes structural

constraints on the allowable maps. Any meaningful transformation must preserve the

key properties of the density operator, i. e., it must preserve trace, Hermiticity and pos-

itivity, in order to ensure that σ indeed represents a valid quantum state. In addition,

its action must preserve convex mixtures of states

C
(∑

i

piρ
(i)

)
=
∑
i

piC
(
ρ(i)

)
=
∑
i

piσ
(i). (2.33)

This is not a requirement that stems from the linearity of quantum mechanics; rather,

it follows from the linearity of mixing principle that must be satisfied by any statisti-

cal theory. The importance of this principle can be highlighted through the following

4 The present restriction of our attention to maps taking states of some input system to those of the
same system, i. e., living on the same Hilbert space, as its output is by no means necessary and will be
relinquished in the forthcoming chapter.
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Gedankenexperiment: suppose Alice prepares a quantum system in either state ρ1 or ρ2,

which she sends to Bob, with the transmission represented by the map C. Bob then

performs state tomography [8, 83] to determine which state Alice sent him, with the

entire protocol repeated many times. Suppose first that Alice only sends ρ1 on Monday

and ρ2 on Tuesday. Bob will then conclude that he receives σ1 = C(ρ1) on Monday

and σ2 = C(ρ2) on Tuesday. Now suppose instead that Alice sends these two states at

random, with probabilities p and 1− p respectively. Without knowledge of which state

was sent in each run, Bob would conclude that he receives the average state σ = C(ρ),

where Alice’s preparation corresponds to the average state ρ = pρ1 + (1− p)ρ2. Con-

sider now the scenario where Alice reveals to Bob which state she sent in which run;

surely now Bob concludes that he received the states σ1 or σ2 whenever Alice sent him

ρ1 or ρ2 respectively. On the other hand, averaging over the trials would amount to

Bob receiving σ. Thus, it must be the case that the transformation map acts linearly:

σ = pσ1 + (1− p)σ2 = pC(ρ1) + (1− p)C(ρ2).

In analogy to the classical case, trace-preservation of the density operator corresponds

straightforwardly to the classical notion that the output of a stochastic map is nor-

malised; likewise, Hermiticity and positivity preservation echo the demand that stochas-

tic maps take probability distributions to probability distributions. However, a distinct

departure in the quantum setting arises due to the existence of entangled states within

the theory, which enforces us to strengthen the notion of positivity, which means that

the output state of a map is always positive semidefinite, i. e., σ = C(ρ) ≥ 0 ∀ ρ, to the

stricter one of complete-positivity.

Consider the situation were the initial state of some bipartite system ρAB ∈ BL(HAB)

is represented by an entangled density operator

ρAB 6=
∑
i

piα
(i) ⊗ β(i), (2.34)

where {α(i)} ∈ BL(HA) and {β(i)} ∈ BL(HB) are density operators describing the states

of the subsystems A and B respectively and {pi} are probabilities. Suppose these sub-

systems are sufficiently well-separated and undergo separate evolutions; one can easily

construct examples for which the post-evolution joint state is not a positive semidefinite

operator. For example, if A undergoes a trivial evolution IA( r) whilst B is subject to

the transposition map, i. e., and T B( r) := ( r)T. Both of these maps are positive, i. e.,

IA(ρA) ≥ 0 ∀ ρA ∈ BL(HA) and T B(ρB) ≥ 0 ∀ ρB ∈ BL(HB). However, when ap-

plied jointly to an entangled state ρAB ∈ BL(HAB), a negative operator, representing

no physical state, can result IA ⊗T B(ρAB) < 0.
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The natural condition required to describe meaningful quantum evolutions of compos-

ite systems is that their local implementation leads to a valid joint output state in the

presence of any innocuous ancillary system (see Fig. 2.8). Formally, when a map acting

on some system, CS , is extended to act trivially on an arbitrarily-sized ancillary space,

HR, via the identity map IRd acting on d-dimensional quantum states, its action on an

arbitrary joint state ρSR ∈ BL(HSR) must lead to a positive semidefinite output

σSR = CS ⊗IRd (ρSR) ≥ 0 ∀ d ∈ N. (2.35)

We refer to maps satisfying the above condition (which also implies Hermiticity preser-

vation [35]) as completely-positive (CP) maps.5

Figure 2.8: Complete-positivity. To
represent a valid evolution in quan-
tum theory, a dynamical map C must
be completely-positive. Consider a
joint system, SR, with R of dimen-
sion d, in an arbitrary state ρSR.
Complete-positivity of C means that
when it is implemented locally on S,
whilst R evolves trivially under Id,
the joint output is a valid quantum
state σSR ∈ BL(HSR), for all d ∈ N.

Lastly, the trace-preservation requirement, stem-

ming from the fact that the probabilities of any

measurement on the output state sum to one, is

simply tr [σ] = tr [C(ρ)] = tr [ρ] ∀ ρ ∈ BL(HS).

An alternative way to consider trace-preservation

is that the transformation C taking ρ to σ occurs

overall with certainty. Indeed, one can envisage sit-

uations where a process only occurs conditionally

with some probability, such as that on a quantum

state upon recording a measurement outcome, in

which case the trace-preservation condition must

be slightly modified to capture such scenarios (al-

though the dynamics must remain CP). We will

focus on such maps in detail within the broader

framework introduced in the coming chapter.

To summarise, the most general form of maps describing overall deterministic trans-

formations in quantum theory are those that are both CP and trace-preserving (TP).

Due to their importance in the study of open dynamics, these maps are referred to syn-

onymously as CPTP maps, dynamical maps or quantum channels [6, 80]. Since the set

of density operators is convex, and CPTP maps act linearly, the space of CPTP maps is

also a convex set. So much for the mathematical properties of the allowable maps taking

input states to output states in open quantum theory. We now make the connection

with an underlying joint system-environment evolution.

5 We note that although maps that are positive but not completely-positive, such as the partial transpose
considered above, are useful for witnessing entanglement in quantum states [84, 85], for the purposes of
describing quantum evolution in a meaningful way, we require the associated map to be CP.
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A major result concerning the axiomatic considerations above and the vantage point of

open quantum systems dynamics is Stinespring’s dilation theorem [86], which guarantees

that any CPTP map on the system can be thought of as arising from some underlying

unitary dynamics of the system with some environment. That is, we can represent any

CPTP map CS : BL(HS)→ BL(HS) in terms of a dilated picture of unitary dynamics in

HSE , with a fiducial initial environment state τE ∈ BL(HE) and the environment being

ignored following the evolution, depicted in Fig. 2.9, as

σS = CS(ρS) = trE
[
USEρS ⊗ τE

]
. (2.36)

The dilation for a quantum channel is non-unique: many configurations of {USE , τE}

can give rise to the same dynamical map CS . Nonetheless, a dilation can always be found

for an environment with dimension d2
E [86]. It is often quipped that this correspondence

allows us to always go to the Church of the Larger Hilbert Space, considering any overall

deterministic but irreversible (i. e., non-unitary) transformation of the density operator

of the system to be the manifestation of our subjective ignorance of part of a reversible

(unitary) transformation in the larger joint Hilbert space.

Figure 2.9: Stinespring dilation of a quan-
tum channel. Any CPTP map C can be di-
lated in terms of a unitary interaction USE

of the system with some fiducial environ-
ment state τE , which is finally disregarded
(indicated by the diagonal slash). A dilation
is non-unique: the channel contains all infor-
mation enclosed in the yellow border on the
right, but individual contributions of the en-
vironment state and the joint unitary (or-
ange) cannot be delineated.

Stinespring’s theorem tells us that any CPTP

map can always be dilated to a fixed (though

non-unique) quantum circuit comprising a

joint unitary transformation through which

the system interacts with a fiducial environ-

ment state, the latter of which is finally dis-

carded. On the other hand, a CP map can al-

ways be thought of as arising similarly through

a joint unitary interaction with some initial en-

vironment state, although in this case, rather

than tracing over the degrees of freedom of the

environment following the evolution, one hypo-

thetically performs a measurement and post-

selects on an outcome [28]. Since such a proce-

dure can only occur probabilistically, there can

be no such fixed underlying dilation model at-

tributed to the map, in contrast with the case

for CPTP maps; thus, the property of trace-preservation may be interpreted as one of an

overall deterministic implementation of the transformation.
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2.2 open quantum dynamics

2.2.3 GKSL Equation

The above discussion culminates in the most general structure of a quantum evolution

taking density operators to density operators. We can bring time back into the picture

to see how a continuous-time evolution can naturally lead to CPTP dynamics on the

system level. Although the exact evolution of the system is governed by its microscopic

interactions with the environment, we can invoke the approximation that the evolution

of the system only depends on its current state via some linear map, Lt, and write down

the following equation of motion for the system density operator [7]

∂ρSt
∂t

= Lt(ρSt ). (2.37)

When the generator is time independent, the formal solution to this equation constitutes

a single-parameter semi-group, i. e., a family of norm-continuous maps CSt = exp(tL)

satisfying CSt+s = CSt CSs .6 This allows us to express the system state at arbitrary time t

in terms of a map acting on an arbitrary initial state via

ρSt = CSt:0(ρS0 ). (2.38)

The family of dynamical maps CSt:0 naturally inherit the properties of linearity, complete-

positivity and trace-preservation. Furthermore, the semi-group property leads to the

divisibility of the dynamical maps, i. e., they satisfy CSt:0 = CSt:sCSs:0 ∀ t ≥ s ≥ 0. In-

tuitively, this means that we can calculate the system density operator at any time

via a successive composition of previous dynamical maps. We will return to a deeper

discussion of this concept in the coming section.

A breakthrough result for the field of open quantum systems was presented inde-

pendently by Gorini, Kossakowski and Sudarshan [87] and Lindblad [88] (GKSL)7, who

provided the most general form of the generator Lt in Eq. (2.37) such that the resulting

solution forms a divisible CPTP semi-group, yielding the GKSL equation
∂ρt
∂t

= −i[H, ρt] +
∑
i

γi

(
LiρtL

†
i −

1
2
{
LiL

†
i , ρt

})
. (2.39)

Here, everything is understood to act on the space of the system only. Note that the

anti-commutator is represented by {A,B} := AB + BA, the H represents a Hamilto-

nian (Hermitian) contribution to the system evolution, the {Li} are known as Lindblad

operators and the {γi} ≥ 0 are non-negative rates.

6 For a time dependent Lt, the solution would involve some time-ordered exponential and time integral,
and would depend on two time parameters.

7 This equation has also been independently discovered by Franke in 1976 [89], although his name has not
made it into the famous acronym yet.
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To reiterate, the GKSL equation is the quantum generalisation of the classical ME

(see Appendix B.1): the solution of the latter is a P-divisible family of stochastic maps,

whereas that of the former is a divisible family of CPTP maps taking the density operator

from one point in time to any other later time in a physically acceptable manner, as per

Eq. (2.38) [87, 88]. Moreover, one can arrive directly at the form of the GKSL equation

when starting from a system-environment model and invoking the Born-Markov and

secular/rotating wave approximations [7, 82].

2.2.4 Tomographic Reconstruction of Quantum Channels

Recall that in the open systems framework, we assume that we cannot probe the state

of the environment and do not know the joint unitary transformations. We now consider

how one can experimentally reconstruct a description of the dynamical map for the

evolution between pairs of timesteps by probing the system alone. By considering a fixed

environment state in Eq. (2.36), the linear dynamical map is induced on the state space

of the system. This property of linearity importantly permits a procedure to reconstruct

quantum channels, known as quantum process tomography [8, 83, 90].

To understand process tomography, it is useful to first briefly consider quantum state

tomography, where an unknown quantum state is inferred through measurement statis-

tics. Given a state ρ ∈ BL(HS), one begins by choosing a POVM that spans BL(HS).

Such a set of operators is called informationally-complete (IC) and necessarily contains

at least d2 POVM elements. By recording the probability for each measurement outcome,

the quantum state can be uniquely reconstructed due to linearity [8, 83].

Figure 2.10: Tomographic recon-
struction of a quantum channel. A
quantum channel C can be recon-
structed by determining the output
states {σ̂(i)} corresponding to an IC

set of inputs {ρ̂(i)}.

In direct analogy to state tomography, the pro-

tocol for quantum process tomography, depicted

graphically in Fig. 2.10, is as follows [90]: i) take a

basis of input states {ρ̂(i)}d2
i=1 that span the oper-

ator space of the system;8 ii) each of these input

states are sent through the process; iii) the cor-

responding output states {σ̂(i)}d2
i=1 are determined

via state tomography; and iv) the input-output re-
lations deduced can be linearly inverted to uniquely

determine the dynamical map.

8 Here, we use the caret notation to indicate that the object belongs to a fixed basis, which is not necessarily
normalised or orthogonal.
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Mathematically, we make use of the natural inner product on BL(HS), i. e., for any

elements µ, ν ∈ BL(HS), we have the Hilbert-Schmidt inner product (µ, ν) := tr
[
µ†ν

]
.

We can always construct a basis of BL(HS) with a set of d2 density operators. For any

such basis, there exists a dual set of objects, {D̂(i)}d2
i=1, such that [51, 74]

tr
[
D̂(i)†ρ̂(j)

]
= δij ∀ i, j. (2.40)

We provide an explicit construction of the dual set to an arbitrary basis in Appendix B.2.

By linearity, determination of the output states for a basis of input states uniquely

specifies the map. Thus the action of the CPTP map CS on an arbitrary input state

ρ ∈ BL(HS) can be linearly extended and expressed as

CS(ρ) =
d2∑
i=1

σ̂(i) tr
[
D̂(i)†ρ

]
(2.41)

The elements of the dual basis to a basis of density operators are elements of BL(HS),

but not necessarily density operators, and the overall construction above is guaranteed

to yield a positive semidefinite output.

Lastly, note that in this procedure it is assumed that the initial state of SE is un-

correlated, allowing us to treat the reduced initial state of the environment τE as a

fixed constant of the problem. This property means that the dynamics is independent

of the initial state of the system, allowing us to vary the inputs to the channel freely, as

is a tenet of the process tomography protocol. For instance, GKSL dynamics allows for

this clear delineation between the instantaneous state of the system and the subsequent

dynamics at all times (see Eq. (2.37)), therefore leading to a CP-divisible description.

2.3 a problem of formalism

So far, we have explored the open quantum systems formalism and the dynamical map

in describing the evolution of a quantum state to one at a later time. The usefulness of

the dynamical map picture comes to the fore when considering its ability to be tomo-

graphically reconstructed in a finite number of experiments, providing an unambiguous

description of the process in terms of accessible quantities. However, the dynamical map

description does not accommodate for intermediary interventions on the level of the sys-

tem. In order to understand memory effects in quantum stochastic processes, we would

like to develop a similar operational framework that actively accounts for multi-time

correlations. As we shall see throughout this section, a number of subtleties arise when

attempting to do so.
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Figure 2.11: Dilation of a quantum process interrogated in time. A joint system-environment
state ρSE is interrogated in time by measurements M(xj )

j interspersed throughout periods of
joint unitary evolution USE2:1 .

Consider an experimenter making measurements on some system over a set of

timesteps, Λn, described by the measurement operators {M (xj)
j } interspersed through-

out periods of joint unitary dynamics, with tj ∈ Λn denoting the timestep of each

measurement. The conditionally realised transformation of the system associated to ob-

serving the outcome xj is described by the CP map M(xj)
j (ρSE) := M

(xj)
j ρSEj M

(xj)†
j ,

where the measurement operators act on the system alone and identity operators on the

environment are implied. The joint probability distribution of the statistics observed

given a sequence of measurements applied over time is depicted in Fig. 2.11 and written

Pn:1(xn, . . . ,x1) = tr
[
M(xn)

n USEn:n−1 . . .M
(x2)
2 USE2:1M

(x1)
1 ρSE

]
. (2.42)

To reiterate, here, the unitary maps USEj:j−1 are understood to act on the joint system-

environment space, while the CP maps M(xj)
j act only on the system, and we have

chosen not to include nested parentheses to avoid notational clutter, as we will often do

throughout this thesis, with the understanding that all maps act on everything to the

right of them.

As exemplified previously through the Stern-Gerlach example at the beginning of

Section 2.2, a major problem of this description is that the resulting joint distributions

do not satisfy the containment property of the KET. Logically, from a proper description

of the dynamics over multiple timesteps, we expect to be able to deduce the correct

description of the dynamics on any subset of timesteps. Its breakdown arises due to the

necessarily invasive nature of measurements in quantum mechanics [14]: in contrast to

classical theory, here, choosing not to interrogate the system is different from averaging

over all possible measurement outcomes.

An additional point of concern is that for a system evolving in an open fashion,

performing a measurement on the system can condition the state of the environment.

This is not a purely quantum mechanical feature, but rather a symptom of stochastic

processes with memory. For example, consider applying a rank-1 projective measurement
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Figure 2.12: Measuring the system conditions the environment and influences future dynamics.
In panel a), the S subsystem of an initially correlated system-environment state ρSE is subject
to a projective measurement, which has the effect of conditioning the environment into some
state τ (x). In panel b), we consider the scenario where some system-environment dynamics
USE subsequently occurs. As the environment state that the system goes on to interact with is
conditioned by the measurement outcome (rather than being some fixed, fiducial state), a set
of many different dynamical maps {C(x)} that describe the evolution is induced, one for each
measurement outcome. Each of these maps has a non-deterministically occurring environment
state in its dilation, represented by the orange objects enclosed by the yellow dashed line.

P (x)( r) := P (x) rP (x) on the subsystem S of a correlated SE state, as shown in Fig. 2.12.

Upon recording outcome x, the joint state maps to

ρSE
x7→ P (x) ⊗ τ (x), (2.43)

where τ (x) = trS
[
P (x)ρSE

]
∈ BL(HE). Although the post-measurement state is un-

correlated for each measurement outcome—it is a tensor product state—the post-

measurement environment state is correlated with the outcome observed; as such, the

future evolution of the system can depend upon knowledge of previous outcomes.

The points raised above have led many to the conclusion that an “intrinsic char-

acterization and quantification of memory effects in the dynamics of open quantum

systems. . . has to be based solely on the properties of the dynamics of the open system’s

density matrix” [23]. In the coming chapter we defy this statement, highlighting that it

is a problem of formalism that must be overcome to obtain a fully fledged description of

quantum stochastic processes, rather than a fundamental issue. To put the cart before

the horse, there exist operational frameworks that can account for multi-time correla-

tions, superseding traditional open systems frameworks and subsequently allowing for a

proper description of memory effects. We will first examine in detail how criteria based

on two-point descriptions of quantum processes fail to accurately represent the underly-

ing process when memory effects are present, motivating the fact that we are forced to

go beyond such a paradigm to characterise generic quantum stochastic processes.
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2.3.1 A Hierarchy of Notions of Non-Markovianity

Due to the breakdown of the KET on the level of observed probabilities in quantum

mechanics—and therefore the lack of a well-defined notion of conditional statistics—the

concept of Markovianity in the quantum realm has been mainly studied throughout

the open systems community in terms of the time-evolution of the density operator,

or, more operationally, the dynamical maps describing the evolution between pairs of

timesteps. Of course memory effects display signatures that can be gleaned from such

two-point considerations, giving rise to a myriad of non-Markovianity witnesses. The

usefulness of such approaches is not to be underestimated: from a practical perspective,

they often provide easy-to-check criteria that purport to verify the presence of memory

effects. Prominent examples include those based on: the divisibility of the dynamics [66,

91]; the monotonically non-increasing nature of the distinguishability of quantum states

subject to the evolution [92]; the detection of initial correlations [74, 93–98]; the positivity

of the dynamical maps [99–101]; changes to quantum correlations or coherence [102,

103]; changes to the Fisher information [104]; and channel capacities and information

backflow [105–108]; to name but a few. See Refs. [23, 76] for a thorough overview of

these various concepts and their relations.

The main problems with such approaches are that they: i) lack a clear operational

interpretation; ii) do not coincide with Markovianity in the classical limit; and iii) do

not agree on the characterisation of whether a given process is Markovian or not. Con-

sequently, different introduced “measures” of non-Markovianity disagree on both the

degree of non-Markovianity and whether or not memory effects are present at all [49,

67, 106, 109, 110].

For instance, one of the most widely used criteria is based on the notion of CP-

divisibility [66], which intuitively means that the open dynamics can be broken into

a piecewise composition of dynamical maps satisfying9

Ck:i = Ck:jCj:i ∀ tk > tj > ti. (2.44)

The property of CP-divisibility implies some of the other aforementioned concepts, e. g.,

the non-increasing distinguishability criteria is a direct consequence of the contractivity

of the trace-distance under CPTP maps, although the converse does not hold [66]. Con-

sequently, there are many processes that the former characterisation would deem to be

non-Markovian, but the latter would disagree, e. g., see Refs. [109, 110].

9 Note that CP-divisibility obviously implies P-divisibility.
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Moreover, considering how an experimenter might test for CP-divisibility in practice

illuminates that there are (at least) two inequivalent definitions of divisibility [54]. This

is because of the difficulties that arise when attempting to tomographically reconstruct

the maps Ck:j . By time tj , the system will generally be correlated with its environment,

hindering ones ability to vary the input state to the map independently of the environ-

ment and therefore breaking a crucial requirement of quantum process tomography. To

circumvent this problem, under the assumption that no initial correlations are present

at ti so that the maps Ck:i and Ck:j can be reconstructed and that Cj:i is invertible, one

may compute an artificial map Ak:j = Ck:iC−1
j:i and test if it is CPTP.

Notwithstanding the fact that neither of these assumptions might be satisfied, it is

unclear operationally what dynamics the inverse map C−1
j:i and therefore the derived

map Ak:j actually represents. An operational way around this is to simply discard any

possible system-environment correlations present at tj by, e. g., making a measurement

and preparing the output state in a fixed state that is independent of measurement

outcomes, which are then averaged over. This allows for the experimental reconstruction

of Ck:j which is guaranteed to be CPTP, and one must simply check whether Eq. (2.44)

holds. Within the set of processes where the dynamical maps in the former construction

are invertible, the latter operational criteria is stricter; in either case, just as in the

classical setting, CP-divisibility does not imply Markovianity [27, 54].

Additional examples of a similar flavour can be found in the Supplemental Material

of Ref. [49]: in particular, an example where the trace-distance distinguishability crite-

ria would deem the process Markovian, and another in which no system-environment

correlations are ever built up in the process, which is also often considered a hallmark

of Markovianity [76]; however, both of these examples can display memory effects. In

summary, each of the criteria proposed at the beginning of this section are based upon

an inadequate description of processes with memory, giving rise to the aforementioned

inconsistencies and leading some to the conclusion that there can be no unique condi-

tion for Markovianity for quantum stochastic processes. This is not true: the problem

we must overcome is one of formalism, as we now discuss.

2.3.2 Limitations of Traditional Approaches

The reason that the traditional approaches considered above fail is because Markovian-

ity is, at its core, a statement concerning multi-time conditional statistics: in its truest

sense, determining whether a process is Markovian requires testing for conditional in-
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dependence between the current statistics measured from those deduced at all earlier

times. This demands an exponentially large set of conditions to be satisfied, even in the

classical case, i. e., Eq. (2.11) must hold for all x1, . . . ,xn. Despite the added complica-

tion of the incompatibility of measurement statistics in quantum mechanics described

above, the fact that any two-point description of dynamics cannot suffice to characterise

Markovianity is more of a logical statement: it simply cannot be used to test all condi-

tions, and therefore is inadequate at describing the complete story. In short, a proper

treatment of non-Markovian processes cannot be a simple extension of the tools used to

describe Markovian ones [25].

The fact that the dynamical map formalism fails to capture multi-time memory ef-

fects highlights its major shortcoming when it comes to describing quantum processes

with memory. Moreover, the dynamical map description cannot even accurately address

all two-point dynamics allowable in quantum theory; for instance, it is well-known that

it fails to describe open dynamics in the presence of initial system-environment corre-

lations [65, 73–75, 111–114]. As discussed earlier, the traditional treatment and recon-

struction of open quantum system dynamics assumes an initially uncorrelated system-

environment state. This hypothesis assigns a peculiar role to the initial time; even if it

happens to be true at some time, which could be taken as the initial time leading to sub-

sequent CPTP dynamics to any later time, the system will, at this later time, generally

be correlated to its environment and we immediately face the problem of describing the

dynamics beyond that later timestep. Thus, the proper description of quantum processes

across multiple timesteps inherently concerns the initial correlation problem, which must

be overcome as a starting point.

This problem came to the fore due to technological advances that allowed experimen-

talists to begin tomographically reconstructing quantum logic gates by means of process

tomography [115–119]. Although the gates implemented were expected to be non-ideal,

they were expected to be CPTP. However, to the surprise of many, this was not nec-

essarily the case: the dynamical maps constructed were not CP. A notable theoretical

explanation for the construction of non-CP quantum gates was immediately put forth by

Pechukas, who realised that in the presence of initial system-environment correlations,

the dynamical map formalism suggests that the subsequent dynamics of the system

need not be CP [111]. This means that a density operator describing a quantum state

can evolve, in the presence of some ancillary system, into a non-positive operator, whose

physical interpretation is unclear. Fundamentally, this notion is at odds with the fact

that we always observe positive probabilities in any experiment. Furthermore, relinquish-
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ing the requirement of CP means sacrificing many physically important principles, such

as the Holevo bound [120], data processing inequality [121], and the entropy production

inequality [122]. An alternate approach is to give up the requirement of linearity [113],

which also proves problematic: complete tomography is no longer possible in general

when the dynamics is non-linear [51, 123]; the data processing inequality is also vio-

lated [8]; and numerous problematic implications have been shown to arise (see, e. g.,

Refs. [124–126]). On the other hand, at first glance, it seems as if we are in a double-

bind: forked between sacrificing either CP or linearity for a consistent description of the

dynamics [114].

Figure 2.13: Initial correlation
problem. The dynamical map formal-
ism assumes the ability to consider
the environment as some fixes state.
This is not the case when initial cor-
relations are present, since we cannot
separate system states that are input
to the subsequent dynamics from the
dynamics themselves. This artefact
is depicted by the yellow dashed line
which (wrongly) attempts to ‘cut’
the initially correlated state.

Despite their original operational motivations,

dynamical map descriptions do not take active in-

terventions into account, besides the limited sce-

nario where the initial system state is uncorrelated

from its environment and active preparation proce-

dures can be enacted without influencing the subse-

quent dynamics. When initial system-environment

correlations are present, on the other hand, one

cannot probe the system without also affecting the

environment (see Eq. (2.43)). Since the environ-

ment can be conditioned by an operation on the

system and then can feed forward to play a role in

the subsequent evolution (see Fig. 2.12 b)), any to-

mographically reconstructed description of the dy-

namical map will depend upon the interventions

applied to the system, seemingly implying the lack

of a process that exists independent of the exper-

imenter. This is why, for instance, even non-Markovian generalisations of MEs with

memory kernels, which are useful for simulating processes with memory [24], are insuf-

ficient to characterise them: unless they allow for active interventions on the system,

their operational consequences are unclear. As we shall soon see, this blurriness between

the the dynamics governed by the process and the transformations applied by a probing

experimenter is directly related to the breakdown of the KET in quantum theory.

To summarise, on the one hand, the lack of consistency conditions on the level of

probability distributions seemingly imply that there may not exist a unique, fixed process

giving rise to the statistics observed. This renders any notion of conditioning, as is

51



classical and quantum dynamics with noise

required to characterise Markovianity and Markov order more generally, nonsensical. On

the other hand, any framework that does not properly account for active interventions

on the system, such as those based on dynamical maps, are necessarily inadequate to

describe processes with memory. In order to generalise Markov order to the quantum

realm, we require a reasonable picture of multi-time correlations. We stress, finally,

that in any such case, these problems arise due to inadequacy of formalism rather

than fundamental physical truths: a proper description of a stochastic process should

ameliorate these aforementioned issues. To correctly describe the statistics observed

for sequences of measurement outcomes, thereby capturing multi-time memory effects,

we are forced to go beyond such traditional approaches and develop a framework that

meaningfully accounts for active interventions, as we consider in the coming chapter.
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QUANTUM STOCHAST IC PROCESSES

Throughout the previous chapter, we explored in detail the nature of both

classical and quantum stochastic processes, highlighting some key difficulties

that arise when attempting to characterise memory in the quantum case. Here,

we introduce a general formalism that accommodates an unambiguous study of pro-

cesses with memory by making explicit the role of the experimenter.1 By separating the

underlying, uncontrollable system-environment dynamics of the process at hand from

the controllable interventions an experimenter might choose to apply on the level of the

system, we come to a robust operational framework for describing stochastic processes

that actively takes interventions into account, thereby solving the aforementioned issues.

One such framework that accounts for possible interventions across multiple timesteps

is that of the process tensor [49, 50], which is the fundamental mathematical object of

the operational formalism we employ throughout the remainder of this thesis to describe

quantum stochastic processes. It provides a multi-linear mapping from sequences of con-

trollable operations applied by an experimenter to the final output density operator

of the evolution. Additionally, by way of a generalised spatio-temporal Born rule, the

process tensor yields the correct joint statistics for any temporal operation sequence an

experimenter might implement [34]. It thereby encapsulates all (multi-time) memory ef-

fects in the process, which are crucial for a proper treatment of non-Markovian processes;

indeed, within the context of open system dynamics, the process tensor was developed

specifically to generalise traditional approaches of the open systems formalism [49, 50],

which are limited in scope to two-point correlations.

Before properly introducing this versatile framework, it is worth mentioning that

similar formalisms have been developed within various other contexts, initially by Lind-

1 Although we speak explicitly of an experimenter, we wish to be clear that they need not actually be
there; the notion of an experimenter simply provides an artifice that lends itself nicely to mental imagery
and language.
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blad [26] and Accardi, Frigerio and Lewis [27], with more modern incarnations going

under the guises of: quantum combs in the context of generic quantum circuit architec-

tures [28–30], causal automata or non-anticipatory quantum channels to address memory

effects in quantum processes [47, 48], process matrices to study the nature of causality

in quantum foundations [17, 32, 33], operator tensors [39, 40] and superdensity opera-

tors [41] pertaining to the development of quantum mechanics in spacetime, quantum

strategies for quantum game theory [42, 43], and causal boxes regarding secure commu-

nication protocols [44]. While the motivations and subtle details behind these notions

vary slightly, the common thread is that they all separate the controllable from the

uncontrollable influence on the system; making perspicuous that it is everything that is

out of control of an experimenter that constitutes the process itself.

In short, these frameworks describe a quantum stochastic process as a collection of

joint probability distributions over the outcomes of any possible sequence of measure-

ments. For example, the dynamics of a spin-1
2 particle can be uniquely described by

recording the probability for the spin to be found in alignment with any sequence of

independent directions an experimenter might choose to measure (at the timesteps of in-

terest). Once this data has been recorded, generalised Kolmogorov conditions hold, and

a generalisation of the KET can be recovered for quantum (and more general) stochastic

processes [14, 27], thereby unifying previous approaches to open system dynamics [51].

Crucially, the process tensor framework provides both an unambiguous definition of

quantum stochastic processes and a suitable notion of marginalisation in quantum the-

ory. Perhaps most importantly for our present purposes, the formalism permits the

development of a set of necessary and sufficient conditions for a quantum process to

be classified as Markovian [49, 50]. In this chapter, we introduce the process tensor

formalism, its properties, and other tools necessary for the remainder of this thesis.

3.1 process tensor framework

The operational perspective to quantum mechanics embraces the philosophy perhaps

best stated by Peres [127]: “The simple and obvious truth is that quantum phenomena do

not occur in a Hilbert space. They occur in a laboratory. If you visit a real laboratory, you

will never find there Hermitian operators. All you can see are emitters (lasers, ion guns,

synchrotrons and the like) and detectors. The experimenter controls the emission process

and observes detection events.” An experimenter has access–in principle–to everything

that can be measured on the level of the system, and hence a proper description of the
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process is one that reproduces the correct measurement statistics. We now take up this

perspective and show it resolves the problem of describing multi-time quantum dynamics

by way of the process tensor.

3.1.1 Multi-time Quantum Experiments

We consider the scenario in which an experimenter probes a quantum system that is

evolving according to some dynamics that they wish to characterise. Importantly, the

experimenter is presumed to have complete instantaneous control over the choice of

operations that they implement on the system over a number of timesteps, but no

control over the intermediary dynamics; for this reason, we refer to the setting as a

multi-time quantum experiment. A conceptual schema that describes any such physical

experiment depicts it as the composition of the following steps.

Definition 3.1 (Multi-time quantum experiment). A multi-time quantum experiment

proceeds according to the following protocol:

1. The initially unknown state of a system is prepared into a known state (which

could be statistical in nature, i. e., not pure).
2. The system is subsequently subject to some physical evolution.
3. An experimenter has access to probe the system.
4. Steps 2 and 3 repeat a number of times, with the system finally being measured.

We can concretely relate this multi-time experiment scheme to a dilated system-

environment picture, as depicted in Fig. 3.1. In general, the initially unknown quan-

tum state in step (1) of Def. 3.1 can display system-environment correlations and is

described by a density operator ρSE1i ∈ BL(HSE1i ). We label the state with the subscript

1i to denote that it is the input state to the first interrogation procedure applied by

the experimenter, namely the initial preparation procedure applied to the system. The

initial preparation is only different in name to any of the subsequent probing operations

that an experimenter will be allowed to implement in the multi-time setting; the sole

reason for the distinction is to emphasise that in the special case where there are no

initial system-environment correlations, any system state can be prepared by the exper-

imenter independently of the process, and so the description of the process will begin

on the space associated to the output of the preparation map, labelled 1o. However,

this is not generally the case: the possibility of initial system-environment correlations

make the role of preparation of significant importance [65, 73, 74]. We will now examine
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Figure 3.1: Multi-time quantum experiment. According to the steps of Def. 3.1, first an initially
unknown state of a system, potentially correlated with its environment, is prepared according to
the preparation procedure OS1 in Eq. (3.2). The system and environment subsequently evolve via
the joint unitary evolution USE2:1 . Then the experimenter probes the system, applying another CP

map OS2 . The probing repeats a number of times, with the final state being measured with the
POVM Πn. We colour the operations that an experimenter can control, namely the preparation,
the probing instruments and the final measurement, in green. In contrast, the underlying process
over which an experimenter has no control, consisting of the initial system-environment state
and the subsequent joint unitary evolutions, is coloured in orange. Note that each timestep is
associated to an input and an output space, labelled from the perspective of the experimenter.

each of the individual elements in this setting in order to motivate the computation

of joint probabilities. We begin with the two-time case, where an experimenter applies

a preparation procedure (on a potentially initially correlated state) and a subsequent

measurement, which is the first generalisation of quantum channels.

For instance, the experimenter might apply a projective measurement to yield a

known system state with some probability. As we briefly touched on in Subsection 2.2.2,

since such conditional transformations between states must occur with at most unit

probability, any valid physical preparation procedure on a quantum system S must

be a CP and trace-non-increasing map.2 Specifically, these are transformations OS1 :

BL(HS1i) → BL(HS1o), which takes input states ρS1i ∈ BL(HS1o) to subnormalised output

states ρS1o ∈ BL(HS1o) via

ρS1o = OS1
(
ρS1i

)
such that tr

[
ρS1o

]
≤ tr

[
ρS1i

]
. (3.1)

The trace of the output state encodes the probability of the specific CP transformation

being realised (for the given input state). Preparation procedures thus defined can cor-

respond to any physically implementable transformation, including unitary evolutions,

CPTP transformations and measurements. After the preparation procedure, the system

state is a subnormalised density operator. More generally, in the multi-time scenario,

2 Such maps are referred to as CP maps, with their trace-non-increasing nature implicit.
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keeping track of success probabilities encoded in the trace of the associated output state

will prove helpful for the computation of joint measurement statistics.

Any such preparation on the system acts non-trivially on correlations that the system

shares with its environment. Given some initially correlated ρSE1i ∈ BL(HSE1i ), a CP

preparation procedure OS1 : BL(HS1i)→ BL(HS1o) yields the joint output state

ρSE1o = OS1 ⊗IE1
(
ρSE1i

)
, (3.2)

where ρSE1o ∈ BL(HSE1o ) typically exhibits system-environment correlations.

Following this first interrogation by the experimenter, the joint system-environment

state is subject to some uncontrollable unitary evolution, as per step (2) of Def. 3.1. The

evolution of the joint state from time t1 to t2 is represented by the unitary map USE2:1 :

BL(HSE1o ) → BL(HSE2i ). Note the inevitable awkwardness of the labelling convention

that we run into here, which denotes the output of the unitary transformation with an

input label: this is due to the fact that input and output labels are written from the

perspective of the experimenter, and so, naturally, the output state of the uncontrollable

unitary evolution becomes the input to the next operation applied by the experimenter.

Following the first two stages of Def. 3.1, the system-environment state is

ρSE2i = USE2:1

(
OS1 ⊗IE1

(
ρSE1i

))
. (3.3)

As a brief aside, note that it is clear that the act of initial preparation can strongly

influence the dynamics of the state of the system, because the specific transformation

realised can be correlated with the state of the environment, which in turn influences the

subsequent evolution. The state of the system following the first two steps of a quantum

experiment described above is related to the CP preparation procedure OS1 : BL(HS1i)→

BL(HS1o) in the dilated picture via

ρS2i = trE
[
USE2:1

(
OS1 ⊗IE1 (ρSE1i )

)]
. (3.4)

To clearly see the influence of the initial preparation, first suppose that the experi-

menter applies a rank-1 projective measurement on the system, where observation of any

particular outcome x corresponds to the conditional transformation P (x)( r) = P (x) rP (x)

being realised with probability px = tr
[
P (x)ρ

]
. If initial correlations are present, the

post-preparation state is3

P (x) ⊗IE(ρSE1i ) = P
(x)
1o ⊗ τ̃ (x)1o , (3.5)

3 Here we drop the subsystem labels on conditional states and transformations to avoid clunky notation,
with the understanding that the measurement acts on the system alone.
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where τ̃ (x)1o = trS
[
P (x) ⊗IE(ρSE1i )

]
∈ BL(HE1o) and P

(x)
1o ∈ BL(HS1o) describe the post-

measurement states. We immediately see that the state of the environment is conditioned

by the measurement enacted by the experimenter: the dynamical map description of the

subsequent unitary evolution would make it seem as if the process itself is dependent

on the preparation, as a distinct quantum channel is induced on the level of the system

for each conditional environment state. Consequently, this seems to imply that there is

no proper process per se that is independent of the experimenter, which is indeed the

reason why traditional approaches to open quantum dynamics break down when initial

correlations are present.

If, on the other hand, the system is initially uncorrelated from its environment, then

any preparation has no influence on the state of the latter. The initially product system-

environment hypothesis of the tomographic scheme discussed in Subsection 2.2.4 corre-

sponds to this special case, where states of the system can be prepared without affecting

the environment, which retains its unique, fixed state τE1i ∈ BL(HE1i) throughout the

preparation accordingly

σS1o ⊗ τE1o = OS1 ⊗IE1
(
ρS1i ⊗ τE1i

)
. (3.6)

Satisfaction of Eq. (3.6) means that the dynamical map describing the subsequent evolu-

tion of the experiment is independent of the preparation procedure and uniquely defined,

since the environment state can be treated as a constant of the problem. However, the

assumption of an initial product state is not satisfied in many realistic circumstances,

especially beyond the weak-coupling regime [45, 46, 65, 128].

Returning to the main point of this subsection, at step (3) of the procedure in Def. 3.1

the experimenter has access to the system part of ρSE2i given in Eq. (3.3). Again, they

can apply any CP map of their choosing, before the joint system-environment state is

subject to another portion of unitary evolution, and so on. For a process where the

experimenter has access to the system at n timesteps, the final state of the system after

applying a sequence OS1 , . . . ,OSn−1 of CP maps is

ρSni = trE
[
USEn:n−1OSn−1 . . .USE2:1 OS1

(
ρSE1i

)]
, (3.7)

where all maps act upon everything to their right. Since the initial system-environment

state, the subsequent joint unitary evolution and the discarding of the environmental

degrees of freedom all occur deterministically, the trace of the output state ρSni is sub-

normalised with respect to the probability of realising the sequence of transformations

applied by the experimenter; by tracking the operations applied, we come to a meaning-
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ful description of conditional quantum states. At the conclusion of the experiment, the

final state is measured with a POVM Πn.

3.1.2 Process Tensor

The important shift in perspective that allows for a consistent description of multi-time

quantum dynamics is to separate what an experimenter has control over from what

they do not. Although they cannot generally know, in advance, the initially correlated

system-environment state, nor the subsequent portions of joint unitary evolution, what

can be controlled is the choice of instrument interrogating the system at each timestep.

An operationally meaningful framework for describing quantum evolution therefore nec-

essarily consists of two parts: i) the uncontrollable underlying process which governs

the joint unitary evolution of the system with some inaccessible environment, and ii)
the interleaved controllable changes to the state of the system, effected by the probing

operations implemented by an experimenter.

For instance, in describing open quantum dynamics in the presence of initial corre-

lations (i. e., the most general two-time quantum experiment as per Def. 3.1), what is

desirable is not a dynamical map taking initial system density operators—which are

uncontrollable—to final ones; indeed, such maps are not linear in general [111], or can-

not be reconstructed [129]. Instead, we seek a map on a map, which takes any choice of

the preparation map as input and outputs the final density operator of the system. To

this end, one can define the superchannel, T2:1 [74], to represent everything that is out

of the control of an experimenter, i. e., everything on the r.h.s of Eq. (3.4) except for

OS1 , as shown in Fig. 3.2

T S2:1(
r) := trE

[
USE2:1

( r⊗IE1 (ρSE1i )
)]

. (3.8)

The superchannel contains information regarding both the initially correlated state ρSE1i

and the subsequent joint unitary dynamics USE2:1 ; however, from the superchannel alone

we cannot delineate the individual contributions of these elements (without access to

the environment). On the other hand, the superchannel contains within it, by definition,

everything required to determine the output state of a quantum experiment for any

preparation procedure, making it the object of fundamental operational importance.

The superchannel acts on a CP preparation map and yields the correct output state

in analogy to the way the dynamical map acts on an input density operator. It is

linear in its argument by construction, which permits its tomographic reconstruction
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Figure 3.2: Superchannel: resolution to the initial correlation problem. In panel a) we depict
a two-step quantum experiment. By separating what is controllable to the experimenter from
what is uncontrollable, we can define the superchannel T S2:1, which is everything enclosed in the
dashed, yellow border. In panel b), we depict how this higher-order map acts on any preparation
OS1 to yield the correct output state ρS2i of the system that is accessible to the experimenter at
the second timestep.

in a similar way to that of a dynamical map (see Subsection 2.2.2), i. e., by linearly

extending input-output relations deduced for a basis set to uniquely determine its action

on arbitrary inputs [74]. However, in contrast to the dynamical map, the inputs of the

superchannel are CP preparation maps rather than density operators. While a set of

d2 linearly independent density operators can be chosen to span the space of quantum

states, d4 linearly independent CP maps are required to span the space of allowable

preparations [51, 123]. Indeed, such an experimental reconstruction of a superchannel

has recently been achieved in the laboratory to characterise the evolution of a photonic

qubit that is initially correlated with a single-photon environment [130].

Thus, the superchannel is the natural logical extension of the operationally accessible

input-output relations that motivated the dynamical maps description, taking control-

lable inputs to measurable outputs, with the generalisation allowing for the presence

of initial correlations. Moreover, the superchannel satisfies natural extensions of the no-

tions of complete-positivity and trace-preservation [74], as we will discuss for the more

general process tensor shortly. Indeed, this approach operationally solves the problem of

describing quantum dynamics in the presence of initial correlations. Most importantly

for our purposes, the superchannel includes all two-point correlations of the process, al-

lowing for a consistent calculation of multi-time statistics for any choice of interrogation

by the experimenter.
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Figure 3.3: Process tensor: an operational description of quantum stochastic processes. In panel
a), we show the abstraction of everything that is uncontrollable to an experimenter, which defines
the process tensor, T Sn:1. In panel b), we depict how the process tensor acts on sequences of CP

maps applied by an experimenter on the level of the system to the final density operator.

In analogy to the definition of the superchannel for the two-time case, one can abstract

all that is uncontrollable in an open process across multiple timesteps as the process

tensor, Tn:1, depicted in Fig. 3.3, as follows4

ρSn = trE
[
USEn:n−1OSn−1 . . .USE2:1 OS1 ρSE

]
=: T Sn:1(OSn−1, . . . ,OS1 ). (3.9)

The process tensor is a multi-linear mapping from the sequences of CP control operations

upon which it acts to the quantum states at the final output. Due to this linearity, it

follows that the process tensor, like the superchannel and the quantum channels that it

generalises, can be experimentally reconstructed in a finite number of experiments by

way of an extended tomographic scheme [50, 123]. Since the process tensor acts only

upon operations applied on the level of the system, from this point forth we will drop

the superscript label S for any maps that act on/states that live on the system (unless

potentially ambiguous).

One of the advantages of the process tensor formalism is that it directly relates to

an operational picture which clarifies a number of concepts pertinent to open quantum

dynamics. For example, recall the breakdown of the consistency conditions of the KET on

the level of measured probability distributions in quantum theory. For classical stochastic

4 Here, on the rightmost side where everything acts on the system alone, we economise the timestep
labelling with the understanding that each timestep is associated to an input and output Hilbert space
by writing j = {ji, jo} and further compressing ordered sequences of timesteps as n : 1 := {1, . . . , n}.
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processes, averaging over measurement outcomes amounts to doing nothing to the system

on average, and so the descriptors of the process on any subset of times obtained via

marginalisation of deduced statistics are compatible. In quantum theory, a distinction

between marginalisation and doing nothing arises because measurements in different

bases have different overall effects. As depicted in Fig. 3.4, doing nothing to the system is

by no means equivalent to marginalising over the statistics observed for a fixed sequence

of measurements.

Figure 3.4: Doing nothing vs. av-
eraging over measurements. In quan-
tum theory there is a difference be-
tween doing nothing to the system,
I, and averaging over all measure-
ment outcomes, {M(x)}.

It is obvious from the operational formalism de-

veloped that the process tensor fulfils the following

natural consistency condition [14]: for any two sets

of timesteps Λk ⊂ Λn, the descriptor of the pro-

cess over the smaller set of times can be obtained

from TΛn by letting it act on identity maps IΛn\k

at the times Λn\k, as highlighted in Fig. 3.5. Math-

ematically, the consistency condition reads

TΛk(
r) = TΛn

(
IΛn\k , r) =: T |ΛkΛn ( r) (3.10)

where ris a placeholder for operations one could implement at the remaining timesteps in

Λk. By separating the controllable influence on the system from the underlying process,

the process tensor formalism allows us to recover compatibility for the descriptors of

quantum stochastic processes for different sets of times, and with this a generalised

version of the KET can be derived [14, 27]. This result serves to define what we mean by

a quantum stochastic process, paving the way for an unambiguous study of them.

Up until this point, we have stressed the intuitive picture of the process tensor as

the object that allows an experimenter to compute all possible multi-time statistics they

might deduce via actively probing the system of interest. We now show how these can be

calculated directly for any sequence of interrogations. Recall that a measurement is rep-

resented by a POVM J = {Π(x)T}, where each of the elements corresponds to a possible

outcome, and they satisfy the summation condition
∑
x Π(x) = 1 ensuring that some out-

come occurs with certainty. In the temporal setting where the post-measurement state

of the system is of interest, the natural generalisation of a POVM is an instrument, which

is a collection of CP maps J = {O(x)} that overall yields a CPTP map
∑
xO(x) = OJ [6,

26]. Intuitively, the requirement that all the CP maps that make up the instrument

sum up to a CPTP map means that some transformation to the system occurs with cer-

tainty. Thus, if an experimenter applies a sequence of CP maps O(x1)
1 , . . . ,O(xn−1)

n−1 , each

of which are elements of an instrument J1, . . . ,Jn−1, with a measurement instrument
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Figure 3.5: Consistency condition for the process tensor. The process tensor satisfies a natural
consistency condition. For concreteness, in panel a) we depict a process tensor over ten timesteps.
From this, the correct descriptor on any subset of timesteps can be derived by letting the it act
on identity maps at the appropriate times. For example, in panel b) we show how the correct
description over times Λ6 = {t1, t4, t5, t6, t8, t10} can be obtained in this way from that defined on
Λ10 = {t1, . . . , t10}. Moreover, in panel c), we show the containment of TΛ3 in both descriptors
TΛ6 and TΛ10 , where Λ3 = {t4, t5, t10}. The crucial point is that the unique maximal description
contains within it the proper description of the process over any subset of timesteps.

Jn = {Π(xn)T
n } applied to the final state, the joint probability distribution over the

outcomes realised can be calculated from the process tensor directly via

P(xn, . . . ,x1|Jn, . . . ,J1) = tr
[
Π(xn)T
n ρn

]
(3.11)

= tr
[
Π(xn)T
n Tn:1

(
O(xn−1)
n−1 , . . . ,O(x1)

1

)]
.

The process tensor contains all joint probability distributions for all possible measure-

ment settings, and is thus the natural generalisation of classical stochastic processes, as

well as quantum states (see below).

To summarise the developments so far in this subsection, recall that for classical

stochastic processes, it is the hierarchy of compatible joint probability distributions over

all timesteps that serves to characterise the underlying process. For quantum processes,

each event must be associated to a CP map on the system, and it is the process ten-

sor that characterises the process by mapping any possible multi-time sequence of CP
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maps to the correct joint statistics via Eq. (3.11). By way of the generalised KET, one

can straightforwardly deduce the correct descriptor of the process over any subset of

timesteps, thereby alleviating conceptual difficulties regarding the proper characterisa-

tion of quantum stochastic processes. Indeed, by accounting succinctly for all possible

sequences of interventions on a system of interest, the process tensor encodes all possible

multi-time correlations between deducible statistics and therefore, on a sufficiently fine-

grained set of timesteps, captures the most general evolutions possible in both quantum

and classical physics.

We reiterate the important conceptual departure from traditional approaches to open

quantum dynamics: there, descriptions of quantum processes typically involve tracking

the state of the system as a function of time, which limits the ability to calculate the

outcomes of measurements to at most two timesteps in any given trial of the experiment,

inherently failing to capture multi-time memory effects that are critical to understand-

ing processes with memory. Clearly, the system density operator at each timestep can be

obtained from the process tensor by simply plugging in identity maps at all of the preced-

ing timesteps, thereby unifying all such two-point descriptions. Besides providing a more

intuitive operational picture, the process tensor description also subsumes the standard

approaches to quantum processes with memory by way of non-Markovian master equa-

tions, which aim to account for the effects of some memory kernel on the evolution of the

system. Admittedly, the process tensor is more of a characterisation than a dynamical

description; nonetheless, on the timesteps upon which it is defined, it provides a more

general description, accounting for all possible multi-time correlations deducible—rather

than only those either derived microscopically or deduced phenomenologically—the pro-

cess tensor goes beyond the realm of applicability of such approaches.

Crucially, we now have a way to meaningfully construct quantum generalisations of

statements that are multi-time in nature, such as Markovianity [49, 50] and Markov

order [1, 2], allowing for a consistent study of memory in quantum stochastic processes

from an operationally sound perspective. Before we do so, we present a brief mathemat-

ical interlude to develop a useful representation of the process tensor as a multi-partite

quantum state, which will prove fruitful for understanding its properties and proving

statements throughout the remainder of this thesis.
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3.2 representing linear maps

Up to this point, we have discussed dynamical maps and process tensors on rather

abstract grounds as mappings. For explicit statements, it proves helpful to choose a

representation that is well-adapted to the respective purpose. There are various dif-

ferent explicit representations of maps describing valid physical evolution in quantum

mechanics, each suitable for certain purposes, such as the tomographic representation of

Eq. (2.41), the so-called A- and B-forms of dynamical maps first introduced by Sudar-

shan et al. in Ref. [131], and the Kraus decomposition [80, 132], amongst others; for an

overview of the inter-relations between such representations, see, e. g., Ref. [51]. Here,

we introduce and use exclusively the Choi-Jamiołkowski Isomorphism (CJI) [133, 134].

3.2.1 Choi-Jamiołkowski Isomorphism

This isomorphism allows us to consider any linear map taking elements of some input

vector space to some other output vector space as a single element of the joint input-

output vector space. Concretely, consider a linear map L acting on the bounded linear

operators on a Hilbert space L : BL(Hi) → BL(Ho), where, for generality, we allow for

the input and output Hilbert spaces to be distinct. This map can be represented as a

bipartite operator Loi ∈ BL(Ho ⊗Hi) through its action on half of an unnormalised

maximally-entangled state Ψ :=
∑di
ij |ii〉〈jj| ∈ BL(Hi ⊗Hi) as follows

Loi := L⊗ I(Ψ). (3.12)

See Fig. 3.6 for a graphical representation. Note that we consistently use upper-case

Roman calligraphic letters to denote maps and their sans-serif variant to denote their

corresponding representation in terms of the CJI. We refer to the matrix Loi resulting

from Eq. (3.12) as the Choi operator associated to L.

The action of the map L on an arbitrary element of its input space ηi ∈ BL(Hi) can

be expressed in terms of its Choi operator Loi via

L(ηi) = tri

[(
1o ⊗ ηT

i

)
Loi

]
, (3.13)

where 1o :=
∑do
i |i〉〈i| ∈ BL(Ho) is the identity operator on the output Hilbert space

and we slightly abuse notation by writing tri [ r] := trHi [ r]. The validity of Eq. (3.13)

can be shown by direct insertion of Eq. (3.12) as follows
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tri

[
(1o ⊗ ηi)

TLoi

]
= tri

[(
1o ⊗ ηT

i

)
L⊗ I(Ψ)

]
(3.14)

=
di∑
ij

tri

[(
1o ⊗ ηT

i

)
L(|i〉〈j|)⊗ |i〉〈j|

]

=
di∑
ijk

L(|i〉〈j|)〈k|ηT
i |i〉〈j|k〉 =

di∑
ij

L(|i〉〈j|)〈j|ηT
i |i〉

=
di∑
ij

L(|i〉〈j|)ηiji = L

 di∑
ij

ηiji |i〉〈j|

 = L(ηi),

where the final line of equalities holds by the linearity of L and the decomposition of an

arbitrary element of BL(Hi) as ηi =
∑di
ij η

ij
i |i〉〈j|.

Figure 3.6: CJI of a linear map. Any
linear map L : Hi → Ho can be rep-
resented as a bipartite operator Loi ∈
BL(Ho ⊗Hi) through its action on half
of a maximally entangled state Ψ.

While the CJI holds for linear maps in gen-

eral, for the types of evolution that are physi-

cally meaningful in quantum theory, Choi op-

erators have particularly nice properties.5 Con-

sider a CPTP map C : BL(Hi) → BL(Ho),

where again, for generality, we allow the input

and output systems of the map to be distinct.

Complete-positivity and trace-preservation for

the quantum channel C translate into the fol-

lowing properties of its Choi operator Coi

1. Complete-positivity : Coi ≥ 0. (3.15)

2. Trace-preservation : tro [Coi] = 1i.

Proof. 1. Clearly, a CP map C corresponds to a positive semidefinite Choi operator

Coi ≥ 0 by definition. Any Hermitian,6 positive semidefinite operator admits a singular-

value eigendecomposition Coi =
∑doi
α=1 λα|α〉〈α| with each λα ≥ 0 and doi := dodi. The

action of C on an arbitrary state ρi ∈ BL(HSi ) can then be written as

C(ρi) = tri

[(
1o ⊗ ρT

i

)
Coi

]
(3.16)

= tri

(1o ⊗ ρT
i

) dio∑
α=1

λα|α〉〈α|

 =
dio∑
α=1

λα

di∑
ij

〈i|α〉〈j|ρT
i |i〉〈α|j〉

5 Indeed, it turns out that the Choi representation of a quantum dynamical map is equivalent to the
B-form introduced in Ref. [131] for precisely this reason.

6 It is straightforward to show that the Hermiticity-preservation property of the dynamical map (which
is implied by the CP condition) leads to an Hermitian Choi operator.
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=
dio∑
α=1

 di∑
i

√
λα〈i|α〉〈i|

 ρi

 di∑
j

√
λα|j〉〈α|j〉

 =:
dio∑
α=1

KαρiK
†
α,

where we have introduced the orthonormal basis vectors of the input space {|i〉}, {|j〉}

to perform the partial trace explicitly, made use of the non-negativity of the eigenvalues

to write a unique square-root, and each the Kα are do × di matrices (since 〈i|α〉 ∈

BL(Ho)). The expression of the dynamical map derived above is known as the Kraus or

operator-sum representation, with each Kα known as the Kraus operator of the map. A

fundamental result given in Ref. [132] states that a map is CP iff it can be written in

the Kraus form above, concluding the proof.

Proof. 2. A TP map C satisfies tr [C(ρi)] = tr [ρi] ∀ ρi ∈ BL(Hi). Writing this out

explicitly in terms of the Choi operator Coi, we have

tr [C(ρi)] = tro

[
tri

[(
1o ⊗ ρT

i

)
Coi

]]
= tri

[
ρT

i tro [Coi]
]
= tr [ρi] , (3.17)

which holds true for all ρi iff tro [Coi] = 1o.

The set of physically allowable CPTP maps are therefore equivalent to bipartite opera-

tors Coi ∈ BL(Ho ⊗Hi) satisfying the conditions outlined in Eq. (3.15). A few remarks

are in order.

i) It is clear from the trace-preservation property that tr [Coi] = di. Since the Choi op-

erator of a CPTP channel must also be positive semidefinite, it can therefore be regarded

as a supernormalised quantum state. That is, any such Choi operator lies in the convex

cone of non-negative bounded linear operators of the joint input-output Hilbert space.

More precisely, the set of Choi operators of CPTP maps corresponds to the intersection

of the cone of positive semidefinite operators Aoi ≥ 0 with the hyperplane of those that

satisfy tro [Aoi] = 1i.

ii) Whilst all CPTP maps can be uniquely identified with a (potentially supernor-

malised) density operator, not all states in BL(Ho ⊗Hi) represent a CPTP evolution,

since, although they are positive semidefinite, a generic quantum state does not neces-

sarily satisfy the additional trace-preservation constraint.

iii) A general CP map corresponds to a positive semidefinite Choi operator that

does not necessarily satisfy the second property in Eq. (3.15), but instead must sat-

isfy tro [Coi] ≤ 1i.

iv) Lastly, through the CJI we can think of states and effects as the Choi operators

of CP maps with trivial input and output spaces respectively. States can be considered

as the Choi operator of a CPTP map R : R → BL(Ho), and the normalisation of the

67



quantum stochastic processes

state tro [ρ] = 1 can be understood as a trace-preservation condition. In this sense,

all normalised quantum states are TP, which is intuitive since they can be prepared

deterministically. Effects E (x) : BL(Ho) → R map quantum states to real numbers

(probabilities) and in this sense positivity of effects is equivalent to complete-positivity,

since the output space is trivial.7 The action of an effect on a quantum state is written

in terms of their Choi operators as E (x)(ρ) = tr
[
ρTΠ(x)

]
= tr

[
Π(x)Tρ

]
, which unsur-

prisingly gives the Born rule (see Eq. (2.31)). In contrast to the case for states, the fact

that the output space of effects is trivial implies that there is only one trace-preserving

effect, namely the trace map E(ρ) = tr [ρ] whose Choi operator is the identity matrix 1

(see Fig. 3.7).

Figure 3.7: The unique trace-
preserving effect. The only trace-
preserving effect is the trace map,
corresponding to an identity Choi op-
erator 1. To abide by traditional no-
tation, we depict this with a slash.

As a final brief example, note that we can write

the tomographic representation of a quantum chan-

nel given in Eq. (2.41) in terms of the dual objects

to the set of input spanning states, {D̂(i)
i }, and the

corresponding output states, {σ̂(i)o }, as follows

Coi =
∑
i

σ̂(i)o ⊗ D̂(i)∗
i , (3.18)

where ( r)∗ denotes complex conjugation. The va-

lidity of this construction can be seen directly by

insertion

C(ρi) = tri

[(
1o ⊗ ρT

i

)
Coi

]
= tri

[(
1o ⊗ ρT

i

)∑
i

σ̂(i)o ⊗ D̂(i)∗
i

]
(3.19)

=
∑
i

σ̂(i)o tr
[
ρT

i D̂(i)∗
i

]
=
∑
i

σ̂(i)o tr
[
D̂(i)†

i ρi

]
.

3.2.2 Choi Representation of Process Tensor

We now employ the CJI to explicitly represent process tensors. Recall that its action is

to take sequences of CP maps as its input and map them to some final output density

operator. For generality, we allow the input and output systems of the CP maps to be

distinct, as too the final output of the process tensor. With the CJI, we can represent

any CP map Oj : BL(Hji) → BL(Hjo) as a Choi operator Oj ∈ BL(Hjo ⊗Hji). The

process tensor acts on sequences of these as Tn:1 : BL(
⊗n−1
j=1 Hjo ⊗Hji)→ BL(Hni). As

for the case of quantum channels, we can invoke the CJI to represent the process tensor

as a positive matrix on the correct space, that satisfies certain trace conditions.
7 Note that the input space of the effect is labelled with o, in line with previous notation.
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Figure 3.8: CJI for the process tensor. The multi-linear process tensor map, Tn:1, can be repre-
sented as a many-body Choi operator, Υn:1 through the CJI. At each timestep tj ∈ {t1, . . . , tn},
half of an (unnormalised) maximally entangled state, ΨAjBj , is swapped into the process (blue
crosses). The resulting 2n− 1 body quantum state Υn:1 contains equivalent information to the
multi-linear map Tn:1, with temporal correlations of the process being mapped to spatial ones
between subsystems of its Choi operator. This is depicted by the brackets on the right, which
signify the degrees of freedom of Υn:1 that correspond to different times of the process tj .

In detail, the many-body Choi operator corresponding to the process tensor is de-

picted in Fig. 3.8 and can be physically prepared (up to normalisation) as follows. Begin

with 2(n− 1) ancillary systems {Aj ,Bj} of appropriate dimension dji := dim(Hji) in

unnormalised maximally entangled pairs, {ΨAjBj}, where each ΨAjBj =
∑dj
αβ |αα〉〈ββ|

with dj := djodji . At each timestep of the process, half of each pair is swapped with the

system state through GSAjj . The resultant d2n−1 dimensional system-ancillary operator

Υn:1 ∈ BL(Hni
⊗n−1
j=1 Hjo ⊗Hji) encodes equivalent information as the temporal map

Tn:1, and can be explicitly written as8

Υn:1 := trE
[
USEn:n−1G

SAn−1
n−1 . . .USE2:1 G

SA1
1

(
ΨAn−1Bn−1 ⊗ . . .⊗ΨA1B1 ⊗ ρSE1i

)]
.

(3.20)

It is straightforward to show that the action of the process tensor—in clear analogy to

the action of quantum maps in terms of their Choi operators—on a arbitrary sequences

of CP maps can be expressed in terms of both the Choi operator of the process tensor

itself and the maps on which it acts as follows

8 Due to the importance of the process tensor as the fundamental object in the operational view of open
quantum dynamics, we denote its Choi operator by the special symbol Υ instead of a sans serif letter.
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Tn:1(On−1, . . . ,O1) = trn−1:1

1ni

n−1⊗
j=1

OT
joji

Υn:1

 . (3.21)

More generally still, one could apply a sequence of interrogations correlated across

timesteps, e.g., by sending forward the ancilla that was used to implement an earlier

operation. The corresponding correlated map On−1:1 is a similar object to the process

tensor (in a way that we will soon make explicit) and represents the most general kind

of transformation one could implement over a sequence of timesteps. The action of the

process tensor on such a correlated sequence of operations is, again, given by

Tn:1(On−1:1) = trn−1:1
[(
1ni ⊗OT

n−1:1

)
Υn:1

]
. (3.22)

3.2.3 Properties of the Process Tensor

Since the process tensor acts on sequences of CP maps it makes no sense to speak

of complete-positivity and trace-preservation in the original sense; however, from its

definition, meaningful extensions of these concepts are satisfied [28, 50]. The following

properties follow directly from the definition of the process tensor, but can also be

motivated on more axiomatic grounds [28–30].

Complete-positivity means that if the process tensor acts on some sequence of

CP operations OSA1
1 , . . . ,OSAn−1

n−1 , where each operation OSAjj : BL(HSji ⊗ HAjji ) →

BL(HSjo ⊗HAjjo ) acts on the system and some ancilla, the resulting transformation T Sn:1⊗

IAn:1(O
SAn−1
n−1 , . . . ,OSA1

1 ) : BL(HAn−1
n−1i ⊗ . . .⊗HA1

1i ) → BL(HSni ⊗HAn−1
n−1o ⊗ . . .⊗HA1

1o ) is

a CP map, no matter the size of the ancillary spaces; this is represented graphically

in Fig. 3.9 for the superchannel. As a special case, this implies that the output of the

process tensor, for any physically allowed transformations the experimenter might apply,

is always a valid quantum state (up to normalisation). The trace preservation property

of quantum channels on the level of process tensors translates to the statement that

for any overall deterministic sequences of operations applied, the output quantum state

must have unit trace.

These properties are encoded naturally in the Choi operator of the process tensor as

1. Complete-positivity : Υn:1 ≥ 0. (3.23)

2. Trace-preservation : trji [Υj:1] = 1j−1o ⊗Υj−1:1 ∀ t1 < tj ≤ tn.

Importantly, each Υj−1:1 in the second condition is a proper process tensor describing

the process on the timesteps t1, . . . , tj−1 preceding each tj . Thus the second property
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encapsulates an entire hierarchy of trace conditions, which implies that the trace of

a process tensor is equal to the product of the dimension of the system on all of its

output Hilbert spaces: do
n:1 := d1o × . . .× dno . Clearly, the process tensor constructed

via Eq. (3.20) satisfies both properties; conversely, every Choi operator satisfying them

corresponds to a fixed open dynamics and thereby represents a valid process [50].

Figure 3.9: Complete-positivity for the su-
perchannel. Complete-positivity for the su-
perchannel T S2:1 means that when acting on
part of a CP map OSA1 , the resulting map
M : BL(HA1

1i ) → BL(HS2o ⊗HA1
1o ) is a CP

map, independent of the size of the ancilla.

The CJI for the process tensor maps

temporal correlations into spatial ones;

thus, although almost all of the results to

follow are presented in terms of the Choi

operators of processes, these statements

fundamentally address temporal proper-

ties of processes, such as correlations be-

tween observables measured over time on

some evolving quantum system. As al-

ready encountered for the case of CPTP

maps, all processes can be represented in

this way as supernormalised many-body quantum states, but not all such quantum

states represent valid processes [37]. The set of possible temporal correlations are re-

stricted, compared to their spatial counterparts, because the process tensor must satisfy

the above hierarchy of trace-conditions in order that it can be dilated to a fixed system-

environment model [28–30, 50].

The trace-preservation property on the process tensor can equivalently be viewed as

a statement about causality. It is straightforward to show that if the hierarchy of trace

conditions in Eq. (3.23) is satisfied, any later choice of instruments cannot influence

earlier measurement statistics, and vice versa. This condition can be relaxed without

leading to paradoxical situations [30, 32], but all process tensors naturally satisfy causal-

ity. We will only sometimes encounter non-ordered objects later on in this thesis; these

are obtained from post-selection, which does not enforce causal order [30, 35, 39, 135].

From the vantage point provided by the Choi representation of processes and their

properties, we now briefly reconsider from a more formal perspective a number of key

concepts that have previously been loosely discussed. This will allow us to concretely

calculate the joint probability distributions that are encoded in the process tensor with

respect to any interrogating instrument sequence by way of a generalised spatio-temporal

Born rule defined on the respective Choi operators.
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3.3 spatio-temporal born rule

Quantum theory is, at its core, about measurement statistics observed through experi-

ment. Here we will take a closer look at POVM and instruments to make the connection

between quantum stochastic processes and classical stochastic processes perspicuous.

It is well-known that quantum mechanics cannot be adequately described within

standard probability theory due to inherently non-classical features, such as non-

commutativity and contextuality. As discussed, a measurement instrument (i. e., a

POVM) is a set of such operators J = {Π(x)T} that sum to the identity
∑
x Π(x)T = 1.

Here, each operator corresponds to an outcome, with the summation condition ensuring

that some outcome occurs with certainty. With this, the probability for a measurement

outcome to be realised for a given quantum state ρ are computed via the Born rule

P(x|J ) = tr
[
Π(x)Tρ

]
. (3.24)

Figure 3.10: Graphical representation of
a POVM. A POVM is a collection of posi-
tive operators J = {Π(x)T} that sum to
the identity operator

∑
x Π(x)T = 1, shown

in panel a). That the overall implementa-
tion is TP allows us to interpret the effect
of each POVM element on a state, i. e., the
outputs of the Born rule, as probabilities,
as per panel b).

In the above equation, ρ is some fixed,

overall deterministic object (i. e., unit-

trace quantum state) that contains all of

the statistical information about the sys-

tem of interest. This information can be

deduced by means of the measurement

instrument J , where each of the possi-

ble outcomes corresponds to a (positive)

POVM element, as depicted in Fig. 3.10.

Here, the choice of measurement corre-

sponds to what is controllable to an ex-

perimenter, and the state upon which it

is implemented constitutes that which is

uncontrollable. In the language of a gener-

alised probability theory, intuitively, the

measurement instrument plays the role of providing a σ-algebra on the event space,

with each constituent POVM element corresponding to an event.9

However, the Born rule, in its original form, does not properly assign joint probabili-

ties to consecutive events [34]; in order to study temporal processes, one must track the

transformations of the system over time upon observation of outcomes, which cannot be

9 Indeed, this is how the POVM got its name.
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accounted for by POVM. As briefly discussed previously, in the temporal setting individ-

ual conditionally-realised events are elevated to CP transformations, and a collection of

these that ensures some transformation occurs overall constitutes an instrument, which

plays the analogous role to a POVM, as illustrated in Fig. 3.11 and formally defined as

follows.

Definition 3.2 (Instrument [6, 26]). An instrument, J , is a collection of physical trans-

formations that overall correspond to a deterministic transformation. Concretely, an

instrument is represented by a set of CP maps, {O(x)}, that sum to a CPTP map, i. e.,

OJ :=
∑
x O(x) satisfies both conditions in Eq. (3.15).

Intuitively, the CP operation O(x) describes how the state of the system is changed

upon measuring outcome x, given that the instrument J was used to interrogate the

system. The concept of an instrument captures the most general overall deterministic

transformation allowable within quantum theory that an experimenter could invoke at

some point in time, including instruments with only a single deterministic ‘outcome’

corresponding to, e. g., a unitary transformation. It is clear that the summation con-

straint imposed on POVMs is a special case of an instrument with a trivial output space,

since the only trace-preserving effect is the identity operator. In contrast to the case of

POVMs, however, the summation constraint on an instrument is non-unique; different

instruments can correspond to different (unconditional) CPTP transformations.

We have already seen that the most general two-time quantum experiment is described

by a superchannel S2i1o1i ∈ BL(H2i ⊗H1o ⊗H1i). Consider then an experimenter apply-

ing an instrument J1 := {O(x1)
1o1i} followed by a POVM on the final output J2 := {Π(x2)

2i }

(since the process ends at t2, the post-measurement state is irrelevant and a POVM suf-

fices calculate all statistics). For any specific realisation of the preparation procedure

applied, the final output state is subnormalised with respect to the probability of the

said preparation occurring and is given by

ρ
(x1)
2i = tr1

[(
12i ⊗O(x1)T

1o1i

)
S2i1o1i

]
. (3.25)

The probability for implementation of a particular CP map at t1 and the realisation of a

measurement outcome at t2 to occur is computed by applying the POVM on the output

state via the standard Born rule, giving the joint statistics (see Eq. (3.11))

P2:1(x2,x1|J2,J1) = tr
[
Π(x2)T

2i ρ
(x1)
2i

]
= tr2i

[
Π(x2)T

2i tr1
[(
12i ⊗O(x1)T

1o1i

)
S2i1o1i

]]
= tr

[(
Π(x2)T

2i ⊗O(x1)T
1o1i

)
S2i1o1i

]
. (3.26)
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Figure 3.11: Graphical representation of an instrument. An instrument generalises the notion
of a POVM. An instrument is a collection of CP maps J = {O(x)} that sum to a CPTP map,
shown in panel a). The trace-preservation constraint on CPTP maps entails that tracing over the
output space of the map yields an identity operator effect, shown in panel b). Although in each
run of the experiment a specific transformation is only conditionally realised O(x)(ρ) = σ(x), as
shown in panel c), the summation constraint ensures that overall the instrument transforms the
state into a normalised one σ =

∑
x σ

(x).

It is instructive to compare the structure of Eq. (3.26) with that of the standard Born

rule in Eq. (3.24). In the two-time scenario, it is the superchannel that now plays the

role of the density operator, containing the information about all the probabilities for

all the ways in which a two-time process can be interrogated. In this sense, Eq. (3.25)

constitutes a spatio-temporal generalisation of the Born rule, at least for uncorrelated

probing operations.

In order to describe more general scenarios, we must first extend the definition of

instruments to testers, after which we will provide a generalised Born rule that allows

calculation of all multi-time probabilities. In the setting envisaged, an experimenter

could apply a sequence of instruments that are correlated across timesteps, e. g., by

sending forward the ancilla that was used to implement an earlier operation. Since the

experimenter does something with overall certainty, the (potentially correlated) CP op-

eration sequence they implement corresponds to a realisation or trajectory of a process

which, when summed over all possible outcomes, yields an overall deterministic trans-

formation. In the previous subsection, we saw that any such multi-time process must

have the structure of a process tensor, i. e., satisfy both constraints of Eq. (3.23). We

therefore introduce the following definition that generalises the notion of an instrument

to the multi-time setting where operations are permitted to be temporally correlated,

depicted in Fig. 3.12.
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Definition 3.3 (Tester [30] / Instrument sequence). An n-tester or instrument sequence,

Jn:1, is a collection of physical transformations, which may be temporally correlated

across n timesteps, that overall correspond to a deterministic transformation. Concretely,

a tester is represented by a set of multi-time CP maps defined on n timesteps, i. e., posi-

tive Choi operators {O(xn:1)
n:1 }, that sum to a process tensor. That is, OJn:1

n:1 :=
∑
xn:1 O(xn:1)

n:1

satisfies both conditions in Eq. (3.23).

The individual tester elements need not satisfy the trace condition in Eq. (3.23) and

represent the most general probing apparata one could implement over a sequence of

timesteps. To summarise, in decreasing levels of generality, a tester element is to a tester

what a CP map is to an instrument what a POVM element is to a POVM. As an example,

the (uncorrelated) instrument sequence considered in Eq. (3.26) is a 2-tester, J2:1 :=

{Π(x2)
2 ⊗O(x1)

1 }, since
∑
x2x1 Π(x2)

2 ⊗O(x1)
1 = ΠJ2

2 ⊗OJ1
1 = 12 ⊗OJ1

1 , with OJ1
1 CPTP

by assumption; thus, the overall transformation implemented by this 2-tester is a two-

step process comprising a CPTP transformation followed by a measurement. Here, the

fact that the measurement instrument implemented does not depend on the realisation

of the preparation—i. e., that the respective probing instruments are independent—is

reflected in the tensor product structure of each tester element.

Although the mathematical structure of the process itself and the tester used to probe

it are identical, we emphasise the distinction between the underlying, uncontrollable

process and the controllable tester. Lastly, to keep the language consistent with that

which is most commonly employed throughout the community, we will often be lax and

simply use the term ‘instrument’ to dub both instruments and testers.

In a straightforward generalisation of Eq. (3.26) to the case where a process, Υn:1,

is interrogated over n timesteps via a tester Jn:1 = {O(xn:1)
n:1 }, one has the following

spatio-temporal Born rule [34]

Pn:1(xn:1|Jn:1) = tr
[
O(xn:1)T
n:1 Υn:1

]
. (3.27)

The above equation is nothing more than than a restatement of Eq. (3.11) in terms

of solely the Choi operators of the process tensor and tester elements applied. This is

perhaps the most pivotal expression in this thesis, concretely relating the description

of a given process to the statistics observed with respect to any meaningful probing

schema. Although we have arrived at it from an open systems perspective, Eq. (3.27)

can be derived on axiomatic grounds via a generalisation of Gleason’s theorem applied

to the process matrix [34].
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Figure 3.12: Graphical representation of a tester. A tester generalises the notion of an instru-
ment to the case where the transformations may be correlated in time. An n-tester is a collection
of positive Choi operators Jn:1 = {O(x)

n:1} that sum to a multi-time CPTP transformation, i. e.,
a process tensor, shown in panel a). The summation condition ensures some transformation
happens with certainty and entails a hierarchy of constraints on the structure of the process
tensor, illustrated in panel b). Given a process tensor Υn:1, upon applying any sequence of
operations O(x)

n−1:1 that constitute an (n− 1)-tester, some probabilistically-realised output state
results σ(xn−1:1)

n . Overall, a unit-trace state σn =
∑
xn−1:1

σ
(xn−1:1)
n is the final output.

In clear analogy to Eq. (3.24), here tester elements correspond to a realisation of the

process, i. e., a sequence of potentially correlated events across the specified timesteps,

and the tester itself plays an analogous role to a choice of σ-algebra over the space of

possible trajectories. The spatio-temporal Born rule therefore provides the mapping to

probabilities for interrogations applied to some fixed process tensor. Thus, the process

tensor generalises the notion of the density operator to the temporal setting inasmuch as

it contains sufficient information to deduce all possible joint probabilities corresponding

to the realisation of any valid instrument sequence applied.

As mentioned previously, the system density operator at each timestep can be ob-

tained from the process tensor, and hence the latter contains all existing descriptors
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of open quantum processes as special cases. However, importantly, the process tensor

additionally contains all of the multi-time information relevant to describing temporal

correlations exhibited in any possible joint probability distribution that an experimenter

might deduce. In this sense, quantum stochastic processes are described exactly like clas-

sical ones, as mappings from sequences of outcomes to probabilities, but with the crucial

difference, that in quantum mechanics the concept of an instrument has to be inserted

‘in the middle’ to account for the possible invasiveness of measurements.

3.4 markovian quantum processes

With our ability to calculate joint statistics for quantum stochastic processes by way

of the process tensor formalism and the generalised spatio-temporal Born rule, we now

have an operational way to characterise Markovianity in quantum processes. Marko-

vianity is, at its core, a multi-time statement regarding the conditional independence

between the statistics observed at any given point in time and those of its entire history,

given knowledge of its most recent state. We begin this section by considering how to

meaningfully condition in quantum theory.

Since probabilities in quantum theory can only be calculated with respect to choices

of probing instruments, a seemingly natural generalisation of Def. 2.4 is to demand that

the following holds true for all times tk on which a quantum stochastic process is defined

Pk(xk|Jk;xk−1,Jk−1; . . . ;x1,J1) = Pk(xk|Jk;xk−1,Jk−1). (3.28)

Here Pk(xk|Jk;xk−1,Jk−1; . . . ;x1,J1) denotes the probability to measure xk given that

the outcomes xk−1, . . . ,x1 were previously observed, with the instruments Jk, . . . ,J1

used to probe the dynamics. Note that on the right hand side, the probability conditioned

on only the most recent outcome can only be meaningfully calculated with respect to

the overall instruments applied throughout the prior history, Jk−2, . . . ,J1. Nonetheless,

requiring Eq. (3.28) to hold for arbitrary sequences of historic instruments seems to

provide a sensible notion of Markovianity, since it guarantees conditional independence

of observed statistics. However, as we will now see, a subtlety arises when attempting

to condition on the knowledge of previous measurement outcomes in quantum theory.

Given a quantum stochastic process, Υn:1, we seek to calculate the conditional statis-

tics above. Suppose the probing instruments chosen at each timestep are Jj = {O
(xj)
j }.

We must first calculate the joint statistics up to some specified time tk ∈ {t1, . . . , tn}. By

causality, the choice of future instruments Jj for tj > tk cannot influence the statistics
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measured up until tk, and it follows that the joint statistics can be computed from the

reduced process tensor Υk:1 = trn:ko [Υn:1] as follows

Pk:1(xk, . . . ,x1|Jk, . . . ,J1) = tr
[(

Π(xk)
k ⊗O(xk−1)

k−1 ⊗ . . .⊗O(x1)
1

)T
Υk:1

]
, (3.29)

where we specify the POVM at tk as Jk = {Π
(xk)
k }.

In order to condition on all of the previously observed statistics and calculate the l.h.s

of Eq. (3.28), one simply wishes to divide the probabilities in Eq. (3.29) by those of the

previous realisations

Pk−1:1(xk−1, . . . ,x1|Jk−1, . . . ,J1) = tr
[(

O(xk−1)
k−1 ⊗ . . .⊗O(x1)

1

)T
Υk−1:1

]
. (3.30)

However, here we immediately run into the problem that O(xk−1)
k−1 is an operator on

BL(Hk−1o ⊗Hk−1i), whereas the reduced process tensor Υk−1:1 only meaningfully pro-

vides information up to tk−1i , since trki [Υk:1] = 1k−1o ⊗Υk−1:1 (see Eq. (3.23)). Con-

tinuing from Eq. (3.30), we therefore have

Pk−1:1(xk−1, . . . ,x1|Jk−1, . . . ,J1) (3.31)

= tr
[
trk−1o

[
O(xk−1)T
k−1

]
⊗
(
O(xk−2)
k−2 ⊗ . . .⊗O(x1)

1

)T
Υk−1:1

]
.

The operator trk−1o

[
O(xk−1)T
k−1

]
necessarily does not capture any information about the

output state of the interrogation at tk−1, which could crucially impact the measurement

outcomes observed at tk. For instance, one can envisage situations where the experi-

menter performs a measurement {Π(rk−1)
k−1i } and then prepares one of a set of (subnor-

malised) states with some outcome-dependant probability {ρ(sk−1,rk−1)
k−1o } to feed forward,

implementing the instrument Jk−1 = {Π(rk−1)
k−1i ⊗ ρ(sk−1,rk−1)

k−1o }. Here, Eq. (3.29) would be

sensitive to the choices of prepared states, whereas Eq. (3.31) would not. Thus, to divide

the former by the latter would certainly not provide a meaningful notion of conditioning.

Indeed, conditioning necessarily breaks the information flow between past and future,

while a generic operation need not. To ameliorate this issue we require the concept of a

causal break, which is a particular type of instrument that clearly separates information

about the inputs and outputs of its transformations. Intuitively, it corresponds to the

scenario where an experimenter makes a measurement and then—in contrast to the

example above—prepares a fresh, independent known state. A causal break instrument

Jj = {B
(xj)
j } comprises elements (see Fig. 3.13)

B(xj)
j := ρ

(sj)
jo ⊗Π(rj)

ji , (3.32)
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where the labels xj of the overall CP maps in the causal break instrument are split into

those labelling the measurement outcome, rj , and the subsequent independent reprepara-

tion, sj . Importantly, the Choi operators on the input and output spaces are completely

uncorrelated; more generally, any operation whose output is independent of its input in

the sense above constitutes a causal break.

Figure 3.13: Causal break. A causal break at
time tj is a POVM {Π(rj )

ji } followed by an in-
dependent repreparation into one of a known
set of states {ρ(sj )jo }. This breaks any informa-
tion/memory flow on the level of the system.

Returning our consideration to the cal-

culation of conditional statistics, we see

that demanding the most recent instru-

ment applied at time tk−1 to be a causal

break immediately resolves the problem,

allowing us to meaningfully condition on

prior knowledge obtained through prob-

ing a quantum stochastic process. Now,

Eq. (3.31) reads

Pk−1:1(sk−1, rk−1, . . . ,x1|Jk−1, . . . ,J1)

= P(sk−1|Jk−1) tr
[(

Π(rk−1)
k−1 ⊗ . . .⊗O(x1)

1

)T
Υk−1:1

]
= tr

[(
ρ
(sk−1)
k−1o ⊗Π(rk−1)

k−1 ⊗ . . .⊗O(x1)
1

)T
Υk−1:1

]
, (3.33)

where P(sk−1|Jk−1) = tr
[
ρ
(sk−1)
k−1o

]
is simply the probability that the experimenter

chooses to prepare the particular state ρ(sk−1)
k−1o , which is independent of the process.

Similarly, Eq. (3.29) reads

Pk:1(xk, sk−1, rk−1, . . . ,x1|Jk, . . . ,J1) (3.34)

= tr
[(

Π(xk)
k ⊗ ρ(sk−1)

k−1o ⊗Π(rk−1)
k−1i ⊗ . . .⊗O(x1)

1

)T
Υk:1

]
,

By breaking the flow of information on the level of the system, a causal break allows

us to compare like with like for each run of the experiment and therefore meaningfully

condition in the quantum setting. Dividing Eq. (3.34) by Eq. (3.33) gives the probability

to observe outcome xk given knowledge of all previous outcomes for the instruments

chosen, i. e., the conditional probability Pk(xk|Jk; sk−1, rk−1,Jk−1, . . . ,x1,J1).

Intuitively, conceptual introduction of the causal break is necessary to demarcate those

memory effects that arise from the process, i. e., are the manifestation of environmen-

tal influence, rather than as a result of the applied control operations feeding-forward

information about the system’s past. As the fresh preparation is independent of the

previous measurement outcome, a causal break ensures that no temporal correlations
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are transmitted through the system itself, breaking the causal link on the level of the

system between the past ti ≤ tk−1i and the future tj ≥ tk−1o . By the very nature of

the causal break, the system itself cannot possibly transmit information beyond time

tk−1 concerning the measurement outcome associated to Π(rk−1)
k−1 or the operations im-

plemented throughout its earlier history. In light of this, it is sensible to slightly revise

Eq. (3.28) to demand that a Markovian quantum process should display statistics that

are conditionally independent of all historic outcomes and their instruments, including

the measurement outcome rk−1 of the causal break realised at tk−1i , given knowledge of

the probabilities with which the output states of the causal break are prepared.

Definition 3.4 (Quantum Markov condition [49]). Consider a causal break Jk−1 at

timestep tk−1 in which the measurement outcome is labelled by rk−1 and the prepared

state by sk−1. A quantum stochastic process is Markovian when the statistics observed

with respect to an arbitrary measurement instrument Jk at tk are conditionally inde-

pendent of all historic outcomes rk−1,xk−2, . . . ,x1 for any possible historic instruments

Jk−2, . . . ,J1, given knowledge of only the state prepared during the causal break:10

Pk(xk|Jk; sk−1, rk−1,Jk−1; . . . ;x1,J1) = Pk(xk|Jk; sk−1,Jk−1). (3.35)

The definition above lends itself to an operational criterion for classifying Markovian

quantum processes: a quantum process is non-Markovian iff there exists at least two

different historic testers, Jk−1i :1 = {O(xk−1i :1)

k−1i :1 } and J
′
k−1i:1 = {O

′(x′
k−1i :1)

k−1i:1 } such that, for

some choice of preparation in the causal break, the density operator of the system at tk
is different, implying the violation of Eq. (3.35). This provides a valid and unambiguous

method to witness memory effects. Conversely, fixing the preparation in the causal break

and finding the subsequent density operator to be constant for all linearly independent

historic tester elements implies that the process is Markovian.

Although we have made extensive use of the notion of causal breaks to provide an op-

erational picture, the question of whether or not a process is Markovian does not depend

on it. Indeed, Def. 3.4 directly leads to an unambiguous constraint on the structure of

the process tensor itself, which is depicted in Fig. 3.14.

10 Interestingly, the same definition was introduced in Ref. [17], at roughly the same time as ours, using
the process matrix formalism in the context of quantum causal modelling.
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Figure 3.14: Markovian process tensor. The Choi operator of a Markovian process tensor is a
tensor product of CPTP maps, representing uncorrelated evolution between timesteps.

Theorem 3.5 (Markovian quantum process). A process tensor represents a Markovian

process iff it has the following tensor product structure:

ΥMarkov
n:1 = Cnin−1o ⊗ . . .⊗ C2i1o ⊗ ρ1i , (3.36)

where each Cjij−1o ∈ BL(Hji ⊗Hj−1o) is the Choi operator of a CPTP map and ρ1i ∈

BL(H1i) is the initial average system state.

Proof. The l.h.s of Eq. (3.35) is calculated as

trk:1

[(
Π(xk)
k ⊗ ρ(sk−1)

k−1o ⊗Π(rk−1)
k−1i ⊗ . . .⊗O(x1)

1

)T
Υk:1

]
trk−1:1

[(
ρ
(sk−1)
k−1o ⊗Π(rk−1)

k−1i ⊗ . . .⊗O(x1)
1

)T
Υk−1:1

] (3.37)

=
trk:1

[(
Π(xk)
k ⊗ ρ(sk−1)

k−1o ⊗Π(rk−1)
k−1i ⊗ . . .⊗O(x1)

1

)T
Υk:1

]
P(sk−1|Jk−1) trk−1:1

[(
Π(rk−1)
k−1i ⊗ . . .⊗O(x1)

1

)T
Υk−1:1

]

=
trk:1

[(
Π(xk)
k ⊗ ρ(sk−1)

k−1o ⊗Π(rk−1)
k−1i ⊗ . . .⊗O(x1)

1

)T
Υk:1

]
P(sk−1|Jk−1) Pk−1:1(rk−1, . . . ,x1|Jk−1, . . . ,J1)

.

The r.h.s cannot be calculated readily by the spatio-temporal Born rule without first

considering some historic instruments Jk−2, . . . ,J1. At all of these timesteps, we use

their associated CPTP maps to calculate the probabilities; these are arbitrary and will

eventually be varied freely to prove the result. Note also that summing over all of the

most recent measurement outcomes, rk−1, leads to the identity operator on the input

space, 1k−1i . We thus have

trk:1

[(
Π(xk)
k ⊗ ρ(sk−1)

k−1o ⊗ 1k−1i ⊗ . . .⊗OJ1
1

)T
Υk:1

]
trk−1:1

[(
ρ
(sk−1)
k−1o ⊗ 1k−1i ⊗ . . .⊗OJ1

1

)T
Υk−1:1

] (3.38)

=
trk:1

[(
Π(xk)
k ⊗ ρ(sk−1)

k−1o ⊗ 1k−1i ⊗ . . .⊗OJ1
1

)T
Υk:1

]
P(sk−1|Jk−1)

.
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Comparing Eqs. (3.37) and (3.38) shows that for a Markovian process we have

trk:1

[(
Π(xk)
k ⊗ ρ(sk−1)

k−1o ⊗ 1k−1i ⊗ . . .⊗OJ1
1

)T
Υk:1

]
(3.39)

=
trk:1

[(
Π(xk)
k ⊗ ρ(sk−1)

k−1o ⊗Π(rk−1)
k−1i ⊗ . . .⊗O(x1)

1

)T
Υk:1

]
Pk−1:1(rk−1, . . . ,x1|Jk−1, . . . ,J1)

.

This is clearly satisfied by the Markov process tensor structure given in Eq. (3.36), as

can be seen by direct insertion. In the coming chapters, we will use similar arguments

to derive structural properties of processes with finite Markov order.

In the converse direction, recall that this condition must hold for arbitrary choices

of historical instruments. For any specific xk and sk−1, we can consider varying the

outcomes for a fixed sequence of historical instruments, leading to the r.h.s changing

but not the l.h.s; on the other hand, we can consider a fixed sequence of CP maps and

vary the overall instruments, leading to the l.h.s changing but not the r.h.s. The only

remaining way that Eq. (3.39) can be satisfied is if the process tensor itself splits as a

tensor product Cki:k−1o ⊗Υk−1i:1. That Cki:k−1o is a CPTP map follows directly from

the properties of the process tensor. Lastly, repeating the argument for all times tk on

which the process is described yields Eq. (3.36).

Through Theorem 3.5 we finally have an intrinsic characterisation of Markovian quan-

tum processes. Intuitively, the Choi operator of a Markovian process only displays cor-

relations between adjacent times, meaning that the only temporal correlations in the

process are those between preparations and the subsequent measurements at the next

timestep. This is analogous to the fact that Markovian process have non-trivial transition

probabilities between adjacent timesteps only. Because the process tensor description in-

cludes the system density operator at all timesteps, the strict condition of Def. 3.4

presents both a unification and generalisation of previous definitions of Markovianity

throughout the literature. For instance, this result confirms the well-known fact that

Markovian processes are divisible; however, the converse direction fails to hold, as divis-

ibility is not a strict enough criteria to force the process tensor into the required tensor

product structure [54].

Moreover, the process tensor formalism can be used to explicitly calculate any of the

measures of non-Markovianity introduced in the literature; several examples of memory

effects that are not detected by conventional approaches but are within our operational

framework are presented in the Supplemental Material of Ref. [49]. Indeed, from the

structure of Markovian processes in Eq. (3.36), it is straightforward to define a measure

that quantifies the amount of non-Markovianity, evaluated in terms of the distance
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between the Choi operator of the process at hand and the nearest Markovian Choi

operator with respect to any suitable distance metric, D [49], as

N(Υn:1) := min
ΥMarkov
n:1

D
(
Υn:1‖ΥMarkov

n:1

)
. (3.40)

For instance, the measure chosen could be in terms of the relative entropy, as we will

use in Subsection 6.1.2, or the Schatten 1-norm (trace distance), as used in Ref. [45] to

study the distinguishability between Markovian and non-Markovian processes.

To summarise the story so far, we have here shown how the process tensor formalism

naturally leads to a necessary and sufficient condition for a quantum process to be con-

sidered Markovian. This condition is stricter than those based on traditional approaches

since the process tensor accounts for potential multi-time memory effects. By shifting

to an operational description of stochastic processes, we have overcome the problem of

formalism that led many to believe that there could be no unique criteria of Markovian-

ity in open quantum dynamics. Indeed, the constraint on the structure of Markovian

processes provides an intrinsic characterisation of a memoryless process.

We finally have a clear picture of what it means for a quantum process to have memory.

As in the classical case, the description of generic processes grows rapidly in terms of

complexity with the length of the memory; fortunately for us, many processes found in

nature display an effectively finite-length memory. The remainder of this thesis presents

novel work pertaining to characterising, quantifying and exploiting by way of simulation

such finite memory processes.
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Part III

U N S P O K E N WO R D S

Not the weekend dance where you two-step to music you’ve heard before

and always know... but the Daily Dance with the wilder step, to a tune as

soundless as the eelgrass tune, to an echo of a song, or a song still unechoed.

— Ken Kesey, Sometimes a Great Notion.





4

MEMORY LENGTH

We have seen that for Markovian processes, once the state is known,

the future is independent from the past. A central obstacle in predicting

the future of a dynamical system is to understand how much of the sys-

tem’s past acts as a relevant influence, which crucially determines the resources required

for simulation. Although non-Markovianity is the rule rather than the exception when

it comes to stochastic processes [25], their characterisation is resource intensive, both

in the classical and quantum setting. Fortunately for us, in reality, even the most com-

plex processes have a finite effective range—that is, a cause can only noticeably affect

the future for a certain length of time—providing a natural notion of memory length,

formally captured by the concept of Markov order.

A process with finite Markov order allows for an efficient description compared to

the general non-Markovian case, as it only requires a portion of the history to optimally

predict the future. Indeed, the substantial reduction in modelling complexity that ensues

underpins the often-invoked higher-order Markov models to simulate non-Markovian

stochastic processes [58–60]. The motivation for understanding processes with finite

Markov order is thus two-fold: on the one hand, they exhibit genuine memory effects; on

the other, these effects are constrained in time, rendering their description tractable [25].

Akin to the joint probability distribution describing a generic classical stochastic pro-

cess, the description of a general quantum stochastic process has an exponentially in-

creasing complexity with respect to the length of history that must be retained, with

the added complication that all possible sequences of external interventions need to

be accounted for. This naturally begs the question that will be the central focus of the

present chapter: are there quantum processes with finite-length memory, and hence a sig-

nificantly reduced complexity? We have already seen that the process tensor formalism

naturally lends itself to a proper classification of Markovianity in the quantum regime;

the first line of pursuit here is a similar generalisation of Markov order.
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We will see that a reasonable and logically sound definition of Markov order for quan-

tum processes can be formulated in terms of a constraint on the structure of the pro-

cess tensor. However, in quantum mechanics, we have no choice here but to propose

an instrument-specific notion of Markov order. Intuitively, the prospective definition

implies that with respect to a given instrument sequence specified across ` timesteps

of the memory, any deducible statistics across the history and future timesteps (i. e.,

for arbitrary choices of history and future probing instruments) are guaranteed to be

conditionally independent for each realisation of the memory tester in question. The

logical consequence of this characterisation is that—perhaps unsurprisingly—quantum

processes with memory exhibit different memory effects when probed in different ways.

The aim of the present chapter is to precisely formulate and justify this notion of quan-

tum Markov order which formally captures such behaviour.

Following the introduction of this instrument-specific notion of quantumMarkov order,

we provide two crucial pieces of supporting evidence of its plausibility. Firstly, that

the definition reduces to the classical one in an appropriate fashion. Indeed, classical

Markov order is implicitly defined in an instrument-specific way—with respect to the

statistics deduced via sequences of sharp measurements. As soon as we allow for fuzzy

measurements that coarse-grain information—or, more broadly, any active experimental

interventions—the length of the memory depends on the instruments used to interrogate

the process at hand, just like in the quantum case.

Within quantum theory, however, there exist a much richer array of instruments that

an experimenter might apply to the system of interest than are available in the classical

world, including generalised measurements, unitary transformations, and temporally cor-

related sequences implemented via a genuinely quantum control (i. e., the most general

testers). The second key result of this chapter shows that demanding a quantum process

to have finite Markov order with respect to all possible instruments immediately triv-

ialises the theory into only admitting Markovian processes. This result, in turn, leads

to the realisation that any quantum process with memory has infinite Markov order

with respect to generic instrument sequences and therefore requires the complete de-

scription. This fact notwithstanding, for many practical purposes, such a comprehensive

understanding of the memory is often either unachievable—due to experimental or com-

putational limitations—or otherwise unnecessary with regard to the specificity of the

experimenter’s concerns.

Indeed, the landscape of memory effects in quantum processes is vast and ripe for

exploration, as will become apparent in Chapter 5 where we analyse the structure of
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quantum processes with finite Markov order with respect to familiar classes of history-

blocking instruments. Finally, note that many of the concepts introduced, results derived

and discussion that entails in the coming chapter are presented in Refs. [1, 2].

4.1 quantum markov order

Before we begin the main discussion of this chapter, it is worthwhile to briefly con-

sider some alternative suggestions that arise naturally when considering an extension of

Markov order into quantum mechanics. This aside should both illuminate some crucial

details that must be addressed in the temporal setting and distinguish our approach

from a number of related concepts studied throughout the community.

Recall that, as discussed in Subsection 2.1.6, there are three equivalent characterisa-

tions for classical Markov order:

1. The joint probability distribution across the future and history, given events in

the memory, factorises: PFH(xF ,xH |xM ) = PF (xF |xM )PH(xH |xM ).
2. There exists a stochastic map RM→FM acting only on the memory block that can

‘recover’ the future statistics correctly: PFMH = RM→FM (PMH).
3. The CMI between the history and the future given the memory vanishes:

Icl(F : H|M) = 0.

For some time, the recovery map has featured in the quantum information liter-

ature: here, quantum Markov chains have been defined as tripartite quantum states

ρABC ∈ BL(HA ⊗HB ⊗HC) satisfying a quantum generalisation of recoverability [136–

142]. Equivalently, quantum Markov chains have been defined as those states with

vanishing quantum CMI, which is identical to those that saturate the strong subad-

ditivity inequality [136, 143]. In the case of the former, the natural extension posits

the existence of a CPTP recovery map RB→BC : BL(HB) → BL(HB ⊗HC) such that

ρABC = RB→BC(ρAB). Interestingly, unlike in the classical setting, the relation between

quantum recoverability and the vanishing of the quantum CMI is not at all obvious; the

proof of their equivalence is in fact a highly celebrated result [136, 137, 144]. Addition-

ally, in Ref. [137] the authors introduced an important structural characterisation of the

set of states with vanishing quantum CMI, which are therefore recoverable. The main

theorem highlighting the existence of a projective measurement on the B subsystem

such that, for each outcome of the measurement, the AC subsystem is steered into an

uncorrelated state, providing a link by way of analogy to the quantum counterpart of

the first concept listed above.
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However, at first sight, it is unclear how such characterisations relate to temporal

processes, where an experimenter has access to an evolving quantum system across

multiple timesteps. As previously discussed, a number of concerns arise in the temporal

setting because of the necessity to track the state of the system throughout the process in

a meaningful way. Due to the breakdown of the KET for quantum processes on the level

of joint probability distributions, there has heretofore been no sensible way to develop

a generalisation of Eq. (2.19)—arguably the most fundamental definition of Markov

order—to the temporal realm. The process tensor formalism, by way of encoding all

possible joint distributions for all possible sequences of operations in time and permitting

calculation of conditional statistics, provides a straightforward and unambiguous way

to define Markov order for quantum processes. We will return to the relation between

quantum Markov order and vanishing quantum CMI in the coming chapter.

4.1.1 Instrument-specific Quantum Markov Order

A natural approach to defining Markov order for quantum processes is to require that

for every possible way of probing the process, the corresponding joint probability distri-

bution satisfies the classical Markov condition. In other words, just as was the case for

Markovian quantum processes, we fix the choice of instrument on the timesteps associ-

ated to the memory block and check for conditional independence between the history

and the future. Thus, a sensible demand of a quantum process with finite-length mem-

ory is that any future statistics deducible—i. e., no matter which future instruments are

chosen—are conditionally independent of any historical instruments applied and their

measurement outcomes, given knowledge of a length-` instrument sequence applied to

the memory block. Grouping together the timesteps as in Def. 2.5, we therefore define

quantum Markov order as follows.

Definition 4.1 (Quantum Markov order [1]). A quantum stochastic process has Markov

order ` = |M | with respect to an instrument JM when, for all possible instruments JH
and JF on the history and future, the following is satisfied:

PF (xF |JF ;xM ,JM ;xH ,JH) = PF (xF |JF ;xM ,JM ), (4.1)

where PF (xF |JF ;xM ,JM ;xH ,JH) denotes the probability to measure xF given that

outcomes xM and xH were previously observed, with the instruments JF ,JM and JH
used to probe the system dynamics.
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The above definition is intuitive: we can imagine an experimenter who implements

the instruments JF ,JM and JH . They would consider the process to display finite

memory if, for any choice of JF and JH , the statistics observed on F and H are con-

ditionally independent with respect to a fixed instrument JM . For any instruments the

experimenter might use to probe the future evolution of the system, the full statistics

is then completely determined by the instruments and outcomes of the most recent `

timesteps. Equivalently, given knowledge of the outcomes of the instrument across the

past ` timesteps, the process governing the future is uncorrelated with that governing

the history, guaranteeing that any possible statistics one might deduce on the history

and future timesteps are independent in each run of the experiment. Again, it is crucial

to note here that the notion of independence here is a conditional one.

Quantum Markov order thus defined is instrument-specific in the sense that it fixes

the instrument sequence applied across M in order to sensibly calculate conditional

statistics, stipulating that meaningful statements regarding memory length must be

presented with the caveat regarding the instrument of choice. This instrument-specific

definition boils down to the classical one if all instruments are fixed, sharp and classical,

as we will discuss in Section 4.2. As we will soon see, demanding a quantum process to

have finite Markov order for all possible instruments admissible in quantum theory is too

restrictive, immediately trivialising the theory. Such a demand is equivalent to asking

the process to have finite Markov order with respect to an arbitrary length-` sequence of

causal breaks, since they form a basis for the space of valid instrument sequences on the

memory block. As this constraint only permits Markovian processes, we are forced to

consider the more general instrument-specific scenario in order to meaningfully describe

processes with memory, as we do here. Nonetheless, a process can have finite quantum

Markov order with respect to an entire family of instruments.

In fact, we have already seen an example of this: Markovian quantum processes have

Markov order 1 for all instruments consisting of only causal breaks. In contrast, when

memory plays a non-negligible role in the evolution, operations performed on the system

generally impact the environment significantly, which, in turn, inevitably influences the

future dynamics. Thus, Markov order ` does not only refer to processes with conditional

independence across a length ` sequence of causal breaks, since these may serve to ‘open

a pathway’ for the history to influence the future via environmental conditioning. Indeed,

this is a special case of the instrument-specific definition of quantum Markov order, as

we will see in Chapter 5, where we will study a number of processes with finite-length
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memory with respect to natural families of instruments, including those comprising

unitary operations and extended sequences of causal breaks.

4.1.2 Finite Memory Constraint on the Process Tensor

We saw in Section 3.4 that Markovian quantum processes have a simple tensor product

structure, and it is hence an interesting question to explore the implications of Def. 4.1 on

the structure of the process tensor. To this end, consider a stochastic process described

by the process tensor ΥFMH and denote the probing instrument sequences by JX =

{O(xX )
X }. Then, the joint probability distribution over statistics observed is calculated

via the generalised Born rule as

PFMH(xF ,xM ,xH |JF ,JM ,JH) (4.2)

= tr
[(

O(xF )
F ⊗O(xM )

M ⊗O(xH )
H

)T
ΥFMH

]
.

From this expression, we can calculate well-defined conditional probabilities

PFMH(xF |JF ;xM ,JM ;xH ,JH) (4.3)

=
tr
[(

O(xF )
F ⊗O(xM )

M ⊗O(xH )
H

)T
ΥFMH

]
tr
[(

O(xM )
M ⊗O(xH )

H

)T
ΥMH

] ,

where ΥMH := 1
dF o trF [ΥFMH ] with dF o :=

∏n
j=k djo denoting the total dimension of

the output spaces associated to F .

In Appendix C.1, we show that Def. 4.1 implies the following product structure on

the process tensor, represented graphically in Fig. 4.1 [1]

Υ̃(xM )
FH := trM

[
O(xM )T
M ΥFMH

]
= Υ(xM )

F ⊗ Υ̃(xM )
H ∀ O(xM )

M ∈ JM . (4.4)

Here, the conditional future process, Υ(xM )
F , is described by a proper process tensor

whereas the unnormalised description of the historic process, Υ̃(xM )
H , is garnished with

a tilde to denote that it is an element of a tester, i. e., when summed over all outcomes

of the memory instrument, it yields a proper process tensor. We adhere to this notation

throughout and will return to discuss this point shortly. Crucially, finite Markov order

does not force the process tensor into an overall tensor product structure, but only

conditionally; in analogy to Eq. (2.19), the conditional history and future processes are

independent for each realisation of the instrument applied.

A few further comments are in order. Firstly, if Eq. (4.4) is satisfied, we say that

the process has Markov order-` with respect to the history-blocking instrument sequence,
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Figure 4.1: Instrument-specific quantum Markov order. An instrument sequence JM , compris-
ing (temporally correlated) CP operations {O(xM )

M } (green) across a sequence of timesteps of
length ` = 3, is applied to a process ΥFMH . The process is said to have Markov order ` with
respect to this instrument sequence if, for each possible realisation of the instrument, labelled
by xM , the history (red, Υ̃(xM )

H ) and future (blue, Υ(xM )
F ) parts of the process are rendered

conditionally independent. Note that here, the memory length of 3 timesteps corresponds to 5
Hilbert spaces on which the process tensor is defined (from tk−3o to tk−1o).

JM . The fact that the process is rendered conditionally independent for each realisation

of the instrument—which is, overall, a deterministic implementation—means that an

experimenter is guaranteed to block the effect of the history on the future upon its appli-

cation (given that they know the outcome). More generally, there may exist individual

operation sequences, i. e., tester elements, that block the history. However, in contrast

to instruments, since these could only be implemented with some probability, such oper-

ations act to probabilistically render the future and history conditionally independent. In

this thesis, we focus only on overall deterministic history-blocking sequences, in which

every constituent tester element in an instrument sequence acts to block the effect of

history, guaranteeing conditional independence for each run of the experiment.

Secondly, satisfaction of Eq. (4.4) guarantees the conditional independence of any

possible statistics one could obtain on the future and history given knowledge of the

history-blocking instrument sequence. We can see clearly that the mutual information

between the conditional future and history processes for any realisation of JM vanishes,

since they are of product form

I(F : H)xM :=S
(
Υ(xM )
F

)
+ S

(
Υ̃(xM )
H

)
− S

(
Υ̃(xM )
FH

)
= 0, (4.5)
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where I(F : H)xM denotes the mutual information between the history and future pro-

cesses given that the sequence corresponding to outcome xM was realised, and S( r) is

the von Neumann entropy.1 The mutual information upper-bounds all possible corre-

lations between arbitrary observables on F and H, and thus its vanishing implies the

temporal regions of the future and history are uncorrelated given knowledge of each

outcome xM [145].

Thirdly, note that the conditional future process is a proper process tensor by con-

struction, whilst the conditional history process represents an element of a tester. The

former point arises from the fact that for each realisation of the instrument on the

memory block, some fixed future evolution occurs. Mathematically, this can be seen

by considering that the hierarchy of trace conditions in Eq. (3.23) holds for all xM in

Eq. (4.4), as each successive partial trace applied from the future backwards ends up

acting only upon ΥFMH . On the other hand, the fact that ΥFMH is a proper process

tensor no longer ensures the hierarchy of trace conditions hold for each conditional pos-

itive object Υ̃(xM )
H prior to the memory, as the multiplication with O(xM )T

M prevents us

from continuing to trace back through the hierarchy; each realisation of the instrument

in question amounts to a post-selection [1, 28, 35]. Nonetheless, since the overall im-

plementation of the memory instrument is deterministic, when all possible outcomes

are summed over, the history is described by a proper process tensor. In other words,

on average, the history is described by a positive semidefinite Choi operator satisfying

Eq. (3.23); however, the individual tester elements corresponding to each conditional

outcome need not obey the causality conditions. In the special cases where they do,

the probability of realising the associated sequence of outcomes of the history-blocking

instrument can be extracted from the conditional history process, i. e., we can write

Υ̃(xM )
FH = P(xM |JM )Υ(xM )

F ⊗Υ(xM )
H , with Υ(xM )

H a proper process tensor for each xM , as

we do at some points throughout this thesis.

Lastly, it is important to distinguish which input and output spaces constitute a

memory block of length `, as there is evidently some innocuous source of potential

confusion in the way that we have discussed memory length so far. Any such block may

begin and end on either the input or output Hilbert spaces associated with timesteps

tk−` and tk−1 respectively (see Fig. 4.1: here, the memory block illustrated begins on

the output space at tk−` and ends at the output space of tk−1). To mitigate any possible

confusion, one could describe the memory length in terms of the number of Hilbert

1 Since entropies are only meaningfully-defined for normalised objects, any entropic quantity is calculated
using the normalised process tensor, i. e., Υ/tr [Υ].
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spaces comprising the memory block. However, intuitively, an experimenter is surely

more concerned with the question of how long ago something happened rather than how

many Hilbert spaces back something happened. As such, and to ease notation, we refrain

from labelling each of these cases distinctly and simply consider the memory length

to be the number of timesteps across which the history-blocking sequence spans. We

will provide visual representations of each example considered throughout this thesis to

elucidate how the memory block is defined in each case; for instance, in Fig. 4.1, the

memory length is 3 timesteps rather than 5 Hilbert spaces.

As we have previously alluded to, a quantum process can have finite Markov order

with respect to a family of instruments. Demanding that Eq. (4.1) holds with respect to

all possible instrument sequences immediately trivialises the theory.

Theorem 4.2 (Only Markovian processes have finite Markov order for all instru-

ments [1]). The only quantum processes with finite Markov order with respect to all

possible instruments are Markovian.

The proof follows along the lines of that of Theorem 3.5 and is given in Appendix C.2.

We make use of the fact that the set of tester elements forms a vector space to show that

the only processes satisfying Eq. (4.4) for all possible instruments have trivial Markov

order, i. e., either ` = 1 or 0. Specifically, we show that if a process has finite Markov

order with respect to a complete basis of CP maps onM , it cannot have the same Markov

order with respect to any non-trivial linear combination of them.

Returning to the subtlety in defining memory length in quantum mechanics (i. e.,

with respect to Hilbert spaces or with respect to timesteps), note that when a 1-step

memory block is specified, there are two cases to be considered: the first being where the

memory begins and ends on the most recent output Hilbert space (i. e., M = {tk−1o}),

and the second where it extends over both Hilbert spaces associated to the previous

timestep (i. e., M = {tk−1o , tk−1i}). Demanding the finite Markov order condition to

hold for all instruments in the former case is equivalent to the Markovianity condition

of Def. 3.4, and since all instruments on only a single output Hilbert space correspond

to a unit-trace quantum state, it leads directly to the structure of Eq. (3.36).

On the other hand, requiring finite Markov order to hold for all possible instruments

in the latter scenario is an even stricter demand than Markovianity, which only dictates

that the condition hold for the family of causal break instruments (see Eq. (3.32)). If

the future process is to be rendered independent from the history for all instruments

spanning both Hilbert spaces of the previous timestep, the process is forced into the
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following super-Markovian structure, where the future evolution is independent of even

the most recent state preparation (like a fair coin toss)

ΥS-Markov
n:1 = ρni ⊗ 1n−1o ⊗ ρn−1i ⊗ . . .⊗ 11o ⊗ ρ1i . (4.6)

In either case, demanding finite Markov order with respect to all instruments on a

memory block ending at some timestep tk−1 imposes a tensor product structure on

the process tensor (either between tk−1i and tk−1o or between tk−1o and tki) such that

the future and history processes are independent of the measurement outcome; requiring

this to hold at all timesteps enforces a Markovian or super-Markovian structure, thereby

trivialising the theory by only admitting memoryless processes. This result immediately

implies the following property for quantum stochastic processes.

Remark. Any non-Markovian quantum process has infinite Markov order with respect to

a generic instrument sequence. Furthermore, applying random instruments can almost

always witness memory effects.

This is because, if the process uses any memory at all, there always exists some

instrument such that Eq. (4.4) does not hold (it only holds for all instruments if the

process is Markovian). Applying random choices of operations on a finite-dimensional

Hilbert space will eventually span the space and an experimenter can then find the

suitable operation to witness memory effects.

It is clear that demanding Def. 4.1 to hold for all instruments is a very strong condition,

as it requires the statistics observed by an experimenter to satisfy the Markov order-`

property no matter how they measure realisations of the process. Theorem 4.2 shows

that this requirement is too restrictive in the quantum case. Thus, we have no choice but

to characterise Markov order for quantum processes in an instrument-specific way. In

light of this analysis, we see that classical Markov order is also defined in an inherently

instrument-specific way, as it assumes the ability for an experimenter to sharply measure

realisations of events. In many practical cases of interest, however, this assumption is

either not satisfied due to experimental limitations that lead to noisy measurements [146–

152], or insufficient to capture the scenario at hand, such as in causal modelling [16, 17].

In any framework that allows for active interventions, a vast array of memory effects

can be captured by probing the system with different instruments, as we now consider.
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4.2 relation to classical markov order

Importantly, quantum Markov order reduces to the classical Markov order statement

in the correct limit: when the stochastic process at hand is entirely characterised by a

joint probability distribution and the experimenter probes it appropriately via classical

means.

Classical stochastic processes in the traditional sense, where interventions are not al-

lowed, assume the existence of only one probing instrument, namely that of a measure-

ment comprising only rank-1 projections onto one of a complete set of orthogonal (clas-

sical) states at each timestep: J cl := {Π(x)
i ⊗Π(x)

o }, where Π(x)
i = Π(x)

o := |x〉〈x| satisfy

tr
[
Π(x)Π(y)

]
= δxy ∀ x, y. Clearly, as this is the only interrogating instrument allowed

here, PFMH(xF ,xM ,xH |J cl
F ,J cl

M ,J cl
H ) = PFMH(xF ,xM ,xH) by definition. Quantum

Markov order therefore automatically reduces to the classical statement, since the latter

stipulates conditional independence of statistics measured with the instrument above.

This can be readily seen by considering that the complete description of any stochastic

process arising from classical physics, i. e., its joint probability distribution, can be en-

coded in the diagonal of a process tensor written with respect to the local product basis

that the classical measurements act in. Thus, the process tensor of a classical stochastic

process has the structure Υcl
FMH =

∑
y PFMH(yF , yM , yH) Π(yF )

F i ⊗Π(yM )
Mi ⊗Π(yH )

Hi . Im-

portantly, these block projectors are tensor products of local projectors. Calculating the

probabilities for the classical measurement above gives the correct statistics.

4.2.1 Classical Stochastic Processes with Interventions

As noted by van Kampen, “a physical process. . .may or may not be Markovian, depend-

ing on the variables used to describe it” [25]; the same is true for the Markov order. The

existence of perceived memory effects implicitly depends on our experimental abilities,

both in quantum mechanics—where it is generally acknowledged—as well as in classi-

cal physics—where it is often forgotten. Indeed, the standard framework for studying

classical stochastic processes assumes the ability to measure observations of the system

sharply and it breaks down when one allows for fuzzy measurements or interventions

more generally [14, 16, 17].
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For instance, consider a scenario in which an experimenter is able to sharply measure

realisations of a process, deducing the ‘true’ statistics of its description that satisfy the

Markov order-` condition, i. e., for all timesteps tk ∈ {t`+1, . . . , tn}, the following holds

Pk(xk|xk−1, . . . ,x1) = Pk(xk|xk−1 . . . ,xk−`). (4.7)

Suppose now that, instead of measuring the observations x, the experimenter is limited

in resolution to only measuring some values y that coarse-grain over subsets of the

possible x values. The conditional statistics of the observed outcomes y can be explicitly

written in terms of the fine-grained variable x as

Pk(yk|yk−1, . . . , y1) =
Pk:1(yk, . . . , y1)

Pk−1:1(yk−1, . . . , y1)
(4.8)

=

∑
Pk:1(xk, . . . ,x1)∑

Pk−1:1(xk−1, . . . ,x1)
6= Pk(yk|yk−1 . . . , yk−`),

where the summation runs over the x values that are lumped together for each y.

Even if the process displays finite Markov order with respect to the sharply observed

events, it does not necessarily do so for their coarse-grained variants. The fact that

coarse-graining can increase the memory length observed by an experimenter arises

from the well-known property that the space of Markovian processes is not convex [4].

Interestingly, we can also have the opposite occur. A process can exhibit finite Markov

order with respect to a fuzzy measurement sequence, but, given access to the system

at a finer resolution, the experimenter would attribute a longer memory length to the

process. Such a process has finite-length memory on average. To highlight this concretely,

explicit examples of both situations are provided in Appendix C.3.

Indeed, when one allows for noisy interventions in the classical case, the product struc-

ture of Eq. (2.19) is no longer satisfied for each observation, even when the underlying

process is Markovian, in the sense that additional demands must be satisfied to render

the future independent from the past with noisy measurements [151].2 This point raises

significant concerns for the practical reconstruction of complex classical dynamics, since

an experimenter cannot always be certain that their measurements are distinguishing

outcomes to a sufficient level of granularity [154, 155]. Various ways of dealing with such

measurement noise in realistic experimental scenarios have been proposed and analysed

throughout the literature [146–152].

Formally, a measurement that can pick out a particular physical state with cer-

tainty is called sharp; one that is not so is called fuzzy. In what follows, we slightly
2 Classical processes for which the property of Markovianity remains invariant with respect to aggregations
of events have been studied formally under the guise of lumpable Markov chains and the conditions for
satisfaction of lumpability clearly laid out in terms of the stochastic maps of the process [153].
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generalise the definitions provided in Ref. [156] in order to account for the input

and output Hilbert spaces associated to each timestep. In the classical setting, a

sharp measurement corresponds to a set of rank-1 projectors that are pairwise or-

thogonal: J Sharp = {|y〉〈y|i ⊗ |x〉〈x|o} such that 〈yx|zw〉io = δyzδxw ∀ x, y,w, z and∑
yx |y〉〈y|i⊗ |x〉〈x|o is a stochastic map. Intuitively, this means that if the state is mea-

sured to correspond to the value y and the state of the system that is actually sent for-

ward into the process corresponds to x, both of these are distinguishable with certainty.

Fuzzy classical measurements J Fuzzy correspond to instruments made up of higher-rank

projectors, as is the case in the example above, where the aggregation of some of the

granular x values lead to higher-rank projectors describing the measured y values, with

non-zero overlap between the state measured and that sent forward. Similarly, sharp

quantum measurements can be defined in terms of a set of pairwise orthogonal rank-1

projectors such that
∑
yx |y〉〈y|i⊗ |x〉〈x|o is CPTP. However, fuzziness arises in quantum

theory in two possible ways: firstly, through subjective ignorance that is made manifest

in the same way as classical fuzziness, i. e., through higher-rank projectors with non-zero

overlap; and secondly through the non-commutativity of measurement operators, which

means that even sets of rank-1 POVM elements can give rise to fuzziness, since they are

not necessarily projective.

More generally than the case where some outcomes are coarse-grained over, memory

effects must be understood with respect to probing instruments whenever experimental

interventions that directly influence the state of the system are allowed. Such invasive

operations lie at the core of the theory of classical causal modelling [16] (which contains

standard classical stochastic processes as a special case [14]). Here, at each timestep

an experimenter is permitted to implement transformations that map any probability

distributions in the state space to any other—just like in the quantum case, the ex-

perimenter could perform non-TP maps. Due to the possibility of different choices of

instruments, here too the standard Markov condition must be generalised to the causal

Markov condition [16]. This, in turn, is a special case of quantum Markovianity [17].

In any operational scenario where active interventions are considered, unambiguous

definitions of memory effects must inherently be made with respect to the instruments

used to probe the process at hand. To this end, even in classical physics, we should

say that if a classical process is considered to have Markov order-`, it is with respect to

sharp observations of the process. The generalisation of Markov order provided in Def. 4.1

reduces to unambiguously characterise memory length in any scenario where classical

processes with fuzzy measurements and/or experimental interventions are allowed. In
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an operational sense, it is more intuitive to think of finite memory length of a process

as presupposing the ability for an experimenter to apply a sequence of instruments that

serve to block the influence of history on the future statistics. Moreover, the framework

of quantum stochastic processes contains within it all generalised classical stochastic

processes, including those pertaining to scenarios where arbitrary interventions are al-

lowed such as causal modelling [14, 17]. Thus, statements made in terms of the process

tensor reduce naturally to their classical counterparts in the appropriate sense.

However, even in the most general classical setting of causal modelling, this instrument-

dependence of Markov order is liftable, in the sense that it can be removed by changing

perspective. By incorporating the experimenter and their choice of intervention into the

description of the process, the standard definitions of Markov order apply on a higher

level [15]. In other words, the above concern can be ‘explained away’ on grounds of

principle. On the other hand, in the study of quantum stochastic processes, even sharp

quantum measurements look fuzzy when they act on a state in general; the measurement-

dependence issue is fundamentally unavoidable and must be acknowledged accordingly

through an instrument-specific notion of Markov order as per Def. 4.1. We now further

explore some of its consequences in terms of a dilated dynamics, following an example

presented in Ref. [2], in order to build some intuition.

4.3 memory length of a generalised collision model

Within the framework of open quantum dynamics, collision models have been introduced

to great pedagogical effect to provide a concrete underlying mechanism describing mem-

oryless processes [157–161]. In such models, a system interacts successively with an

environment comprising independent ancillary subsystems through successive unitary

‘collisions’ with each ancilla. Because each ancilla is only interacted with once, there is

no way for the environment to act as a mechanism for memory transport by influenc-

ing future dynamics. Since no physical model need be prescribed to the framework, it

provides a flexible toy model that is applicable to studying a wide range of phenomena.

This setting can be generalised to allow for non-trivial memory effects: the most com-

mon approaches include beginning with an initially correlated environment [162, 163],

allowing for ancilla-ancilla interactions [164–168], allowing for repeated system-ancilla

collisions [169, 170], or some type of hybrid approach [78, 79, 171, 172]. Each of these

scenarios can be motivated through realistic physical origins that demand some rea-

sonable assumptions [173]; in any case, the environment acts as a memory by storing
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Figure 4.2: Generalised collision model with memory. The top panel a) depicts a standard
memoryless collision model. The system S (green) interacts unitarily at each timestep once with
each of a number of uncorrelated, fresh ancillary states Aj that constitute the environment
(orange); the collision is represented by the grey boundary. Following the dynamics from t0 to
t1, the A1 ancilla has been used and so stores information about the initial state of the system,
indicated by the purple colour (see A1 after t1). However, each successive portion of evolution
proceeds through an interaction with a fresh ancilla that has not yet interacted with the system.
Thus, any memory of the system’s history cannot influence the future evolution, leading to
Markovian dynamics. The bottom panel b) shows a generalised collision model, where the system
is allowed to interact with multiple ancillas during each period of evolution. Here, between t0 and
t1, the system interacts with both A1 (not shown) and A2, meaning that these ancillas can store
information about the initial system state. The next portion of dynamics following t1 involves
A2 again; thus, the future dynamics depend on the history. In this way, the ancillas serve to
propagate memory effects through the process.

information about previous system states to govern future evolution (see Fig. 4.2 for illus-

tration). Here, we focus on a special case of such dynamics with repeated system-ancilla

interactions, which has application in studying phenomena with substantial time-delays

between repeated interactions, e. g., developing feedback-assisted control protocols [169,

170].

Consider specifically the following n-step process, depicted as a dilated quantum cir-

cuit in Fig. 4.3. A system, S, interacts with some inaccessible environment, E, which

comprises n + ` − 1 initially uncorrelated ancillary systems τE0 :=
⊗n+`−1

x=1 τAx . For

simplicity, here we assume no initial system-environment correlations, and so we have

a timestep t0 at which an arbitrary system state can be prepared. The overall joint

system-environment dynamics between timesteps tj−1 and tj is represented by the map:

ρSEj = Ũj:j−1(ρSEj−1). In this particular example, the joint evolution is broken up into an
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ordered sequence of pairwise collisions between the system and ancillary states of the

environment as follows

Ũj:j−1 := USAjj:j−1 . . .U
SAj+`−1
j:j−1 , (4.9)

where the superscripts label the subsystems involved in the interaction. Following the

dynamics between timesteps tj−` and tj , the specific ancilla Aj will have interacted with

the system ` times; it is then discarded and never again involved in the system’s evolu-

tion. Note that in this model, we have not allowed for any initial system-environment

correlations or ancilla-ancilla collisions; the type of evolution proposed here describes

a time-translationally invariant microscopic model for processes with memory, which

propagates through the ` ancillas that feed-forward to act like a linear memory tape.

By design, we can see how memory effects arise: each ancillary system Ax can store

information about the system, acquired during its first interaction through USAxx−`+1:x−`,

and use it to influence the future dynamics up until its final interaction with the system

mediated through USAxx:x−1.

Suppose then that an experimenter wishes to characterise the memory length of such

a process. To do so, they must measure realisations of the state of the system at each

timestep, immediately facing the problem that any such measurement both conditions

the state of the environment and directly affects the state of the system which leads to

different future dynamics dependent on both the measurement outcomes observed and

the way in which they were measured. As we have discussed, the appropriate question

relevant to understanding the memory length of the process is: how can the experimenter

block the effect of the history on the future dynamics over a finite number of timesteps?

The representation of the process in Fig. 4.3 is particularly illuminating. We can see

the possible ways in which information originating from the history, i. e., about the

initial system state, can perpetuate forward in time along connected paths (traced in

red). For the particular collision model described above, an obvious history-blocking

strategy involves discarding the system state emitted by the process and re-preparing

one of a known set of states to feed into the process over a sequence of ` timesteps.

It is clear that upon applying such a sequence of trash-and-prepare instruments, any

possible path connecting the history to the future across ` timesteps is broken, thereby

guaranteeing that the future evolution of the system is independent of anything that

happened to it prior to the trash-and-prepare sequence.

In Appendix C.4, we prove that this trash-and-prepare protocol indeed blocks any

possible influence that the history can have on the future evolution. Specifically, we

show that for this particular process, at arbitrary time tk, all future states of the sys-
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4.3 memory length of a generalised collision model

Figure 4.3: Finite memory with respect to trash-and-prepare protocol. The system-environment
dynamics for the generalised collision model described, interspersed with the trash-and-prepare
protocol applied to the system. Any possible influence stemming from the history persists to
impact the future for at most ` = 3 timesteps before being trashed. For instance, the red paths
depicted signify the degrees of freedom that can be affected by the initial preparation, whereas
the black ones cannot be. The final state is a function of only the most recent ` preparations,
{σS1 ,σS2 ,σS3 }, and entirely independent of the initial system state, ρS0 . Any other instrument
sequence on the system, e.g., a measure-and-prepare rather than a trash-and-prepare instrument,
would ‘open up’ a pathway for the initial state ρS0 to influence the future state ρS4 .

tem after application of any length-` sequence of trash-and-prepare instruments can be

uniquely described as a function of only the ` most recently prepared states, for any

prior history. That is, the process has Markov order ` with respect to the entire family

of trash-and-prepare sequences, implying that any possible statistics an experimenter

might observe in the history and future are conditionally independent given this partic-

ular experimental control. Explicitly expressing the length-` trash-and-prepare sequence

in terms of operations on the system as

Dk−1:k−`(ρ
S
k−1, . . . , ρSk−`) := σSk−1tr

[
ρSk−1

]
. . . σSk−`tr

[
ρSk−`

]
. (4.10)

In a slight abuse of notation, we can write

I({tn, . . . , tk} : {tk−`−1, . . . , t1})Dk−1:k−` = 0. (4.11)

By this we mean that the mutual information between any possible statistics recorded

on the future and history timesteps, which quantifies any possible correlation between

them, vanishes for all length-` trash-and-prepare sequences Dk−1:k−`.

Moreover, the experimenter could discard the states emitted by the process and

feed in probabilistically-prepared states, i. e., choose σSj at random from the ensem-

ble {σ(xj)j } with corresponding probabilities {p(xj)} and the effect of history would

still be blocked deterministically overall. In other words, the process also has finite
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memory with respect to the trash-and-probabilistically-prepare family of instruments

Jk−1:k−` = {D
(xk−1 :xk−`)
k−1:k−` } with

D(xk−1 :xk−`)
k−1:k−` (ρSk−1, . . . , ρSk−`) := (4.12)

p(xk−1) . . . p(xk−`)σ
(xk−1)
k−1 tr

[
ρSk−1

]
. . . σ

(xk−`)
k−` tr

[
ρSk−`

]
.

More generally still, the experimenter could even choose to feed in subsystems of an

`-partite entangled state at each timestep sampled from some ensemble {σ(xk−1:k−`)
k−1:k−` }

with probabilities {p(xk−1:k−`)}, overall implementing an multi-time (quantum) correlated

instrument sequence of the form Jk−1:k−` = {E
(xk−1:k−`)
k−1:k−` } with

E (xk−1:k−`)
k−1:k−` := p(xk−1:k−`)σ

(xk−1:k−`)
k−1:k−` tr

[
ρSk−1

]
. . . tr

[
ρSk−`

]
. (4.13)

In either case, for any realisation of the instrument sequences defined as the collection of

CP operations in Eqs. (4.12) and (4.13), the future dynamics is conditionally independent

of the history and we have satisfaction of Eq. (4.5) for all families of instruments in

question

I({tn, . . . , tk} : {tk−`−1, . . . , t1})xk−1:k−` = 0. (4.14)

It is clear that the generalised collision model considered implies finite Markov or-

der with respect to any of the aforementioned length-` generalised trash-and-prepare

sequences, but what can we say in the converse direction? That is, does every process

that is of finite Markov order with respect to trash-and-prepare instruments have a di-

lation as the one depicted in Fig. 4.3? It turns out that having finite-length memory

with respect to the trash-and-prepare protocol is a necessary but insufficient condition

to deduce this generalised collision model dilation.

As a counterexample, consider two timesteps of dynamics in which two ancillary states

of the environment are initially entangled, represented by the density operator τA1A2 ,

and in product with the initial system state ρS0 . The system first interacts with A1 via

USA1
1:0 , before A1 is discarded, and then with A2 via USA2

2:1 , with a trash-and-prepare

instrument σS1 trS applied to the system in between. It is clear that the initial state

ρS0 can have no influence on the future evolution, since the final system state can be

written uniquely as a map acting only on the preparation fed into the process: ρS2 =

trA2

[
USA2

2:1 σS1 ⊗ τ̃A2
]
, where τ̃A2 := trSA1

[
USA1

1:0 ρS0 ⊗ τA1A2
]
= trA1

[
τA1A2

]
represents

the reduced state of A2 which, importantly, shows no memory of ρS0 . Therefore, the

dynamics has finite Markov order ` = 1 with respect to the trash-and-prepare protocol,

but evidently does not have a dilation of the form depicted in Fig. 4.3; namely, because
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4.3 memory length of a generalised collision model

the ancillas begin in an entangled state. In general, even if A1 and A2 interact with some

unitary VA2A1
1:0 after USA1

1:0 , there is no dilation with initially correlated ancillas that can

capture temporal correlations that might arise if some portion of the later dynamics is

conditioned on the state of A2 before that interaction.

To summarise, in this section we have introduced a specific type of generalised col-

lision model which, by construction, perpetuates information about the history via a

particularly simple mechanism. This allows us to study explicitly how memory effects

arise from the perspective of the underlying dynamics and build an intuitive understand-

ing of the necessity for instrument-specific quantum Markov order. The salient points

to note are as follows.

i) The trash-and-prepare protocol does not block every type of memory. For arbitrary

system-environment dynamics, following a length-` trash-and-prepare sequence, ρSk (and

the future process more generally) will, generically, depend on both the known prepa-

rations {σSk−1, . . . ,σSk−`} and the previous historic states {ρSk−`−1, . . . , ρS0 }. Thus, if an

experimenter were to measure statistics on the future and history, they would be corre-

lated, leading to a breakdown of Eq. (4.11) and, hence, an appreciable memory effect. In

the coming chapter, we provide various examples of processes that exhibit finite Markov

order with respect to other sequences of instruments, but not this one.

ii) Even for the special case of dynamics described above, application of a different

sequence of instruments than the trash-and-prepare protocol would not lead to future dy-

namics that are independent of the history. For example, suppose that the experimenter

were to perform a measurement at an intermediary timestep during a length-` trash-and-

prepare protocol. Here, the measurement would condition the state of the environment

on its outcome, and hence the influence of the history could permeate through the mem-

ory block, leading to dependence of the final output on previous dynamics. Lastly, in

Appendix C.5, we further explore some of the various other types of memory that can

be built into collision models.

From the considerations outlined above, it is clear that knowing the history-blocking

sequence for a given process gives us information about the process at hand, but not

necessarily all of it. Although we have made no assumptions on the action of the unitaries,

the dynamics examined here is a special case of generic quantum evolution and the

trash-and-prepare protocol is just one of many possible sequences of instruments an

experimenter might apply.
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4.4 chapter summary

In this chapter we have used the process tensor framework to formally provide an exten-

sion of the notion of Markov order to the quantum realm that reduces to the classical

condition in the appropriate case. The intuition behind quantum Markov order remains

unchanged—as in the classical case, the question boils down to: can the future statistical

evolution of the system be deduced completely, in principle, from the outcomes of the

most recent ` instruments applied? When any future evolution of the system is inde-

pendent of any previous history following the application of some instrument sequence,

the process exhibits conditional independence between the future and history. Impor-

tantly, whilst the instrument on the memory block must be specified to meaningfully

define quantum Markov order, the historic and future instruments remain arbitrary:

for each realisation of the instrument sequence in question applied to the memory, any

possible statistics deducible on the history and future timesteps are guaranteed to be

conditionally independent.

In quantum theory, we have no choice but to allow for such an active description

of processes, dictating the necessity for an instrument-specific definition of memory

length. We saw that demanding conditional independence between the history and the

future for all possible instruments on the memory is too strong a restriction: no non-

Markovian quantum process can display finite Markov order with respect to all possible

interventions. Put differently, quantum stochastic processes exhibit different memory

effects when probed with different instruments. Interestingly, such instrument-specific

memory effects have been observed previously (see, e. g., Ref. [174]); our characterisation

formally captures and explains such behaviour.

This is also the case for classical stochastic processes where an experimenter can

actively intervene with the system. Here, however, the issue is liftable in the sense that,

in theory, we can always assume the ability to measure sharply. This is not the case in

quantum mechanics: even sharp quantum measurements appear noisy as they do not

generally reveal the full state of the system, and thus we have no choice but to account

for the probing instruments employed. As luck would have it, by treading the path we

are forced to take to understand memory effects in quantum processes, we develop a

deeper comprehension of their classical counterparts.

To build intuition regarding quantum Markov order, we concluded the chapter by

studying the memory length of a generalised collision model with repeated system-ancilla

interactions and showed how the dynamics displays finite Markov order with respect to a
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seemingly natural information-trashing instrument sequence, which serves to average out

the effects that system-level operations have on the environment. The deeper exploration

of memory effects in similar models in Appendix C.5 further motivates the necessity of

instrument-specific Markov order for quantum processes and a better understanding of

the microscopic mechanism for memory propagation.

The example analysed here provides but a special case of a quantum process with finite-

length memory. There are a rich arsenal of instruments that an experimenter could, in

principle, choose to apply in an attempt to block the effect of history on the future; in-

deed, quantum theory permits a rich landscape of memory effects, with many properties

that distinguish it from the classical setting. Extending this line of investigation, we are

now interested in what the satisfaction of Eq. (4.4) for a particular instrument sequence

implies for the structure of the underlying process tensor. In the following chapter, we

will explore the structure of quantum processes with finite Markov order with respect to

certain choices of instruments, shedding light on distinguishing features and the relation

between memory length, vanishing quantum CMI and the recoverability of the process.

In particular, we ask which kinds of processes can have finite-length memory, and what

can be inferred about the underlying process through knowledge of the history-blocking

sequence.
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5

PROCESSES WITH F IN ITE MEMORY LENGTH

In this chapter we explore the mathematical structure of processes with

finite quantum Markov order. As was the case for the generalised collision model

explored in Section 4.3, knowledge of the history-blocking sequence does not suffice

to pin down the process at hand: in general, there can exist potential memory effects

that are ‘hidden’ to the instruments in question but could be uncovered with a different

probing scheme. Presently, we will examine the degree to which the structure of a process

is constrained by having the property of finite Markov order.

We first detail the most general description of a process satisfying Eq. (4.4) for a

particular instrument sequence. Although certain structural constraints are imposed,

knowing that a particular instrument blocks the history does not necessarily tell us

much about the effect of other instruments. For each key finding that arises, we present

an associated example processes to build intuition regarding memory length in quantum

processes. These examples are constructed in such a way as to highlight some key pecu-

liarities of quantum Markov order, and their essence applies to processes more broadly.

With this structural understanding at hand, we will go on to analyse the connection

between processes with finite Markov order and those with vanishing quantum CMI be-

tween the history and the future given the memory. From the structure of processes

with vanishing quantum CMI, it follows that there exists an instrument sequence made

up of orthogonal projectors that serve to render the history and future conditionally

independent. Perhaps surprisingly, the converse does not hold, even in the case where

the history-blocking sequence comprises only sharp, orthogonal projectors. This situa-

tion cannot happen for classical stochastic processes where, as we have discussed, finite

Markov order and vanishing CMI are equivalent. We go on to lay out further restrictions

imposed on the history-blocking instruments that ensures the quantum CMI vanishes.

The connection between the constraints placed on processes with finite Markov or-

der and our desire to describe and reconstruct those with approximately finite memory
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efficiently naturally brings us to the main concern of Chapter 6: how can we mean-

ingfully quantify the strength of memory and what are the subsequent implications for

compression and recoverability? Most of the results of this chapter stem from Ref. [2].

5.1 structure of quantum processes with finite markov order

Our structural analysis is based on the fact that the process tensor is multi-linear in its

arguments. Any `-step operation sequence it acts upon can be considered as an element

of a vector space W′ := BL(Hk−1 ⊗ . . .⊗Hk−`) of dimension dW ′ := dim(W′) = d4`,

where d is the dimension of the quantum system of interest1. As already mentioned,

the only constraint on a set of operations that constitute a valid instrument sequence is

that they sum to a proper comb, i. e., they are positive operators whose sum yields an

operator with the same causal ordering as the process tensor that acts on them, which

is enough to guarantee their physicality [30]. In general, the CP elements constituting an

instrument sequence need not span the entire spaceW′, even though they are linearly in-

dependent. An instrument sequence that does spanW is called informationally-complete

(IC), and any such instrument must contain a minimum number of dW ′ linearly indepen-

dent elements. On the other hand, an instrument sequence that does not entirely span

W′ is referred to as informationally-incomplete.

Informational-completeness and history-blocking are two distinct properties of an in-

strument sequence. In particular, an informationally-incomplete instrument sequence

can block the history, e. g., the trash-and-prepare sequence in Section 4.3. Informational-

completeness pertains to whether or not an experimenter can completely characterise

the process on the corresponding timesteps through knowledge of its action on each ele-

ment. In the same way that an IC set of measurements must be performed to completely

determine a quantum state, a process tensor can be uniquely tomographically recon-

structed through knowledge of its action on an IC set of operations [50]. This property

is of importance in this section, which identifies structure in the process tensor given

that an experimenter knows that a certain instrument sequence blocks the history.

We focus first on the most general case, where one has satisfaction of Eq. (4.4)

for an arbitrary instrument sequence. Suppose we have an informationally-incomplete

1 Here, for simplicity, we consider a system of fixed dimension across all timesteps; the extension to the
more general case where the dimension of the system varies at each timestep is straightforward. Note
further that, in the case where the number of Hilbert spaces in the memory block is odd, dW ′ = d4`−2.
Although we are not explicit regarding either of these points, their consideration only impacts the
dimensionality of the underlying vector space and has no relevance to the results to be presented.
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5.1 structure of quantum processes with finite markov order

history-blocking sequence JM = {O(x)
M }cx=1 where c < dW ′ . We can complete such an

instrument sequence to span the entire space W′ by appending an additional collec-

tion of linearly independent operators, i. e., construct the IC set A′M = JM ∪AM :=

{{O(x)
M }cx=1, {O(y)

M }
dW ′
y=c+1} = {O′(z)M }

dW ′
z=1, where the underline signifies the objects that

are not part of the original history-blocking instrument (we adhere to this notation

throughout this chapter to be explicit). Note that the appended operators AM are not

necessarily CP, nor do they necessarily form an instrument sequence; thus nor is the

case for the overall construction A′M . All that is required is that AM is chosen as a lin-

early independent set spanning W⊥, so that A′M forms a basis for the entire space W′

on which the process tensor is defined. Since the entire collection A′M forms a linearly

independent set (by construction), there exists an associated dual set of objects {∆′(w)M }

such that tr
[
O′(z)M ∆′(w)†M

]
= δzw ∀ z,w (see Appendix B.2). In terms of this (generally

non-orthonormal) basis, we can (completely) represent any process tensor as

ΥFMH =
dW ′∑
z

Υ̃′(z)FH ⊗ ∆′(z)∗M . (5.1)

Since the instrument sequence JM acts to render the history and future indepen-

dent for each outcome by hypothesis, we can further decompose the process tensor.

We first partition the total dual set {∆′(z)M } into the elements dual to those operations

within the history-blocking sequence, {∆(x)
M }cx=1, and the rest, {∆(y)

M }
dW ′
y=c+1, such that

tr
[
O(a)
M ∆(b)†

M

]
= tr

[
O(a)
M ∆(b)†

M

]
= δab ∀ a, b and tr

[
O(a)
M ∆(b)†

M

]
= tr

[
O(a)
M ∆(b)†

M

]
= 0. Now,

the first c terms in the sum in Eq. (5.1) are
∑
x Υ(x)

F ⊗∆(x)∗
M ⊗ Υ̃(x)

H . By direct insertion,

it is clear that this portion of the process tensor indeed satisfies Eq. (4.4). The remaining

terms, which are inaccessible to the history-blocking instrument sequence JM , can be

written as:
∑
y Υ̃(y)

FH ⊗∆(y)∗
M . These terms encapsulate future-history correlations that an

experimenter might observe upon application of an alternative instrument. This leads

to the following theorem, which outlines the most general structure a process with finite

quantum Markov order must have.

Theorem 5.1. Processes with finite quantum Markov order with respect to the instru-

ment sequence JM = {O(x)
M } are of the form:

ΥFMH =
c∑

x=1
Υ(x)
F ⊗ ∆(x)∗

M ⊗ Υ̃(x)
H +

dW ′∑
y=c+1

Υ̃(y)
FH ⊗ ∆(y)∗

M , (5.2)

where c = |JM | is the number of constituent operations of the history-blocking instrument

sequence, {∆(x)
M } form the dual set to {O(x)

M }, satisfying tr
[
O(x)
M ∆(y)†

M

]
= δxy ∀ x, y, and

{∆(y)
M } satisfy tr

[
O(x)
M ∆(y)†

M

]
= 0 ∀ x, y.
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Importantly, each term in the first summation has F andH in tensor product, ensuring

Eq. (4.4) is satisfied with certainty for each realisation of the instrument sequence in

question. Such a decomposition must hold true for every timestep tk at which a length-`

memory block ends (although the terms in it can change for different blocks). A quantum

process with infinite Markov order with respect to every instrument cannot be written

as per Eq. (5.2) with non-trivial terms in the first summation. The structure outlined

makes it clear that, for an informationally-incomplete history-blocking sequence JM ,

the experimenter can only make meaningful statements about the memory length of the

process with respect to the choice of instrument; the Υ(y)
FH in the second term represents

the portion of the process that can only be revealed through other probing schemes.

The generalised collision model explored in Section 4.3 is an example of such a process,

since the trash-and-prepare protocol that blocks the effect of history constitutes an

informationally-incomplete instrument sequence. This instrument sequence is, by its

very nature, incoherent: an experimenter simply discards whatever states are output

by the process and feeds in some of their own choosing. In contrast to this, one might

expect that applying sequences of coherent, i. e., unitary, operations to a process would

always perpetuate memory effects from the history to the future by way of transmission

through the level of the system alone. We now provide an explicit counterexample to

this claim, i. e., a process whose history is only blocked upon application of a sequence

of coherent operations.

5.1.1 Unitary History-Blocking Instrument Sequences

Example 5.1 (Finite Markov order for a sequence of unitaries). Consider the process

depicted in Fig. 5.1. It is constructed such that there is exactly one length-` sequence of

unitary operations that guarantees the history is blocked, such that the Markov order

of the process is equal to `. Between each timestep tj−1 and tj , the process prepares an

ancillary subsystem, A, in a maximally entangled state with S, ψAS = 1
d

∑
xy |xx〉〈yy|,

which are together in tensor product with the rest of the environment E.

The joint EAS state undergoes dynamics according to some unitary map, Uj , before an

operation can be applied to the system S by the experimenter. Following this operation,

the process applies the inverse V†j of some other unitary map Vj on the system alone,

where V†j ( r) := V †j
rVj . The joint EAS state then evolves according to the inverse

unitary map U†j . Lastly, AS is subject to the following memory cutting protocol: a Bell

basis measurement is implemented within the process, with another ancillary subsystem,
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Figure 5.1: Finite memory for a unitary instrument sequence. A dilation of a single timestep for
a process whose historic influence on the future is blocked only by the sequence of unitary oper-
ations on the system {Vk−`, . . .Vk−1}. Everything inside the yellow, dashed boundary, including
the unitary operation V†j , constitutes the inaccessible process; the experimenter only has the
choice of operation applicable in the green box. The cutting protocol described in the main text
is depicted here in purple: the ancillary counter, C, registers the number of successive successful
Bell basis measurements on the SA system, which is re-prepared as a maximally entangled pair,
ψAS , at each timestep tj . When the counter system state reaches `, the current environment
state is discarded and a fresh one, τEj+1, is prepared to govern the future evolution. If the counter
has not reached `, the environment is left to mediate correlations from the history to the future.

C, counting the measurement outcomes corresponding to ψAS . When C reaches `, then

the environment at that timestep is discarded and a fresh one prepared to govern the

future dynamics, and the counter is reset. If the correct measurement outcome is not

observed, the environment is left untouched and the counter is also reset.

It is evident that only upon application of the entire uncorrelated unitary sequence

{Vk−`, . . . ,Vk−1} are the temporal correlations guaranteed to be broken and the history

and future processes rendered conditionally independent. If, on the other hand, this

correct unitary sequence is not applied, the environment is allowed to mediate correla-

tions between system states of the history and future, breaking the quantum Markov

order condition. For any other sequence of operations implemented, although there is

a non-zero probability for the counter to reach `, this is not certain to happen; hence,

overall, the influence of the history on the future is not blocked. In other words, unless

the total unitary sequence is implemented by the experimenter, correlations between the

history and the future can be deduced. This process is of the form of Eq. (5.2) with re-

spect to the informationally-incomplete sequence of single-element unitary instruments,
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with the first sum containing a single term and the remainder of the process description

encapsulated in the second term

ΥFMH =
1
d`

Υ′F ⊗V′k−1 ⊗ . . .⊗V′k−` ⊗ΥH +
∑
y

Υ̃(y)
FH ⊗ ∆(y)

M , (5.3)

where the V′j/d are duals to the Choi states of the unitary maps V†j , and the conditional

process tensor Υ′F is the fresh future process initiated by successful implementation

of the cutting protocol, i. e., the process that ensues in line with the freshly prepared

environment state.

The process tensor in Eq. (5.3) is evidently an expression of Theorem 5.1; however,

some remarks are in order. Firstly, note that even in the special case ` = 1, the process

is non-Markovian, since it does not have the product structure outlined in Eq. (3.36)

(and the coherent unitary operation at timestep tk−1 required to block the effect of

history on the future operates on BL(Hk−1o ⊗Hk−1i)). Loosely speaking, the history-

blocking unitary operation does not serve to ‘cut’ the system line, but rather keep it

‘glued together’ so that temporal correlations can be transmitted through the system, in

contrast to the effect of a causal break. It is these transmitted correlations that are then

used to cut the information flow from the history to the future. Secondly, no sequence

of unitary operations can be IC; by definition, an informationally-incomplete sequence

cannot be used to extract full information about a process. Although we know that any

future dynamics will be independent of the history with respect to this sequence, we

cannot predict what the next state will be as a function of the history-blocking sequence.

5.1.2 Informationally-Complete History-Blocking Sequences

Interestingly, in Example 5.1, the influence of the history on the future is blocked only

by a sequence of coherent operations. This is somewhat counter-intuitive, as one might

expect unitary transformations to perpetuate memory effects. Clearly, the general struc-

tural constraint of Theorem 5.1 is rather flexible, since knowledge of such an incomplete

history-blocking instrument sequence does not determine the structure of the process

at hand. In many cases of interest, an experimenter makes use of an IC set of opera-

tions to probe the dynamics, e. g., when attempting to tomographically reconstruct a

generic process. In this case, since an IC instrument sequence does in fact span the entire

space of operations (by definition), there can be nowhere for potential memory effects

correlating the history and future to hide. The memory block can then be completely

114



5.1 structure of quantum processes with finite markov order

decomposed onto an IC set of duals, uniquely specifying the entire process for each se-

quence of outcomes realised on the memory block. In this case, finding the future process

to be conditionally independent of the history constrains the structure of the process

tensor in a stricter manner than Eq. (5.2); we immediately have the following corollary.

Corollary 5.2. A process with finite Markov order with respect to an informationally-

complete instrument sequence must have the following structure:

ΥFMH =
∑
x

Υ(x)
F ⊗ ∆(x)∗

M ⊗ Υ̃(x)
H . (5.4)

Note that this structure by no means implies that the process tensor is of a tensor product

form, or that the history is necessarily blocked by any instrument sequence other than

the IC one in question.

With this corollary at hand, it is enlightening to re-examine Theorem 4.2, which

states that the only processes with finite quantum Markov order with respect to all

instrument sequences are memoryless. Its proof begins by demanding Eq. (4.4) to hold

for all possible instruments. As such, we can consider an IC instrument sequence, in

which case the process tensor must be of the form given by Eq. (5.4). Then, using

the fact that one can construct arbitrary operation sequences spanning the space of

operations on M , we can vary ∆(x)
M freely. Demanding the structure of Eq. (5.4) to

remain intact for arbitrary outcomes forces a tensor product between M and F or H

(or both), meaning the process tensor is restricted to a single term in Eq. (5.4), i. e.,

it is of product form. Requiring this to hold for any timestep leads to a memoryless

process (either the Markovian or super-Markovian product structure of Eqs. (3.36) and

(4.6) respectively).

An operationally motivated choice for an IC instrument sequence consists of applying

a causal break at each timestep: recall that each operation here consists of an IC POVM

followed by an independent preparation of one of an IC set of states to feed forward at

each timestep (see Eq. (3.32)). The following example is constructed in such a way that

the process is non-Markovian; however, it exhibits finite Markov order with respect to

such an IC instrument sequence of causal breaks.

Example 5.2 (Finite Markov order with respect to an informationally-complete instru-

ment sequence (causal breaks)). Consider the process depicted in Fig. 5.2, where, for

simplicity, we present the case ` = 2 for a 3-step process, with the extension to longer

length memory immediate. Initially, the following tripartite state is prepared

ρY 2i1i =
∑
y

pyρ
(y)
Y ⊗ ∆(y)∗

2i ⊗ ρ(y)1i , (5.5)
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Figure 5.2: Finite memory for an informationally-complete sequence. Initially, a tripartite state
ρY 2i1i is constructed as per Eq. (5.5), with subsystems 1i, 2i of it fed out at consecutive timesteps
as described in the text. The states fed back into the process on spaces 1o, 2o are fed forward
as inputs to the CPTP map C3iY 2o1o defined in Eq. (5.6). Upon applying any combination of
the correct IC causal break sequence {σ(x)1o , Π(y)

2i ,σ(z)2o }, one of d6 final output states ρ(xyz)3i are
output by the process in the future, each of which is conditionally independent of the historic
ρ
(y)
1i . If any other operations are applied, correlations can arise between the history and future.

with {∆(y)
2i } forming the dual set to some IC POVM {Π(y)

2i } and Y labelling an ancillary

Hilbert space of the environment that is never accessible to the experimenter. The 1i

part of the initial state is fed out of the process at the first timestep, at which point

the experimenter can implement any operation of their choice; similarly, the 2i part is

fed out at the second timestep. The output states of the experimenter’s operations at

timesteps 1o and 2o are mediated forward by the process, along with the Y part of ρY 2i1i ,

as inputs to a CPTP map C : BL(HY ⊗H2o ⊗H1o)→ BL(H3i), whose Choi operator is

C3iY 2o1o :=
∑
xyz

ρ
(xyz)
3i ⊗D(y)∗

Y ⊗D(z)∗
2o ⊗D(x)∗

1o , (5.6)

where {D(y)
Y } are the dual set to {ρ(y)Y }, and {D

(z)
2o }, {D(x)

1o } respectively form the dual

set to some IC set of preparations {σ(z)2o }, {σ(x)1o }. This map acts to take each one of the

{σ(x)1o , ρ(y)Y ,σ(z)2o } combination of its inputs to one of d6 unique states ρ(xyz)3i , which are

the final outputs of the process.

Stipulating the construction of ρY 2i1i in Eq. (5.5) to be a positive semidefinite oper-

ator overall, and the map C3iY 2o1o defined in Eq. (5.6) to represent a valid evolution,

requires sufficient mixedness of each ρ(y)1i and ρ(xyz)3i ; additionally, choosing preparations

ρ
(y)
Y ,σ(z)2o and σ(x)1o such that

∑
xyz D(y)

Y ⊗D(z)
2o ⊗D(x)

1o = 1Y 2o1o ensures C3iY 2o1o satisfies

the necessary trace conditions of Eq. (3.15). Importantly, all of these conditions outlined

above can be achieved simultaneously. It then follows that there exists an underlying
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5.1 structure of quantum processes with finite markov order

unitary dilation of the map C3iY 2o1o . The overall process tensor for the process described

above is explicitly given by

Υ3i:1i =
∑
xyz

pyρ
(xyz)
3i ⊗D(z)∗

2o ⊗ ∆(y)∗
2i ⊗D(x)∗

1o ⊗ ρ(y)1i . (5.7)

Intuitively, the IC instrument sequence JM = {σ(x)1o , Π(y)
2i ,σ(z)2o } blocks any influence

from the history to the future, as the measurement performed at 2i leaves the initial

state ρY 2i1i in a product between Y and 1i for each outcome, such that the final output

state is then independent of any operation that could be performed at t1i . Indeed, for

any realisation of the instrument sequence, the conditional future and history processes

are in the product form of Eq. (4.4)

tr2o2i1o

[(
σ
(z)
2o ⊗Π(y)

2i ⊗ σ(x)1o

)T
Υ3i:1i

]
= pyρ

(xyz)
3i ⊗ ρ(y)1i . (5.8)

In this sense, the map C3iY 2o1o has no bearing on whether the effect of history is

blocked or not: an experimenter could coarse-grain over any of the preparations while

applying the correct measurement, e. g., feed in pσ
(x)
1i + (1− p)σ(x

′)
1i , yielding a future

state pρ(xyz)3i + (1− p)ρ(x
′yz)

3i that remains conditionally independent of the history ρ(y)1i

given any measurement outcome y of {Π(y)
2i } at t2i . Of course, simpler processes can

lead to an independent history and future with respect to the outcomes of an IC POVM

(see Example D.1 given in Appendix D.1). However, here we construct a more general

process with C3iY 2o1o defined as per Eq. (5.6) in order to yield d6 distinct future states

ρ
(xyz)
3i for each possible realisation of the causal break sequence, each one of which is

conditionally independent of the history.

Just as in the generalised collision model of Section 4.3, in principle an experimenter

can predict the next state of the system as a function of measurements and preparations

in the causal break sequence. Furthermore, since the history-blocking sequence is IC,

they could perform a process tomography to completely characterise the process as per

Eq. (5.7). If, on the other hand, the experimenter were to apply a different instrument

on the memory block, then correlations between the future and history would in general

arise (but, as already mentioned, they could vary the preparations and not see any

influence from the history).

The two examples provided in this section highlight significant properties of memory

in quantum processes. Example 5.1 explicitly shows that there exist processes where spe-

cific sequences of unitary operations can break all possible temporal correlations between

future and history, while Example 5.2 highlights that the operations of a history-blocking

instrument sequence can comprise an IC (in general non-orthogonal) set of independent

117



processes with finite memory length

measurements and preparations. So far, through Theorem 5.1 and Corollary 5.2, we

have developed the structural constraints that a process tensor must satisfy in order

to exhibit finite quantum Markov order for a given instrument sequence. However, this

characterisation is difficult to check in practice, due to the non-uniqueness of possible de-

compositions for a process tensor. It is therefore natural to seek a function of such finite

Markov order processes that vanishes iff there are no correlations between the history

and future remaining once a memory block of length ` is specified. For classical stochas-

tic processes (without interventions), it is straightforward to show that the CMI of the

underlying joint probability distribution has the desired property. In contrast, in both

of the above examples (and also in the generalised collision model of Section 4.3), the

quantum CMI evaluated on the Choi operator of the process tensor between the history

and future with respect to the memory is non-vanishing. For the sake of comprehen-

siveness, we explicitly construct the process tensor for a simple example and calculate

the quantum CMI to be non-zero in Appendix D.1. This observation is insightful for

a number of reasons which we address in the coming section, where we explore in de-

tail the necessary conditions on the history-blocking instrument sequences for processes

with vanishing quantum CMI, of which classical processes with finite Markov order are

a special case.

5.2 quantum markov order and conditional mutual information

In light of the observation above, we have the following theorem.

Theorem 5.3. Vanishing quantum CMI guarantees the process has finite quantum

Markov order; the converse is not true.

The structure of processes with vanishing quantum CMI can be deduced from that of

quantum states with vanishing quantum CMI, with the additional causality constraint

imposed to ensure a valid process. The CMI of a quantum process is defined by I(F :

H|M) := S(ΥFM ) + S(ΥMH)− S(ΥFMH)− S(ΥM ), and it vanishes iff there exists a

block orthogonal decomposition of the compositeM Hilbert space as HM =
⊕
mH

(m)
ML ⊗

H(m)
MR , such that [137]

ΥCMI=0
FMH =

⊕
m

pmΥ̃(m)
FML ⊗ Υ̃(m)

MRH
. (5.9)

Here, the decomposition of HM does not necessarily respect the temporal ordering of

the underlying process; specifically, the Hilbert spaces {H(m)
ML} do not need to describe

events that occur strictly before or after those described in {H(m)
MR}.

118



5.2 quantum markov order and conditional mutual information

The proof of Theorem 5.3 is given in Appendix D.2; the basic strategy is to explicitly

construct a history-blocking instrument sequence for processes of the form in Eq. (5.9),

and show that this structure is a special case of Eq. (5.2), meaning that vanishing

quantum CMI implies finite Markov order. The history-blocking sequence we construct

is, in fact, made up of the set of orthogonal projectors (which form a self-dual set) onto

each of the m subspaces in the decomposition above.

An immediate reason for why the converse does not have to hold is that there is no

reason why the memory blocking operations should be sharp, i. e., that the projectors are

rank-1 and pairwise orthogonal. In the case where the experimenter finds conditional

independence with respect to a sequence of higher-rank fuzzy projectors, the future-

history correlations hidden within eachm subspace need not obey the constraint implied

by Eq. (5.9), and hence the process can have non-vanishing quantum CMI, as shown

explicitly in Example D.2 of Appendix D.3. As we have already seen in Section 4.2,

similar behaviour arises in an operational interpretation of classical stochastic processes:

if the experimenter cannot measure realisations of the process sharply then the statistics

observed do not necessarily have vanishing classical CMI, even if the true underlying

process is one of finite Markov order (see the examples in Appendix C.3).

This immediately begs the question: do processes with finite Markov order with re-

spect to an instrument sequence comprising only rank-1 orthogonal projectors necessar-

ily have vanishing quantum CMI? In addition to the proof of Theorem 5.3, we show in

Appendix D.2 that—perhaps surprisingly—this is not the case. Intuitively, this is be-

cause such projectors that make up an instrument can live on an extended input-output

Hilbert space at each timestep; in quantum theory, sharp measurements of composite

systems can be fuzzy locally if they are made in an entangled basis. Thus, even if the

instrument sequence comprises only rank-1, orthogonal projectors, the structural condi-

tion implied on the process tensor is still not strong enough to force a block-diagonal

representation as necessary for the quantum CMI to vanish. Here we provide an explicit

example that evidences this point.

Example 5.3 (Process with non-vanishing quantum CMI but finite Markov order

for a sequence of rank-1, orthogonal projectors). Consider the process depicted in

Fig. 5.3. The 4-dimensional ancilla qudit is initially in a coherent superposition |τ〉A =

α|0〉+ β|1〉+ γ|2〉+ δ|3〉 with |α|2 + |β|2 + |γ|2 + |δ|2 = 1 constituting the environment.

Controlled on the state of this qudit, the process implements one of the four Pauli maps
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Figure 5.3: Process with non-vanishing quantum CMI. The environment is a 4-dimensional
ancilla. Its initial state is a coherent superposition of the basis states {|0〉, . . . , |3〉}. The system-
environment evolution is a control unitary, which implements one of the the four Pauli rotations
V := {I,X ,Y,Z} on the system depending on the state of the ancilla (see top panel). The
history-blocking instrument sequence consists of feeding in one half of a Bell pair and, at the
next step, measuring the system and the other half in the Bell basis at the next timestep. For
each outcome of this instrument, one can infer which of the four Pauli rotations was applied,
and the history and future processes are conditionally independent. For illustrative purposes,
the bottom panel depicts the conditional processes that arise from successful implementation of
the operation 1

4 Ψ+, which occurs with probability |α|2.

(including the identity map), V := {I,X ,Y,Z}, on a single qubit system. The Choi

operators of these maps are the projectors of the four (unnormalised) Bell pairs

|Ψ±〉 := |00〉 ± |11〉 and |Φ±〉 := |01〉 ± |10〉. (5.10)

Suppose that the process continues for n timesteps and, at the end of the process,

the ancilla is fed out with the system in order to retain the quantum features of the

process. For simplicity, we also assume that there are no initial system-environment

correlations, allowing us to define the process as one beginning on an output wire at

t1. The corresponding process tensor is Υn:1 = |Υ〉〈Υ| ∈ BL(HAni ⊗HSni ⊗HSn−1o ⊗ . . .⊗

HS1o), where

|Υ〉 :=α|0〉Ani ⊗ |Ψ+
nin−1o . . .Ψ+

2i1o〉+ β|1〉Ani ⊗ |Φ+
nin−1o . . .Φ+

2i1o〉 (5.11)

+ γ|2〉Ani ⊗ |Φ−nin−1o . . .Φ−2i1o〉+ δ|3〉Ani ⊗ |Ψ−nin−1o . . .Ψ−2i1o〉.

120



5.2 quantum markov order and conditional mutual information

Note that this is not a Markovian process (it is not of the product form of Eq. (3.36)),

nor is it a classical probabilistic mixture of such processes; rather, the process tensor

is a pure state representing a coherent superposition of implementing sequences of the

four Pauli maps, corresponding to a genuinely quantum memory.

Consider the instrument sequence where, at some timestep tk−1, an experimenter

inputs half of one of the Bell pairs, feeds the other half forward to the next timestep

tk, and then makes a Bell basis measurement on the fed-forward ancilla and the system

state output by the process (see Fig. 5.3). This instrument is made up of the Choi states

Jkik−1o = {O(x)
kik−1o} := 1

4{Ψ
+
kik−1o , Φ+

kik−1o , Φ−kik−1o , Ψ−kik−1o}. Since all cross terms in

Υn:1 are orthogonal to any of these, for each outcome observed upon their application,

the experimenter observes one of the following four conditional processes

Υ̃(0)
FH = |α|2Ψ+

F ⊗Ψ+
H , Υ̃(1)

FH = |β|2Φ+
F ⊗Φ+

H (5.12)

Υ̃(2)
FH = |γ|2Φ−F ⊗Φ−H , Υ̃(3)

FH = |δ|2Ψ−F ⊗Ψ−H ,

where Ψ+
F := |0〉Ani ⊗ Ψ+

nin−1o ⊗ . . .⊗ Ψ+
k+1iko , Ψ+

H := Ψ+
k−1ik−2o ⊗ . . .⊗ Ψ+

2i1o , and the

superscript label corresponds to each possible realisation e. g., the label (0) corresponds

to the experimenter feeding in half of the state Ψ+/2 and successfully measuring it,

which occurs with probability |α|2, and similarly for the other quantities defined. The

conditional tester elements can thus each be normalised to a proper process tensor by

simply dividing by the appropriate probability e. g., Υ(0)
FH = Υ̃(0)

FH/|α|2.

Intuitively, once an outcome of the instrument described is observed, the experimenter

can deduce which of the four independent control operations were applied to the system

and hence the state of the ancilla, which collapses onto one of its computational basis

states and does not change further throughout the process. This means that the history

and future processes are known with certainty and are thus conditionally independent

with respect to knowledge of the instrument outcome. In contrast, suppose that the

experimenter were to perform an incoherent operation, such as feeding in the maximally

mixed state before averaging over all measurement outcomes at the subsequent timestep.

In this case, the conditional future-history process is now a probabilistic mixture of

the four control operations being applied i. e., ΥFH =
∑
x Υ̃(x)

FH , with {Υ̃
(x)
FH} defined

in Eq. (5.12). Such a mixture of Markovian processes is non-Markovian due to the

correlations between the future and history: indeed, in this scenario an experimenter

could condition the future dynamics by performing certain operations in the history.

A simple calculation shows that the quantum CMI between the history and future

given the memory for the process tensor in Eq. (5.11) does not vanish; rather, it is equal
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to the Shannon entropy of the distribution P(x) = {|α|2, |β|2, |γ|2, |δ|2}. Lastly, note

that, had we chosen to discard the ancilla, rather than feed it out at the final timestep,

the corresponding process tensor is a probabilistic mixture of sequences of the four Pauli

maps applied, i. e., the projector of Eq. (5.11) without any cross terms. In this case, the

process tensor is of the form in Eq. (5.9) and the quantum CMI vanishes.

In summary, here we have an example of a process which has finite Markov order with

respect to an instrument sequence comprising only rank-1, orthogonal projectors, but

nonetheless has non-vanishing quantum CMI. The example presented here represents a

genuinely quantum mechanical memory effect with no classical analog. The intuition

behind the distinction is that in the classical setting, d orthogonal projectors are IC for

a d-level system, whereas this fails to hold true in the quantum realm. An additional

restriction on the “off-diagonal” terms of the process tensor must be adhered to in order

to ensure the quantum CMI vanishes, which is formulated in Appendix D.2.

5.3 chapter summary

In this chapter, we have outlined some of the key features of memory length in stochastic

processes, many of which are peculiar to quantum mechanics. We began by tackling the

general problem: given a sequence of operations that acts to erase the effect of history

on the future of a process, what can we say about its overall structure? In Section 5.1

we detailed the generic constraint on process tensors with finite quantum Markov or-

der, providing the most general structure deducible to an experimenter who knows the

history-blocking instrument sequence in question. The first special case of this structure

was exhibited in Example 5.1, where we studied a process whose history is blocked by

a sequence of unitary operations. Although such unitary sequences can serve to block

the effect of history, they provide minimal information to the experimenter about the

process at hand and thereby represent the extremal case of informationally-incomplete

history-blocking instrument sequences. On the other extreme are IC instruments which

stipulate the complete description of the process. We then considered processes with

finite-memory with respect to such IC instrument sequences, in particular an IC POVM

followed by an independent repreparation of a state from an IC set in Example 5.2.

Following this, we analysed the connection between quantum Markov order and the

vanishing of the quantum CMI. As mentioned previously, until the recent introduction of

the process tensor, there was no meaningful way to develop a sensible notion of Markov

order in the temporal setting, since the statistics observed in time depend upon how an
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experimenter probes the process and are thus inherently instrument-dependent. Despite

this concern, many efforts throughout the literature are concentrated on Markov chains,

defined as tripartite quantum states that are recoverable or (equivalently) have vanish-

ing quantum CMI. On the other hand, the general theory of quantum Markov order

for processes introduced here is captured by the conditional independence statement of

Eq. (4.4); this instrument-dependent statement is in stark contrast with the aforemen-

tioned definitions on quantum states, which make no mention of the instrument sequence

of choice. Therefore, it is not immediately clear how such characterisations concretely

relate to temporal processes with finite quantum Markov order.

Nonetheless, the CJI lets us consider temporal processes in terms of their corresponding

Choi operator, allowing us to concretely examine the link between the two inequivalent

notions. In Section 5.2, we proved that in the quantum realm, processes with finite

Markov order with respect to a sequence of instruments need not necessarily have van-

ishing quantum CMI. Although a similar departure can arise in the study of classical

stochastic processes where fuzzy measurements are permitted, in quantum mechanics

there can exist processes with finite Markov order with respect to a sequence of sharp,

orthogonal projectors that has non-vanishing quantum CMI—in direct contradistinction

to the classical setting. An explicit construction is provided in Example 5.3 and the

additional constraints on the process tensor required to guarantee vanishing quantum

CMI are detailed in Appendix D.2.

The results uncovered in this chapter raise some interesting avenues for future ex-

ploration. For instance, many realistic physical scenarios are often modelled by specific

forms of interactions, e. g., nearest-neighbour interaction spin chains evolving in a time-

translationally invariant manner. In such a scenario, whilst a generic sequence of instru-

ments such as the trash-and-prepare protocol will typically not act to block the historic

influence, in practice it may be the case that such a sequence almost always approxi-

mately blocks the influence of history. A natural extension to this work would involve

a deeper exploration of memory effects in specific physical models with respect to the

instrument-specific quantum Markov order formalism.

A first step to understanding processes with approximately finite-length memory is

to quantify memory strength, that is, the amount of temporal correlations remaining

between the history and the future processes after an instrument sequence of choice

is implemented on the memory block. In the coming chapter, we will introduce an

instrument-specific notion of memory strength and explore its flexibility in characterising

memory effects in an exactly solvable non-Markovian model.

123





6

MEMORY STRENGTH

So far, we have looked at the structural properties of processes with

finite Markov order. Now, we will quantify the strength of said memory effects,

if they exist; that is, the degree to which they influence the observed statistics.

This can be quantified by the temporal correlations remaining between the history and

the future processes for a specified instrument on the memory block. In other words, we

wish to understand the deviation from future-history independence with respect to the

instrument sequence in use.

The ultimate goal concerning the quantification of memory strength is to understand

the circumstances under which one can effectively describe processes in an efficient

manner. Indeed, we are unlikely to find processes with strictly finite Markov order in

nature, since, with respect to generic instruments, non-Markovian processes typically

exhibit infinite memory length. Understanding how strong the memory effects across

a given duration in time are has significant implication for the simulation of processes

with approximately finite memory length.

For instance, numerical techniques for open dynamics often invoke finite memory

approximations, where rapidly vanishing temporal correlations are truncated [24, 175–

177]. This is tantamount to treating the process as having finite Markov order with

respect to the identity instrument (i. e., doing nothing to the process), although memory

approximations involving other choices of instruments can also be made [178]. Another

related result concerns quantum states with small quantum CMI. Recent bounds on the

fidelity of recovery show that these tripartite quantum states allow for the existence of

a CPTP map that approximately recovers the total state from only partial information,

i. e., by acting upon the conditioning subsystem alone [139]. Although this result does

not directly pertain to processes, the CJI permits similar considerations in the temporal

setting. However, as we have seen in the previous chapter, the quantum CMI is a poor
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quantifier for the memory strength, as it does not necessarily vanish for processes with

finite Markov order.

As we have laid out so far in this thesis, genuine memory effects in quantum processes

must be specified with respect to the instrument sequence used to probe them. It is thus

natural that a proper quantification of strength must also be instrument-specific. To this

end, in this chapter, we will first develop a number of viable candidates for quantifying

memory strength in quantum processes. We will then examine these quantifiers and

the resulting measures for memory strength for an exactly solvable system-environment

model, introduced in Ref. [179]. This model is amenable to the analysis of memory

effects for a large host of physical situations by tuning parameters in the corresponding

system-environment Hamiltonian, and therefore allows us to explicitly study many of

the main concepts introduced throughout this thesis. We first highlight that multi-time

memory effects, which remain uncaptured by two-time witnesses of non-Markovianity,

are present throughout the parameter space, before exploring its memory structure with

respect to natural families of instrument sequences. Here we see that over a fixed length

of the memory block, the process indeed displays different memory strength for different

probing instruments.

An important special case is where the instrument sequence is chosen to be the identity

transformation on the system, as this pertains to the ‘natural’ memory of the process

at hand, in the sense that it ties in most nicely with existing discussions of memory. For

instance, standard numerical open systems techniques can be appropriately implemented

when the memory effects in such cases die off rapidly [24]. We go on to study this

situation, exploring the length of time over which the memory in the process naturally

decays.

6.1 quantifying memory strength

We begin by introducing an instrument-specific notion of memory strength. We build this

up by first introducing quantifiers of the memory effects for each specific outcome of the

instrument sequence in question, before motivating a number of suitable aggregations

that compress these numbers into a single quantifier for the overall memory strength for

the instrument.

126



6.1 quantifying memory strength

6.1.1 Instrument-specific Memory Strength

We have already encountered a quantity that serves as a suitable starting point to the

quantification of memory: the mutual information between the conditional history and

future processes for each realisation of an instrument on the memory block (see Eq. (4.5)).

We take these values as the foundation of the definition of memory strength.

Definition 6.1 (Outcome-specific memory strength). The memory effects of a process

across ` = |M | timesteps are characterised by the mutual information between the

conditional history and future processes for each outcome of the instrument:

SJM (xM ) := I(F : H)xM = S(Υ(xM )
F ) + S(Υ̃(xM )

H )− S(Υ̃(xM )
FH ), (6.1)

where JM = {O(xM )
M } and Υ̃(xM )

FH = trM
[
O(xM )
M ΥFMH

]
.

Note that this is not yet a complete definition of memory strength for the full instru-

ment, but a quantifier for each specific outcome. Nonetheless, the quantity vanishes for

all xM iff the process has finite memory with respect to the instrument sequence JM .

One possible way to aggregate these quantifiers would be to take the average with

respect to the probabilities of each realisation xM ; however, this is not necessarily valid,

as the corresponding probabilities in general depend on the historic probing instruments.

Nonetheless, an average with respect to the uniform distribution serves to quantify

the overall memory effect one might expect for the given instrument, when taking the

uniform distribution as the unbiased prior for the occurrence probability of the respective

outcomes. In this way, we define the average memory strength for JM as follows.

Definition 6.2 (Average instrument-specific memory strength). The average memory

strength for the instrument JM is computed by taking the average of the outcome-

specific mutual informations between the history and future (as per Def. 6.1) with respect

to the uniform distribution:

Savg
JM := 1

|JM |
∑
xM

SJM (xM ). (6.2)

Alternatively, taking the maximum over all outcomes of the instrument sequence

provides a quantifier for the extremal scenario that an experimenter might see in an

individual run of the experiment.

Definition 6.3 (Maximum instrument-specific memory strength). The maximum mem-

ory strength for the instrument JM is the maximum of the outcome-specific mutual in-

formations between the history and future (as per Def. 6.1) over all possible outcomes:

Smax
JM := max

xM
SJM (xM ). (6.3)
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Both Defs. 6.2 and 6.3 are no longer outcome-specific, but rather instrument-specific

in the sense that they pertain only to quantifying the overall memory effect across a

specified instrument. They both vanish iff the process has quantum Markov order `

with respect to JM . In contrast, taking, say, the minimum value as a memory strength

quantifier and finding it to be zero does not necessarily imply the process to have finite

Markov order, since the individual tester element corresponding to the minimum only

provides a probabilistic history-blocking, whereas the remaining CP maps belonging to

the instrument need not.

The instrument-specific memory strength definitions allow us to deduce the temporal

correlations of the process over any time interval with respect to any set of instruments.

For a fixed `, minimising any suitable function of SJM (xM )—such as the average or

maximum over outcomes—over all instruments provides a quantification of the intrin-

sic memory strength. That is, the amount of temporal correlations across ` timesteps

that cannot be erased by any interrogation sequence, which vanishes iff the process is of

Markov order `. The instrument corresponding to the minimum value, argminJM (SJM ),

can be interpreted as providing the optimal history-blocking sequence across the given

length. On the other hand, argmaxJM (SJM ) relates to the optimal strategy for trans-

mitting information across the memory block; the maximum value provides a novel

quantification of the process capacity, which is an alternate way of quantifying the chan-

nel capacity in the presence of memory [47, 48].

Performing such optimisation is a difficult task in general.1 Moreover, implementing

the optimal sequences in either case may not be possible in practical laboratory setups, as

it will generally require the ability to control temporally-correlated quantum operations.

However, there are at least two specific instrument sequences that are of immediate

relevance, namely the identity instrument and the completely-noisy instrument. The

former leaves the system state unchanged and thus relates to the “natural” transmission

of information on the system level across the memory block, whereas the latter considers

the case where the experimenter tries to actively erase this information by discarding

the state emitted by the process and repreparing white noise.

Consequently, we now focus on specifying two particularly important instruments and

define the memory strength with respect to them. Note that both the identity map and

the completely-noisy instrument have only a single outcome, and thus no aggregation

1 Since Smax
JM

simply maximises over all CP maps, and Savg
JM

optimises over all CPTP maps—both of which
are convex sets—the optimisation should be phraseable as a semidefinite program. However, it is unclear
if this is also the case for more general functions of SJM

(xM ).
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over outcomes is required and we simply have an instrument-specific memory strength

denoted SJM . We define the natural memory strength across a length ` as follows.2

Definition 6.4 (Natural memory strength). The natural memory strength across a

duration of length ` = |M | is the mutual information between the history and the

future upon application of a sequence of identity maps on the memory block:

N` := SIM = I(F : H)ΥIMFH
, (6.4)

where ΥIMFH := trM
[
Ψ+
MΥFMH

]
, with Ψ+

M =
⊗k−1

j=k−` Ψ+
joji denoting the Choi operator

of the sequence of identity maps.

We also define the noise-resistant length-` memory.

Definition 6.5 (Noise-resistant memory strength). The noise-resistant memory

strength across a duration of length ` is the mutual information between the history

and the future upon application of a sequence of maps that discard the state emitted

by the process and feed in the maximally-mixed state:

R` := S1M = I(F : H)ΥFH , (6.5)

where the mutual information is simply calculated on the future-history marginal of the

process tensor, i. e., Υ1MFH = ΥFH = 1
do
M
trM [ΥFMH ], with the normalisation accounting

for the preparation of maximally-mixed states.

This instrument sequence corresponds to applying any POVM without recording the

outcomes followed by preparing the maximally-mixed state. The Choi operators corre-

sponding to any such erasure sequence amount to the identity matrix on all of the input

and output Hilbert spaces associated to each timestep in the memory block. In turn, this

implies that R` quantifies the amount of memory that survives the erasure on average.3

The notions introduced in this section are depicted in Fig. 6.1. We can either consider

a fixed length ` and examine how the memory strength behaves over that duration for a

variety of instruments, or, on the other hand, consider a fixed instrument and examine

the memory as the number of (uncorrelated) sequential applications of said instrument

grows with respect to `. We now explicitly construct a process tensor describing an ex-

actly solvable non-Markovian system-environment model in order to study the behaviour

2 Since there is only a single outcome for the instruments considered in the following definitions, we depart
from the notation introduced in Def. 6.1. Instead, we resort to the notation prevalent in the literature.

3 For processes with vanishing quantum CMI, the marginal future-history marginal is separable [137], im-
plying that any faithful entanglement measure E(F : H)ΥF H

(see Ref. [85]) vanishes and any correlation
between the history and future upon implementing a length-` erasure sequence is classical.
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Figure 6.1: Instrument-specific memory strength. We depict the instrument-specific memory
strength across a length ` = 2. In panel a) is the natural memory strength, which is calculated
with respect to the identity instrument. In panel b) is the noise-resistant memory-strength, in
which an experimenter discards the system states and feeds in white noise. In both cases, the
instrument has only one outcome, and the memory strength is simply the mutual information
between the history (red) and future (blue) conditional processes. Panel c) shows the memory
strength with respect to a causal break, where one must choose a suitable aggregate over the
mutual information for each outcome, such as averaging or maximising over outcomes.

of both the average and maximum memory strength in Eqs. (6.2) and (6.3) respectively

for a causal break sequence, and both the natural and noise-resistant memory strength

defined in Eqs. (6.4) and (6.5) respectively.

6.1.2 Memory Length for an Exactly Solvable Model

Here, we focus on a model involving a qubit coupled to another qubit that is interacting

with an additional bath (which is regarded as external to the system-environment), as

introduced in Ref. [179]. Its low dimensionality makes it easy to solve analytically and

therefore permits the investigation of memory effects for different model parameters.
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The system-environment evolution proceeds according to the GKSL master equation

∂ρSEt
∂t

= −iξ[σSx ⊗ σEx , ρSEt ] + κL[σE− ](ρSEt ), (6.6)

where the dissipator acts on the environment alone and is defined as: L[σE− ](ρSEt ) :=

σE−ρ
SE
t σE+ − 1

2{σ
E
+σ

E
− , ρSEt }, with σE± := σEx ± iσEy . The dynamics describes a qubit sys-

tem interacting with a qubit environment with X–X coupling strength ξ and a cooling

process on the environment due to its interactions with the external bath at rate κ.

The authors of Ref. [179] examined the non-Markovianity of the system dynamics us-

ing the breakdown of CP-divisibility, and the increase of the trace-distance distinguisha-

bility between arbitrary input states (introduced in Refs. [66] and [92] respectively) as

measures of the existence of temporal correlations. Due to the simplicity of the model,

the analytic form of the equation of motion on the level of the system alone can be

derived and is written [179]

∂ρSt
∂t

= − ċt
2ct
L[σSx ](ρSt ), (6.7)

where

ct =



exp
(
−κt

4
) (κ sinh t

4

√
κ2−64ξ2

√
κ2−64ξ2

+ cosh t
4
√
κ2 − 64ξ2

)
for κ2 > 64ξ2

exp
(
−κt

4
) (κ sin t

4

√
64ξ2−κ2

√
64ξ2−κ2

+ cos t
4
√

64ξ2 − κ2
)

for κ2 < 64ξ2

exp
(
−κt

4
) (

1 + 1
4κt
)

for κ2 = 64ξ2.

(6.8)

A necessary and sufficient criteria for the dynamics to be CP-divisible is that the coeffi-

cients of the dissipation terms in the above master equation for the system, i. e., − ċt
2ct ,

are non-negative for all times [7]. Explicit calculation shows that for κ2 ≥ 64ξ2, − ċt
2ct is al-

ways non-negative, whereas for κ2 < 64ξ2,− ċt
2ct is negative whenever cot 1

4 t
√

64ξ2 − κ2 <

− κ√
64ξ2−κ2

. We therefore see an abrupt transition between CP-divisible and non-CP-

divisible dynamics across the line κ2 = 64ξ2, as shown in Fig. 6.2.

In the CP-divisible regime, the trace-distance between any two states subject to the

evolution is always non-increasing [92]. This fact allows for the quantification of (two-

time) non-Markovianity by integrating any increases in the trace distance over all time,

which is shown in Ref. [179] to yield the analytic result

NTwo-time =
1

exp
(

κπ√
64ξ2−κ2

)
− 1

, (6.9)

for κ2 < 64ξ2 and zero otherwise.

However, as discussed, CP-divisibility does not imply Markovianity; as such, Fig. 6.2

does not provide a comprehensive picture of the many prevalent memory effects for
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Figure 6.2: Abrupt transition between CP-divisible and non-divisible dynamics. In panel a), we
plot ∂t|ct| with ξ = 1. As sgn ( ċtct ) = sgn (∂t|ct|), this implies the dynamics is CP-divisible for
κ ≥ 8, but not for κ < 8. In particular, there is an abrupt transition along the line κ = 8. In
panel b), we plot the two-time non-Markovianity NTwo-time as per Eq. (6.9). This is plotted
in the parameter space ξ ∈ [0, 5] and κ ∈ [1, 10] to allow for comparison with Fig. 6.3. Note
that this measure of non-Markovianity blows up exponentially for small κ, which is why we have
excluded κ ∈ [0, 1) from the plot, and that it vanishes for everything above the black line κ = 8ξ.

different choices of parameters κ and ξ. Here, we explicitly calculate the process tensor

for the dynamics and show that it is non-Markovian for the entire parameter regime,

before exploring the behaviour of the instrument-specific memory strength quantifiers

introduced in the previous subsection.

We consider a parameter grid ξ ∈ [0, 5] and κ ∈ [0, 10] with increments of 0.1 in each

direction and construct the n = 6 step process tensor, Υ6:1(ξ,κ). Here, for simplicity, we

assume an initially uncorrelated system-environment state, such that the process tensor

begins on an output space. We also choose uniform spacing between timesteps of dt =

0.3, which corresponds to the natural timescale over which the trace distance between

arbitrary initial system states increases for most values in the parameter space [179]. This

means that the final time of the process tensor is T = 1.5, which corresponds to where

the CP-divisibility criteria would witness non-Markovianity for a range of parameters.

At each point, we can calculate the non-Markovianity in the process by considering

the distance to the nearest Markovian process, as per Eq. (3.40). Here, we choose the

(pseudo-)distance to be the relative entropy, D(Υ6:1(ξ,κ)‖ΥMarkov
6:1 ), in which case the

minimum occurs for the Markovian process that is built up from the marginals of the

original process tensor [180], i. e., using the relative entropy circumvents the normally
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necessary minimisation. The corresponding results are depicted in Fig. 6.3, which indi-

cates that the process is non-Markovian for all parameters in the chosen range. In par-

ticular, there is no abrupt transition between regimes. Although the non-Markovianity

is small above the line κ = 8ξ—at which the dynamics transitions from CP-divisible to

non-divisible—it is non-zero, indicating a weak but detectable memory. The two-time

witness of non-Markovianity in Eq. (6.9) is insensitive to such effects, which leads to

the abrupt transition between regimes; by capturing all multi-time correlations, the

non-Markovianity calculated via the process tensor shows this transition to be artificial.

This result begs the question: how long does the memory persist? We now move to study

the behaviour of some of the memory quantifiers proposed in the previous subsection.

Figure 6.3: Heatmap of non-Markovianity.
Non-Markovianity of Υ6:1(ξ,κ). Although the
non-Markovianity is small above the line κ ≥
8ξ, it is non-zero. Moreover, there is no abrupt
transition between regimes, as all memory ef-
fects are accounted for.

To this end, we consider three fixed

process tensors: one in the almost

Markovian and CP-divisible regime, one

in the intermediary regime, and one in

the strongly non-Markovian regime, re-

spectively defined as follows

ΥCP := Υ6:1(0.5, 6) (6.10)

ΥInt := Υ6:1(3, 8)

ΥSNM := Υ6:1(3, 2).

We first consider, for fixed ` ∈ {1, . . . , 4}

ranging from t2 to t5, the natural and

noise-resistant memory strength defined

in Eqs. (6.4) and (6.5) respectively. We

also consider the memory strength for

length-` sequences of causal breaks, by

first constructing the collection of outcome-specific values in Eq. (6.1) and subsequently

calculating the average and maximum memory strength in Eqs. (6.2) and (6.3) for the

instrument. The causal break is chosen to be a symmetric single-qubit IC POVM (defined

in Example D.1) followed by the independent repreparation into one of an IC set of states

{|0〉〈0|, |1〉〈1|, |+〉x〈+|x, |+〉y〈+|y}, where |+〉x/y is the +1 eigenstate of σx/σy.

The results are summarised in Fig. 6.4. Interestingly, all three of these processes have

vanishing memory strength with respect to the completely noisy instrument, meaning

that an experimenter can erase the temporal correlations in the process by acting at a

single timestep. The other three quantities do not vanish and display stark differences.
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Figure 6.4: Instrument-specific memory strength. Here we plot the natural memory strength
(panel a)), and both the maximum and average memory strength with respect to a causal break
sequence (panels b) and c) respectively) as a function of `. Note the changing vertical scales and
the legend on the right. Interestingly, the process tensor in the CP-divisible regime (blue) has
the strongest memory strength with respect to sequences of the identity instrument, followed by
that in the strongly non-Markovian regime (yellow) and lastly that in the intermediate regime
(green). By comparing panel a) with panels b) and c), it is clear that for the CP-divisible process,
most of the memory strength arises by way of the identity instrument transmitting information
on the level of the system; when active probing interventions such as those of a causal break
stop this flow of information, its memory strength becomes negligible. On the other hand, for
the intermediate and strongly non-Markovian processes, significant multi-time memory effects
are exhibited for all instruments shown.

All three processes display the strongest memory strength with respect to the identity,

suggesting that a non-negligible amount of memory is transmitted on the level of the

system alone by way of the identity operator. Moreover, it is the process tensor in the

CP-divisible regime that exhibits the strongest natural memory strength, with that in

the intermediate regime displaying the weakest. However, the effects of active interven-

tions come to light when we consider the causal break instrument. Here, the CP-divisible

process tensor displays almost vanishing memory strength with respect to either aggre-

gation, with the intermediate process showing some memory effects and the strongly

non-Markovian one exhibiting stronger temporal correlations still. This is not surpris-

ing, as a causal break acts to block the flow of information on the level of the system,

which should effectively wipe-out any temporal correlations in a CP-divisible process.

In all cases, the memory strength decays across longer memory blocks, as is intuitively

expected.
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6.2 chapter summary

In this chapter we have proposed a number of instrument-specific definitions of memory

strength. By accounting for all multi-time memory effects that are potentially present in

a process, these definitions serve to unambiguously characterise how strong the temporal

correlations between the history and the future are for any chosen sequence of instru-

ments applied by an experimenter. Indeed, such instrument-specific notions of memory

strength are directly relevant for experimental applications and computational simula-

tion techniques: they provide an operational approach that permits making memory

cutoff approximations of choice, rather than relying on the natural timescales of decay

imposed by the system-environment dynamics, as are prevalent throughout numerical

techniques [24]. Indeed, techniques of a similar flavour are being developed through ex-

tensions of the transfer tensor formalism [178, 181–184], bridging the connection between

characterisation and efficient simulation of quantum processes with memory.

In studying the exactly solvable model, we showed a prime example of how this might

be applied in practice, by examining how the behaviour of memory strength varies

for different instruments and across different timescales. By tuning the parameters of

the model appropriately, one could simulate dynamics that is amenable to short-time

memory approximations with respect to sequences of causal breaks, for instance, by

e. g., constructing the CP-divisible process of Eq. (6.10). Indeed, the decay of memory

effects over longer sequences of active interventions is related to various operational

protocols such as dynamical decoupling [11], erasure of information or transmission

of information [47, 48]. The results developed here for the simple two-qubit model are

already interesting in their own right, and are suggestive of the possible insights that may

be uncovered by considering the memory strength and related approximation techniques

for appropriate choices of instruments in a variety of situations.
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Part IV

E N VO I

You can trip off to places so wild and so wiggy that you don’t know where

you are until you get back. And sometimes not even know you tripped off at

all because you never get back to know that you’ve left...

— Ken Kesey, Sometimes a Great Notion.
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SUMMARY

Non-negligible memory effects play a crucial role in phenomena

studied throughout a vast range of sciences—physical, biological, chemical,

neurological, economical, . . . ; the list goes on. Many such effects are highly

complex and their treatment lies beyond the cutting edge of current knowledge and

experimental reach; on the other hand, when adequately understood, memory can be

manipulated in order to develop state-of-the-art technologies. Thus, a proper theoretical

description of processes with memory is of immense practical importance, marking a

kind of glory that is deserving of pursuit.

To develop such a comprehension requires, quite naturally, a thorough understanding

of the limitations of the prevailing descriptions. This was the focal point of Chapter 2:

we first studied classical stochastic processes, which are well-understood and can easily

be defined in an unambiguous way. This served as a point of reference against which

open quantum evolution stands in juxtaposition when multi-time correlations are of

importance. Up until recently, the murkiness surrounding quantum stochastic processes

has led to ambiguity in defining many key concepts, culminating in—amongst other

confusions—a myriad of incompatible definitions of memoryless quantum processes.

This comparison also made clear that the critical problem is one of formalism, rather

than anything fundamental: two-time descriptions of stochastic processes, as they are

used ubiquitously in the literature, are inadequate to describe general processes with

memory. This is a statement of logic that transcends the physical theory to which it

applies, holding equally true in both the classical and quantum realms. In Chapter 3

we saw that in order to capture multi-time correlations in a quantum process, due to

the invasive nature of measurement at the nanoscale, we must clearly delineate between

the role of the experimenter and that of the underlying physical evolution. This line of

thinking naturally led us to a clear definition of quantum stochastic processes by way

of the process tensor formalism.
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The process tensor ameliorates the aforementioned obstacles, at once providing a

linear, completely-positive and trace-preserving (in the correct sense) description that

completely captures any causally-ordered evolution on a discrete set of timesteps admis-

sible by quantum theory. Its definition stems from the dilated joint unitary evolution,

which offers an intuitive connection to the physical mechanism that drives the process.

By abstracting the uncontrollable process at hand from the sequence of controllable

interrogations an experimenter might choose to apply, this operational picture captures

all possible multi-time statistics that can be deduced with respect to any valid prob-

ing schema conceivable. Thereby, it both unifies and generalises previous definitions of

memorylessness for quantum processes.

Thus, Part II summarises the story so far, leading us to a narrative on the edge: with

the correct tools for describing general stochastic processes with memory, we stand at

the precipice of a univocal study of memory effects in quantum processes, which has

hitherto proved elusive.

The previously unspoken words of this thesis follow in Part III. Since the general de-

scription of stochastic processes grows, with respect to the length of time considered, to

rapidly defy reasonably available computational resources—both in classical and quan-

tum theory—our step towards understanding processes with memory concentrates on

examining those for which the memory length is finite in duration. Fortunately, such

processes can be efficiently modelled by only taking into account information regarding

the most recent ` timesteps, rather than the entirety of history, when making predictions.

Classically, this scenario is captured by the concept of Markov order, which provides a

characteristic timescale for the memory length of any stochastic process.

In Chaper 4 we extended Markov order to quantum mechanics. While the idea remains

unchanged from the standard intuition, the corresponding phenomenology of quantum

processes with finite memory is significantly richer and more complex than its classical

counterpart. As in the classical case, we asked if the future evolution of the system

can be deduced, in principle, entirely from the most recent sequence of measurement

outcomes. However, for quantum stochastic processes, the Markov order—and therefore

the memory length of the process—is fundamentally dependent on the instruments used

to probe the process.

We formulated the conditions that capture this concise and comprehensive definition of

memory length for quantum processes, which is fully reducible to its classical counterpart

in the appropriate limit, in terms of a constraint on the process tensor. From this, we
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saw that no quantum process with memory can have finite Markov order with respect

to all possible instruments.

In addition, our analysis highlighted that this dependence of Markov order on the in-

terrogating instruments persists even in classical physics, as soon as active interventions

on the system are permitted; in quantum theory, this issue is fundamental and must be

acknowledged. In short, quantum processes with memory exhibit distinct memory effects

when probed with different instruments. Our work provides the first formal classification

of such behaviour.

In Chapter 5, we analysed the structure of quantum stochastic processes that display

finite memory effects. We detailed the structural constraints that must be satisfied for

the underlying process to have finite Markov order with respect to a given instrument

sequence, including some specific natural and experimentally-relevant classes of probing

instruments, such as unitary operations and an informationally-complete set of mea-

surements and re-preparations. The connection between finite memory-length and the

underlying system-environment dynamics was elucidated through a series of pedagogical

examples, which served to outline a broad taxonomy of the memory effects possible in

non-Markovian quantum processes. Lastly, we explored the relationship between quan-

tum Markov order and vanishing quantum conditional mutual information, showing

explicitly that although the latter implies the former, processes with finite quantum

Markov order need not have vanishing quantum CMI.

In Chapter 6, we proposed instrument-specific measures of the memory strength for

a quantum process. By explicitly analysing the behaviour of the memory strength for a

simple model dynamics with respect to a range of instruments over varying timescales,

we uncovered numerous interesting insights. For instance, the approaches developed here

can be seen as an operational way to make finite-memory approximations to numerically

simulate complex dynamics; or, from the perspective of information-processing, many

of the notions discussed are related to finding the optimal sequence of operations to

perform a given task. The intriguing results for the toy-model studied already allude to

tantalising possibilities that might be harnessed by using such techniques to understand

the strength and complexity of memory in quantum processes.

In conclusion, the results of this thesis solve the long-standing problem of extending

the definition and quantification of memory effects from the classical to the quantum

realm. We expect our approach to fundamentally shift the way memory in quantum

processes is described by the community for a number of reasons, including—but not

limited to—the following. For one, instrument-dependence of effects measured in quan-
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tum processes is close to experimental reality, as the boundary of what is experimentally

accessible shifts continuously as technology evolves. Moreover, while not all real-world

processes will display finite Markov order, many processes are likely do so approximately,

and the developed insights will be of fundamental importance for their experimental re-

construction and simulation.

7.1 outlook

We now move to discussing some of the broader implications of our work. On the foun-

dational side, it is clear that, upon the set of timesteps on which it is defined, the

process tensor provides the most generic description of causally-ordered processes allow-

able within quantum theory. Examining properties of its structure, as we have in this

thesis, provides fundamental insight into understanding the space of quantum processes

and temporal correlations. Indeed, similar frameworks that do away with the axiom

of causality, such as those based on the process matrix, are actively being developed

to study the most general spatio-temporal correlations allowable [32, 33, 37], shedding

light on the distinguishing features of classical, quantum and post-quantum theories.

On the practical side, the process tensor contains all the information one could ever

hope to learn about a process. This, unfortunately, can make it computationally daunting

to approach. In light of this, its usefulness lies in our ability to develop compression and

extraction methods to approximate complex physical evolutions with overlapping process

tensors of finite length for efficient simulation of long-term dynamics. Indeed, this is the

flavour of many methods proposed throughout the literature, such as the transfer tensor

approach [178, 181–184]. A deeper understanding of optimal compression and recovery

schemes for processes with approximately finite memory length will have significant

consequences for efficient quantum simulation.

Moreover, understanding memory effects has immediate relevance to developing near-

term quantum technologies, particularly concerning the construction of error-correcting

codes to combat correlated noise [64, 185–189] and the design of feedback protocols

for coherent control [169, 170]. The far-reaching implications of these possible avenues

of exploration highlight the substantial relevance of our novel approach for researchers

interested in open quantum systems, quantum control, stochastic modelling, complexity

science and quantum foundations, amongst other fields.
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Part V

A P P E N D I X

The reverberation often exceeds through silence the sound that sets it off;

the reaction occasionally outdoes by way of repose the event that stimulated

it; and the past not uncommonly takes a while to happen, and some long

time to figure out.

— Ken Kesey, Sometimes a Great Notion.





A
NOTATION SUMMARY

The mathematical underpinnings of quantum theory involves linear operators on a

Hilbert space. We restrict ourselves to finite-dimensional Hilbert spaces; as such, lin-

ear operators can be represented as matrices. The notational conventions employed

throughout this thesis are summarised in Table A.1 below. Whenever it is unambiguous,

to avoid notational clutter, we drop timestep or subsystem labels. For the same reason,

we avoid brackets wherever possible, with maps acting on everything to the right of them

by convention. An Hermitian operator X is called positive (written X ≥ 0) whenever

its spectrum contains only non-negative values. We use log := log2 and set h̄= 1.

Lastly, note the colour-coding schema we employ throughout the figures in this thesis.

We consistently use green to denote preparations, transformations and measurements

that are controllable by an experimenter; yellow to denote those that are uncontrollable;

and orange to represent components of the non-unique dilation of an uncontrollable

process. When we wish to describe maps from an abstract mathematical perspective, we

colour the components with red, blue or purple to minimise any possible confusion.

General

C,R,N complex, real and natural numbers

tj , tk, . . . lowercase letters used as subscripts represent timesteps

k : j an ordered sequence of timesteps {tj , . . . , tk} for k > j ∈ N

Λn a set of timesteps of cardinality n ∈ N (not necessarily an

ordered sequence, e. g., Λ3 could denote {t1, t4, t5})

Pk:j , PΛn a joint probability distribution defined on the timesteps in-

dicated by the subscript

i, o input and output spaces associated to each timestep
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A,B,C, . . . systems are labelled with capital letters

HA Hilbert space associated to the system A

dim(HA) =: dA dimension of the Hilbert space HA

〈 r|, | r〉 bra and ket

tr, trA trace and partial trace over HA

A∗,AT,A† conjugate, transpose and conjugate transpose of A

Spec(A) spectrum of A

[A,B] commutator between A and B, i. e., [A,B] := AB −BA

{A,B} anti-commutator between A and B, i. e., {A,B} := AB +

BA

A⊗B tensor product of A and B

A⊕B direct sum of A and B

Operators

BL(HA) set of bounded linear operators on HA

A,B, C. . . maps are denoted by calligraphic capital letters and act on

everything to the right of them

A, B, C. . . the Choi operators of maps are denoted by their sans-serif

counterparts

IA,1A identity map and identity operator on HA respectively

Entropies

Hcl(P) Shannon entropy of the probability distribution P, i. e.,

Hcl(P) := −
∑
x∈X P(x) logP(x)

Icl(A : B) classical mutual information between A and B, i. e., Icl(A :

B) := H(PA) +H(PB)−H(PAB)

Icl(A : C|B) classical conditional mutual information between A and C

given B, i. e., Icl(A : C|B) := Hcl(PAB) + Hcl(PBC) −

Hcl(PABC)−Hcl(PB)
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Dcl(P|Q) relative entropy (Kullback-Liebler divergence) be-

tween two distributions P and Q, i. e., Dcl(P|Q) :=

−
∑
x∈X P(x) log P(x)

Q(x)

S(ρ) von Neumann entropy of the density operator ρ, i. e.,

S(ρ) := −tr [ρ log ρ] = −
∑
λ∈Spec(ρ) λ log λ

I(A : B) quantum mutual information between A and B, i. e., I(A :

B) := S(ρA) + S(ρB)− S(ρAB)

I(A : C|B) quantum conditional mutual information between A and

C given B, i. e., I(A : C|B) := S(ρAB) + S(ρBC) −

S(ρABC)− S(ρB)

D(ρ|σ) quantum relative entropy between ρ and σ, i. e., D(ρ|σ) :=

tr [ρ log ρ− ρ log σ]

Other / Exceptions

H,M ,F reserved to denote the collections of timesteps grouped as

the history {t1, . . . , tk−`−1}, memory {tk−`, . . . , tk−1} and

the future {tk, . . . , tn} at arbitrary timestep tk for a memory

of length `

U ,V reserved to denote the unitary matrices associated to uni-

tary maps, i. e., U( r) := U ( r)U †
W,W⊥ boldface capital letter represents a vector space, with the ⊥

superscript denoting its orthogonal complement

ρ̂ a caret is used to denote elements of a fixed basis of a vector

space

J an instrument is a collection of completely-positive maps

that sums to a completely-positive and trace-preserving

map (these can be higher order objects defined across multi-

ple timesteps, referred to as instrument sequences or testers)

Υ the Choi operator of the process tensor whose mapping is

represented by T

Υ̃(x) a tester element of the process tensor Υ, i. e.,
∑
x Υ̃(x) = Υ,

with Υ a proper process tensor
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Υ the projection of Υ ∈W⊕W⊥ on the W⊥ subspace

ψ+,ψ−,φ+,φ− normalised maximally entangled two-party Bell states

Ψ+, Ψ−, Φ+, Φ− unnormalised maximally entangled two-party Bell opera-

tors, which are respectively the Choi operators correspond-

ing to the channels that implement the four Pauli rotations

I,X ,Y,Z

X,x,X;Y , y, Y reserved to denote random variables (capital Roman) and

realisations of said random variable (lowercase), which take

values from some set (capital script)

H, T heads and tails, symbolic of the possible outcomes of any

binary experiment

δ the Dirac-delta distribution

Table A.1: Notational conventions. A summary of the notational conventions employed.
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B
CLASS ICAL AND QUANTUM DYNAMICS WITH NOISE

b.1 classical master equation

Given a Markovian process, we can consider the first three timesteps and immediately

marginalise over the intermediate variable of the joint distribution to derive

P3,1(x3,x1) =
∑
x2

P3:1(x3,x2,x1) (B.1)

=
∑
x2

P3(x3|x2)P2(x2|x1)P1(x1).

Dividing both sides by P1(x1) yields the Chapman-Kolmogorov equation [4]

P3(x3|x1) =
∑
x2

P3(x3|x2)P2(x2|x1). (B.2)

This equation expresses that for a Markovian process that begins with value x1 at t1
and reaches x3 at t3, it must do so in a manner that is specified given knowledge of the

value x2 at the intermediate timestep t2.

We can recast this property into an integro-differential equation that the transition

probabilities for any Markovian process must satisfy, known as the ME. To do so, for

the moment we consider time as a continuous parameter. We further assume that the

process is homogeneous in time, meaning that the conditional distributions connecting

adjacent timesteps do not explicitly depend on the times themselves, rather, only their

difference. This allows us to define

P2(x2|x1) =: Sτ ′(x′|x′′) and P3(x3|x2) =: Sτ (x|x′), (B.3)

where τ ′ := t2 − t1, τ := t3 − t2, and we have dropped the (now redundant) subscript

labels on the outcomes, with the understanding that in each transition probability, the

conditioning argument always represents a value measured prior to the remaining argu-

ment by the time difference denoted, i. e., Sτ (x|x′) refers to the probability that x will be
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observed given that x′ was the outcome τ units of time ago. The Chapman-Kolmogorov

equation is then expressed as

Sτ+τ ′(x|x′′) =
∑
x′

Sτ (x|x′)Sτ ′(x′|x′′). (B.4)

Considering the interval τ to be small and expanding Sτ (x|x′) about τ = 0 gives

Sτ (x|x′) = (1− a(x)τ )δ(x,x′) + τW (x|x′) +O(τ2), (B.5)

where (1− a(x)τ ) represents the probability that the state does not transition from x′

to x during the short time interval τ , W (x|x′) := ∂Sτ (x|x′)
∂τ |τ=0 ≥ 0 is the instantaneous

rate for this transition to occur, and O(τ2) represents higher-order terms that eventually

vanish upon taking the limit τ → 0. By the normalisation constraint on Sτ (x|x′), it

follows that

a(x) =
∑
x′

W (x′|x). (B.6)

Substituting Eqs. (B.5) and (B.6) into Eq. (B.4) and subsequently taking the limit τ → 0

yields the classical ME

∂St(x|x′′)
∂t

=
∑
x′

{
W (x|x′)St(x′|x′′)−W (x′|x)St(x|x′′)

}
. (B.7)

b.2 tomography of a dynamical map

The tomographic representation of a dynamical map relies on the concept of duals.

Considering the tomographic protocol outlined in Subsection 2.2.2, we begin with a

basis set of states {ρ̂(i)}. Although these need not be orthonormal, they are linearly

independent, and hence there exists a dual set of objects {D̂(i)} such that

tr
[
D̂(i)†ρ̂(j)

]
= δij ∀ i, j. (B.8)

These can be constructed explicitly as follows [51, 74]. Begin by writing ρ̂(i) =
∑
j hijΓ

(j),

where hij ∈ C and {Γ(j)} are a Hermitian, self-dual linearly independent set of operators

satisfying tr
[
Γ(i)Γ(j)

]
= 2δij ; for instance, these could be chosen as the generalised Pauli

basis. Since {ρ̂(i)} are linearly independent, the columns of the matrix H =
∑
ij hij |i〉〈j|

are linearly independent vectors, which means that H is invertible. Let F † = H−1 so

that HF † = 1, implying that the columns of F ∗ are orthonormal to those of H. Finally,

define D̂(i) = 1
2
∑
j fijΓ

(j), where fij are the entries of F .
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B.2 tomography of a dynamical map

For example, in the case of a qubit system, we can use

ρ̂(1) =
1
2

 1 1

1 1

 , ρ̂(2) =
1
2

 1 −i

i 1

 , (B.9)

ρ̂(3) =

 1 0

0 0

 , ρ̂(4) =
1
2

 1 −1

−1 1

 .

Although they are not orthonormal, these matrices are linearly independent and span

the space of qubits. The dual set to the basis defined in Eq. (B.9) is given by

D̂(1) =
1
2

 0 1 + i

1− i 2

 , D̂(2) =

 0 −i

i 0

 , (B.10)

D̂(3) =

 1 0

0 −1

 , D̂(4) =
1
2

 0 −1 + i

−1− i 2

 .
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C
MEMORY LENGTH

c.1 quantum markov order constraint on process tensor

Here we prove that Def. 4.1 is equivalent to Eq. (4.4). Explicitly writing out the condi-

tioning over outcomes stipulated in Eq. (4.1) gives

PFMH(xF ,xM ,xH |JF ,JM ,JH)∑
xF
PFMH(xF ,xM ,xH |JF ,JM ,JH)

(C.1)

=

∑
xH
PFMH(xF ,xM ,xH |JF ,JM ,JH)∑

xF xH
PFMH(xF ,xM ,xH |JF ,JM ,JH)

.

On the l.h.s, we can immediately make use of the causal structure of the process tensor

to simplify the denominator: since the choice of instruments in the future cannot overall

influence the statistics on the history and memory blocks, we have, for any JF ,∑
xF

PFMH(xF ,xM ,xH |JF ,JM ,JH) = tr
[(

OF ⊗O(xM )
M ⊗O(xH )

H

)T
ΥFMH

]

= tr
[(

O(xM )
M ⊗O(xH )

H

)T
ΥMH

]
, (C.2)

where ΥMH := 1
dF o trF [ΥFMH ] with dF o :=

∏n
j=k djo denoting the joint dimension of the

output spaces associated to F and we employ the previously introduced notation for the

CPTP map corresponding to an instrument OX :=
∑
xX

O(xX ) (or, more precisely, the

overall deterministic comb corresponding to the tester implemented on the future). Note

that we have dropped the explicit labelling of the instrument that the CPTP map OX is

associated with for compactness; of course, different instruments (in general) correspond

to different overall CPTP maps. The fact that ΥMH is a proper, i. e., causally-ordered,

process tensor can be seen by simply following the hierarchy of trace conditions assumed

to be satisfied by ΥFMH from the future backwards (see Eq. (3.23)). We cannot use a

similar trick on the numerator of the r.h.s, since, in general, the statistics observed over

the memory and future timesteps depend upon the choice of instrument implemented
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across the history; although the denominator can be simplified in a likewise manner.

Then, expressing Eq. (C.1) in terms of the process tensor and making use of Eq. (C.2),

we have

tr
[(

O(xF )
F ⊗O(xM )

M ⊗O(xH )
H

)T
ΥFMH

]
tr
[(

O(xM )
M ⊗O(xH )

H

)T
ΥMH

] (C.3)

=
tr
[(

O(xF )
F ⊗O(xM )

M ⊗OH

)T
ΥFMH

]
tr
[(

O(xM )
M ⊗OH

)T
ΥMH

] .

The tensor product structure of Eq. (4.4) is clearly a sufficient condition for Eq. (4.1).

Note that the l.h.s of Eq. (C.3) represents P(xF |JF ;xM ,JM ;xH ,JH); considering per-

forming the trace over M first yields

P(xF |JF ;xM ,JM ;xH ,JH) (C.4)

=
trFH

[(
O(xF )
F ⊗O(xH )

H

)T
trM

[
O(xM )T
M ΥFMH

]]
trH

[
O(xH )T
H trM

[
O(xM )T
M ΥMH

]]

=
trFH

[(
O(xF )
F ⊗O(xH )

H

)T
Υ(xM )
F ⊗ Υ̃(xM )

H

]
trH

[
O(xH )T
H Υ̃(xM )

H

]
= trF

[
O(xF )T
F Υ(xM )

F

]
= P(xF |JF ;xM ,JM ).

We now consider the converse direction. Eq. (C.3) must hold for all instruments JH ,

and since we can vary the CP maps while keeping the overall CPTP map of the instrument

fixed, this implies that we must have

tr
[(

O(xF )
F ⊗O(xM )

M ⊗O(xH )
H

)T
ΥFMH

]
tr
[(

O(xM )
M ⊗O(xH )

H

)T
ΥMH

] (C.5)

=

tr
[(

O(xF )
F ⊗O(xM )

M ⊗O′(x
′
H )

H

)T
ΥFMH

]

tr
[(

O(xM )
M ⊗O′(x

′
H )

H

)T
ΥMH

] ,

for all CP maps O(xH )
H , O′(x

′
H )

H .

We can simplify the numerator on both sides by defining the conditional future process

tensor

Υ(xM ,xH )
F :=

trMH

[(
1F ⊗O(xM )

M ⊗O(xH )
H

)T
ΥFMH

]
P(xM ,xH |JM ,JH)

, (C.6)

154



C.1 quantum markov order constraint on process tensor

where

P(xM ,xH |JM ,JH) = tr
[(

O(xM )
M ⊗O(xH )

H

)T
ΥMH

]
. (C.7)

This leads to

tr
[
O(xF )T
F Υ(xM ,xH )

F

]
= tr

[
O(xF )T
F Υ(xM ,x′H )

F

]
. (C.8)

Since this must hold true for all future instruments JF and the trace corresponds to an

inner product on the space on which the Choi operators are defined, we finally have

Υ(xM ,xH )
F = Υ(xM ,x′H )

F ∀ xH ,x′H , (C.9)

which implies that the conditional future process tensor defined in Eq. (C.6) is indepen-

dent of the historic outcomes, i. e., Υ(xM ,xH )
F = Υ(xM ,x′H )

F = Υ(xM )
F .

Returning to Eq. (C.6) and considering first taking the partial trace over M , we have

trH
[(
1F ⊗O(xH )

H

)T
trM

[
O(xM )T
M ΥFMH

]]
trH

[
O(xH )T
H trM

[
O(xM )T
M ΥMH

]]
.

(C.10)

It is clear from the expression above that in order for it to be independent of the

outcome xH , it must be the case that trM
[
O(xM )T
M ΥFMH

]
splits into a tensor product,

i. e., trM
[
O(xM )T
M ΥFMH

]
= Υ(xM )

F ⊗ Υ̃(xM )
H , where

Υ(xM )
F :=

trMH

[
O(xM )T
M ΥFMH

]
tr
[
O(xM )T
M ΥMH

] , (C.11)

and

Υ̃(xM )
H := trFM

[
O(xM )T
M ΥFMH

]
. (C.12)

Note that, by construction, the conditional future process defined in Eq. (C.11) is a

proper process tensor for each xM , i. e., a positive semi-definite operator satisfying the

hierarchy of trace conditions of Eq. (3.23). Indeed, it is easy to see that the denominator

normalises the expression such that for each xM we have tr
[
Υ(xM )
F

]
= dF o (which is

necessary for satisfaction of Eq. (3.23)). Conversely satisfaction of Eq. (3.23) for the

process tensor ΥFMH means that ΥMH is a well-defined, proper process tensor. On the

other hand, such a normalisation for the historic part of the process cannot be acheived,

since an object such as trH [ΥFMH ] does not represent a well-defined process tensor, as

it implicitly dictates a specific choice of instrument on the history (namely, the sequence

of information trashing identity operators) that influence the future statistics. This is
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in contrast to the definition of the conditional future process, where causality ensures

that any such implicit choice of instrument on the future is irrelevant to the statistics

measured on the history, which permits for the appropriate normalisation to ensure that

each Υ(xM )
F is a proper process tensor. Thus, Υ̃(xM )

H is not necessarily a proper process

tensor. Nonetheless, from this object we can calculate the probability to measure certain

outcomes on the memory block given a choice of instrument on the memory and the

history

P(xM |JM ,JH) = tr
[
OT
HΥ̃(xM )

H

]
. (C.13)

By the normalisation of total probability, we have that 1 =
∑
xM
P(xM |JM ,JH) =∑

xM
tr
[
OT
HΥ̃(xM )

H

]
, which must hold for all CPTP OH . This implies that when summed

over outcomes, the conditional history process forms a proper process tensor, i. e.,∑
xM

Υ̃(xM )
H = Υ(xM )

H satisfies Eq. (3.23). In other words, each Υ̃(xM )
H is a post-selected

tester element of the process tensor describing the history, which is precisely what is

indicated by the tilde.

c.2 demanding finite quantum markov order for all instruments

implies markovianity

Here we prove Theorem 4.2. We begin with the following Lemma:

Lemma C.1. The only operators ΥFMH that satisfy Eq. (4.4) for all possible instru-

ments JM are those where the M subsystem is in tensor product with F or H (or both).

Choose a linearly independent, IC set of operators JM = {O(x)
M } as the instrument on

M . Any linearly independent set has an associated dual set of operators {∆(y)
M } such that

tr
[
O(x)
M ∆(y)†

M

]
= δxy ∀ x, y. Thus, we can write any tripartite state satisfying Eq. (4.4)

for each measurement outcome as follows

ΥFMH =
∑
x

Υ(x)
F ⊗ ∆(x)∗

M ⊗ Υ̃(x)
H . (C.14)

Now, consider a different instrument comprising a set of projectors defined via a linear

expansion of the original set J ′M = {Q(y)
M :=

∑
x qxyO

(x)
M }, with {qxy} some non-trivial

coefficients. The conditional process upon realisation of any outcome of this instrument

is
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Υ̃(y)
FH =trM

[
Q(y)T
M ΥFMH

]
(C.15)

=
∑
x

Υ(x)
F ⊗ Υ̃(x)

H tr
[
Q(y)T
M ∆(x)∗

M

]
=
∑
x

qxyΥ(x)
F ⊗ Υ̃(x)

H .

This gives a conditional product state iff either qxy = δxy ∀ x, y, which is false by con-

struction; or, either Υ(x)
F or Υ̃(x)

H (or both) are independent of x. Since the original choice

of linearly independent CP maps was arbitrary the proof holds for arbitrary instruments

on M . The only remaining way to satisfy Eq. (4.4) is if either the F or H (or both)

parts of the process tensor are in tensor product with the part on M .

The proof of Theorem 4.2 is immediate from Lemma C.1, once we consider the fact

that the Markov order condition must hold for any block M of length `. Recall that any

such memory block can begin and end on either input or output Hilbert spaces separated

by ` timesteps; for concreteness, here we consider the scenario whereM begins and ends

on an output Hilbert space, with the proofs for the other cases following the same logic.

Consider first the the block M to begin at timestep tk−` and end at timestep tk−1.

Without loss of generality, suppose that, by Lemma C.1, the process tensor factorises

into the product Υn:1 = Υn:k−`o ⊗ Υ̃k−`i:1. Had we chosen the block M to begin one

timestep later, the same condition leads to the product Υn:1 = Υn:k−`+1o ⊗ Υ̃k−`+1i:1.

The only way for a single process to satisfy both of these conditions is if there is a

CPTP channel Ck−`+1i :k−`o taking whatever an experimenter feeds into the process at

timestep tk−` to the subsequent output from the process at the next timestep tk−`+1:

Υn:1 = Υn:k−`+1o ⊗ Ck−`+1i:k−`o ⊗ Υ̃k−`i:1. Repeating this argument for all timesteps of

the process immediately leads to the Markovian (product) process tensor structure of

Eq. (3.36).

c.3 classical markov order with fuzzy measurements

The fact that such coarse-graining can increase the memory length observed by an

experimenter arises from the well-known property that the space of Markovian processes

is not convex, as exhibited in the following example.

Example C.1 (Fuzzy measurements can increase classical Markov order). Consider the
classical process depicted in the left panel of Fig. C.1. At each timestep tk, the system

of interest is described by one of three distinct states xk ∈ {ak, bk, ck}. Between each

step of dynamics, the time-invariant transition probabilities are given by Pk(bk|ak−1) =

Pk(ck|bk−1) = 1, Pk(ak|ck−1) = p, Pk(bk|ck−1) = 1 − p (with p ∈ (0, 1)) and all
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Figure C.1: Instrument-dependence of classical Markov order with fuzzy measurements. Here
we depict two classical processes to highlight the instrument-dependence of Markov order when
sharp measurements are not assumed. In panel a), the process of Example C.1 is shown, de-
fined by the transition probabilities depicted at each timestep. Here, if one is able to record
observations sharply, i.e., measure the values x ∈ {a, b, c}, the process is Markovian; however, if
one cannot measure at that resolution and, e.g., the measurement apparatus only records fuzzy
statistics of y ∈ {a, b∪ c}, as depicted by the blue dashed box, the process would be classified as
non-Markovian. In panel b), the process of Example C.2 is shown. Here, three bits are initially
prepared as described in the text, and each bit fed out of the process at successive timesteps.
The preparation is such that if the second bit is sharply measured to be in the state 0, bits 1 and
3 are perfectly correlated; if the second bit is in state 1, bits 1 and 3 are perfectly anti-correlated;
whilst on average, i. e., with respect to the fuzzy measurement coarse-graining over everything
in the dashed blue box, bits 1 and 3 are completely uncorrelated. Note that a legend is provided
in the rightmost panel c).

other transitions are forbidden. Such a process is clearly Markovian, as knowledge of

any current state suffices to deduce the probability of the next. Now suppose that, an

experimenter could not distinguish between outcomes bk and ck, i.e., instead of xj , they

observe yk ∈ {ak, dk = bk ∪ ck}. In this case, when the state at some time is a, the next

state is for sure d; while if the state is d, with probability p it will transition next to a

or with probability 1− p it will remain d (alternating between b and c deterministically,

although the experimenter is ignorant of this fact). Conditioned on any consecutive

sequence of j observations of outcome d following an observation of a, we have

Pk(ak|dk−1, . . . , dk−j , ak−j−1) =


0 j odd

p j even,
(C.16)

which is different from Pk(ak|dk−1) = p. Thus, with only the fuzzy measurement appa-

ratus at hand, the experimenter would consider the process to be non-Markovian. Lastly

note that given a faulty instrument that alternatively measures x and then y at each

consecutive pair of timesteps, the experimenter would determine the Markov order to

be ` = 2.
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C.4 memory length of a generalised collision model with memory via
repeated system-ancilla interactions

Interestingly, we can also have the opposite scenario occur, i. e., a process can display

finite Markov order with respect to a fuzzy measurement sequence, but given access

to the system at a finer resolution, the experimenter would attribute a longer memory

length to the process, as we now show.

Example C.2 (Fuzzy measurements can decrease classical Markov order). Consider the
classical process depicted in the middle panel of Fig. C.1. Here, three bits xj = {0, 1}

are output by some process in succession over three timesteps {t1, t2, t3}. Suppose that

these bits are initially prepared according to the probability distribution P3:1(x3,x2,x1)

which is such that P3:1(0, 0, 0) = P3:1(1, 0, 1) = P3:1(0, 1, 1) = P3:1(1, 1, 0) = 1
4 , and

the rest of the possibilities vanish. The process thus constructed is such that if the bit

output at the second step is measured to be 0, then the first and third bits are perfectly

(classically) correlated; whilst if bit at the second step is measured to be 1, then the first

and third bits are perfectly (classically) anti-correlated. Thus, the process is perceived

to be non-Markovian with respect to sharp measurements of the second bit value. On

the other hand, on average, there is no correlation between the first and third bits; thus,

with respect to a coarse-grained measurement that sums over outcomes of the second

bit value, the process is perceived to be Markovian.

In either of the above cases, the perceived memory length of the process is instrument-

dependent: the first example is a process that is Markovian, but exhibits non-Markovian

statistics to the experimenter; whilst the second example is a non-Markovian process

that looks Markovian on average, i.e., with respect to the coarse-graining instrument.

c.4 memory length of a generalised collision model with mem-

ory via repeated system-ancilla interactions

In Section 4.3 we introduced a type of underlying system-environment dynamics that

arises from a generalised collision model where the system interacts ` times with each

ancilla in the order depicted in Fig. 4.3. We claimed that the state of the system subject

to such dynamics interspersed with the application of ` trash-and-prepare operations

can be expressed as a function of only the last ` preparations. Here, we explicitly prove

this statement.

Consider, without loss of generality, the case for ` = 2 (the extension to larger ` is

straightforward). Writing out the specific form of the collision model dynamics consid-

ered here explicitly, the final output state of the system following two trash-and-prepare
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instruments, with the re-preparations of the system state at time tj represented by σSj ,

is given by

ρS3 = trA4A3

[
USA3

3:2 U
SA4
3:2 σS2 trSA2

[
USA2

2:1 U
SA3
2:1 σS1 trSA1

[
USA1

1:0 U
SA2
1:0 ρS0 ⊗ τE

]]]
= trA4A3

[
USA3

3:2 U
SA4
3:2 σS2 ⊗ τA4 . . . trSA1

[
USA1

1:0 τA1 ⊗USA2
1:0 ρS0 ⊗ τA2

]]
, (C.17)

where the initial environment is composed of ancillas, τE = τA1 ⊗ τA2 ⊗ τA3 ⊗ τA4 , and

in the second line we pulled these individual ancillas through the maps that do not act

upon them.

Now note that we can write the joint SA2 state after the first interaction, i. e.,

USA2
1:0 ρS0 ⊗ τA2 , as ρS0 (ρS0 , τA2)⊗ τA2(ρS0 , τA2), where ρS0 (ρS0 , τA2) := trA2

[
USA2

1:0 ρS0 ⊗ τA2
]

and similarly for τA2(ρS0 , τA2). This simply expresses the post-interaction marginal states

(marked with the overline) as a linear map acting on the pre-interaction states. Impor-

tantly, despite the tensor product, this notation does not imply a product state of SA2,

because of the cross-dependency of the input states; to make this clear, we clearly track

this dependency of states through the process with respect to arbitrary unitary interac-

tions, as we are interested in understanding how far into the future their influence can

persist. Continuing from above and repeatedly applying this method, we yield

ρS3 = trA4A3

[
USA3

3:2 U
SA4
3:2 σS2 ⊗ τA4trSA2

[
USA2

2:1 τA2(ρS0 , τA2)⊗USA3
2:1 σS1 ⊗ τA3

]]
= trA4A3

[
USA3

3:2 τA3(σS1 , τA3)⊗USA4
3:2 σS2 ⊗ τA4

]
= trA4A3

[
USA3

3:2 trS
[
USA3

2:1 σS1 ⊗ τA3
]
⊗USA4

3:2 σS2 ⊗ τA4
]

=M(σS1 ,σS2 ). (C.18)

Here, in the penultimate line, we re-expanded τA3(σS1 , τA3) to make explicit the fact

that ρS3 is a function of only the previously 2 prepared states, which can be written as

a linear mapM : BL(HS1 ⊗HS2 )→ BL(HS3 ) as in the final line, with no dependency on

prior historic states such as ρS0 . Through time-translational invariance, the proof method

holds for arbitrary timesteps and the extension to longer ` is immediate. Indeed, the

process depicted in Fig. 4.3 has a length-` memory with respect to the trash-and-prepare

protocol.

If, on the other hand, one were to apply a different instrument, then the output state

here, denoted ρ′S3 , would in general show dependence on the historic state ρS0 . Consider

for concreteness that an experimenter were to first apply a trash-and-prepare instrument

and then at the second timestep a measurement on the system of some outcome m

followed by an independent re-preparation of the system into the state σS2 . Changing

the second operation to a measurement and re-preparation amounts to introducing the
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local system measurement operator, Π(m)
2 , into Eq. (C.18) directly after the joint unitary

dynamics Ũ2:1 as follows

ρ′S3 = (C.19)

trA4A3

[
USA3

3:2 U
SA4
3:2 σS2 ⊗ τA4trSA2

[
Π(m)

2 USA2
2:1 τA2(ρS0 , τA2)⊗USA3

2:1 σS1 ⊗ τA3
]]

.

However, since the system and ancillas A2 and A3, in general, build up correlations

during the interactions USA2
2:1 and USA3

2:1 , the ancillary state of A3 that feeds forward

into the next step of dynamics will be conditioned upon the measurement outcome m,

which implicitly depends upon the initial system state ρS0 ; indeed, the future dynamics

proceeds differently for distinct histories. Explicitly, the furthest we can proceed is to

write

ρ′S3 = trA4A3

[
USA3

3:2 τA3(m; ρS0 ,σS1 , τA2 , τA3)⊗USA4
3:2 σS2 ⊗ τA4

]
, (C.20)

where

τA3(m; ρS0 ,σS1 , τA2 , τA3) (C.21)

:= trSA2

[
Π(m)

2 USA2
2:1 τA2(ρS0 , τA2)⊗USA3

2:1 σS0 ⊗ τA3
]

.

Without knowledge of ρS0 , the output state ρ′S3 when this instrument sequence is applied

cannot be specified and hence the process displays memory effects that persist longer

than ` timesteps when a specific measurement, rather than an averaging over such

measurements, is recorded.

c.5 other generalised collision models with memory

The example introduced in Section 4.3 presents a generalisation of a collision model

to include the possibility of memory effects; however, its construction provides by no

means the only way to build memory into collision models, which we now briefly explore

for the curious reader. A discrete-time, n-step memoryless collision model consists of a

system S interacting with an environment E that has a particular structure: it is made

up of a number of constituent ancillary subsystems, Aj , with the dynamics proceeding

through successive unitary collisions between the system and ancillas (see the top panel

in Fig. 4.2). A memoryless collision model assumes the following three key points

1. The system only interacts with each ancilla once.
2. There are no ancilla-ancilla interactions.
3. The ancillas are initially uncorrelated.
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Figure C.2: Generalised collision models with memory. Memory can also be built into colli-
sion models by allowing for: a) ancilla-ancilla interactions (top row) and b) an initially corre-
lated environment (bottom row). (The legend is as per Figs. 4.2 and 4.3). The top-left panel
depicts a schematic of the dynamics where ancilla-ancilla interactions (yellow boundary) are in-
terleaved between the system-ancilla collisions (grey boundary). After t1, the ancilla A2 already
has knowledge of the state of the initial system state mediated via the A1A2 interaction, and
so the future dynamics is conditioned on the initial system state. The top-right panel displays
the corresponding circuit diagram. Here, for arbitrary operations on the system Oj , it is clear
that the ancilla-ancilla interactions provide a possible path of influence from the history to the
future state; hence, such a process generically displays infinite Markov order with respect to any
instrument sequence (as shown by the red path). The bottom-left panel depicts a schematic of
the dynamics where the ancillas constituting the environment begin in a correlated state (repre-
sented by the orange line connecting them). As soon as the system interacts with a part of the
correlated environment state, all other ancillas can store information about the initial system
state, and therefore can influencing the future dynamics. The bottom-right panel displays the
corresponding circuit diagram for this case. Again, the initial correlations in the environment
provide a mechanism for the history to influence the future over an infinite length of time.

Such a model has surprising power in describing dynamics which, in the continuous-time

limit, are governed by a Lindbladian master equation as per Eq. (2.39) [159, 161]. Break-

ing any one of the above assumptions, whilst maintaining satisfaction of the other two,

endows the process with a different type of memory mechanism [173] (see Figs. 4.2, 4.3

and C.2 for illustration). We now examine such memory effects in terms of the structure

of the underlying dilation, without any assumptions on the action of the unitaries.

Case 1: Repeated System-Ancilla Interactions. As shown in Section 4.3 and

Appendix C.4, in the case where one allows for repeated system-ancilla interactions, as

in Refs. [169, 170], the memory effect depends on the nature of these repeated collisions.

For example, if they occur in the nested order depicted in Fig. 4.3 then the process has
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C.5 other generalised collision models with memory

Markov order ` with respect to the trash-and-prepare protocol. If the interactions are

simply repeated between the system and a given ancilla multiple times between each

timestep, then the process is Markovian on an appropriate coarse-graining of timesteps,

i. e., grouping together blocks of ` timesteps as one. In general, however, repeated system-

ancilla interactions give rise to infinite-length memory (even with respect to the trash-

and-prepare protocol). This can be seen by considering the dynamics depicted in Fig. 4.3

with the order of any pair of joint unitary operations flipped: now, a continuous path can

be drawn from the history to the future across a length-` trash-and-prepare protocol,

indicating a possible historic influence on the future dynamics.

Case 2: Ancilla-Ancilla Interactions. This includes the scenarios considered in

Refs. [164–168] and is depicted in the top row of Fig. C.2. In the case where ancilla-

ancilla interactions are allowed, the historic influence can, in principle, last forever, since

it can permeate continuously through the environment by ancilla-ancilla interactions.

Consider specifically the case where at the first step, S is swapped with A1 through

the swap map USA1
1:0 = GSA1 , then during each successive ancilla-ancilla interaction, the

initial system state is continually swapped into the next ancilla via GAjAj−1 , before,

finally, An, which now stores the initial system state, is swapped back to the system

level through USAnn:n−1 = GSAn . Suppose that all but the first and last system-ancilla

interactions are identity transformations and we allow for the application of arbitrary

probing operations on the system at each timestep in between. These are represented

by Oj , which could, e. g., be trash-and-prepare operations. It is clear that the output

system is (trivially) a function of its initial state, regardless of whatever intermediary

operations an experimenter applies on the system

ρSn = trAn
(
GSAnOSn−1trAn−1

(
GAnAn−1OSn−2 . . . (C.22)

. . . trA2

(
GA3A2OS1

(
GA2A1GSA1ρS0 ⊗ τA1 ⊗ . . .⊗ τAn

))))
= trAn:A1

[
GSAnGAnAn−1 . . .GA2A1OSn−1 . . .OS1 GSA1ρS0 ⊗ τA1 ⊗ . . .⊗ τAn

]
= trA1

[
GSA1ρA1

0 O
S
n−1:1τ

S
]
= ρS0 .

Here, we made use of the composition property of the swap map GABGBC = GAC ,

compressed the description of the operation sequence as OSn−1:1 := OSn−1 . . .OS1 and

defined τS := trA1

[
GSA1ρS0 ⊗ τA1

]
is the initial state of A1 that is swapped into the

system space during the first joint interaction.

Despite the generally infinite-length memory, from the perspective of simulation, this

type of memory is not complex: here, given control over part of the environment, one

only needs to track one additional ancilla to efficiently simulate such processes, hence
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the classification of a memory depth of 1 [168], even though the memory length here is

infinite. Memory depth is the number of additional ancillas required to embed a non-

Markovian process as a Markovian one; in other words, a process with a single ancilla-

ancilla interaction between timesteps evolves in a Markovian fashion with respect to

treating the system and the ancilla it interacts with at each timestep together as a

single larger system of interest. In distinction, memory length concerns the number of

timesteps back one needs to store information about the state of the system that could

influence future dynamics. The notion of memory depth is indeed interesting for further

pursuit in regards to understanding the complexity of the underlying memory at hand.

Case 3: Initially Correlated Environment. Lastly, consider the case of an initially

correlated environment, as is studied in Refs. [162, 163] and is depicted in the bottom

row of Fig. C.2. Again, there is no generic way to erase the influence of the state’s history

on its future evolution by action on the system alone: this is because the ancillary states

in the environment begin correlated, and so as soon as the system interacts with the

first ancilla, in principle all of the ancillas that will interact with the system at some

time in the future already store knowledge of the initial system state. Thus, through

later interactions, this information can feed-back to dictate the future evolution of the

system, giving rise to non-Markovian behaviour.

In the case of an initially correlated environment, one requires control over the entire

collection of ancillas to simulate general processes. Again, consider the situation where,

A1 and An−1 begin correlated, and at the first interaction S and A1 are swapped. Due to

the A1–An−1 correlation, An−1 also stores knowledge of the initial system state, which

can be swapped back to the system level at the final interaction to give the final output.

At all intermediate timesteps the dynamics looks like the initial state of A1 interacting

with each other ancilla pairwise in succession. It is clear that, as in Case 2 above, the

final state of the system will be identical to its initial state, regardless of the operations

one might perform. However, in contrast, simulation of such processes is generically

highly complex, as it requires control over a large number of ancillary subsystems in the

environment.
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D
PROCESSES WITH F IN ITE MEMORY LENGTH

d.1 process with finite markov order and non-zero quantum cmi

Here we construct the process tensor for a simple dynamics and show that, whilst it

has Markov order 1 with respect to a POVM measurement, the quantum CMI is non-

vanishing.

Example D.1 (Finite Markov order does not imply vanishing quantum conditional

mutual information). Consider the case of a three-step process on a qubit, where Alice

and Bob have access to the first and second steps respectively, and the final output state

is accessible to Charlie (depicted in Fig. D.1). Initially, the following tripartite state is

constructed

ρABC =
∑
b

1
4ρ

(b)
A ⊗ ∆(b)

B ⊗ ρ
(b)
C , (D.1)

where, for each value of b = {1, 2, 3, 4}, ∆(b)
B := 1

2 (1 +
√

3
∑
i β

(b)
i σi) is de-

fined in terms of Pauli matrices {σi} with tetrahedral coefficient vectors {β(b)} =

{(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}. These objects forms the dual set to the

following POVM ΠB, comprising elements Π(b) := 1
4 (1+

1√
3
∑
i β

(b)
i σi). We define the

states ρ(b)X = 3
81+

1
2 Π(b), with X = {A,C} in terms of these POVM elements, before

finally normalising the overall tripartite state. The process is such that the A subsystem

of the state constructed in Eq. (D.1) is first given to Alice, who can make any operation

that she likes. After this, Alice’s part is discarded, and the B part of the state above is

given to Bob, who can make any operation that he likes. Lastly, Bob’s part is discarded,

and the C part of the state is given to Charlie. The process tensor is thus given by

ΥABC = ρi
ABC ⊗ 1o

AB, where the identity operators on the output spaces of Alice and

Bob signify that whatever they feed back into the process is discarded.

Now, suppose Bob chooses to measure the POVM ΠB as his instrument (potentially

with an arbitrary update to the state after the measurement). Then, Eq. (4.4) holds for
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processes with finite memory length

Figure D.1: Process with finite quantum Markov order but non-vanishing quantum CMI. The
process is as described in the text. Temporally, we trivialise the output spaces, so what Alice
receives denotes the history (red); Bob’s measurement denotes the memory (purple); and what
Charlie receives denotes the future (blue). For arbitrary instruments of Bob’s choosing, Alice
and Charlie’s states are, in general correlated; except for when Bob measures with the specific
POVM ΠB . In this case, measurement of any outcome b has the effect of breaking the correlations
between Alice and Charlie’s subsystems, rendering them in the conditional product state ρ(b)AC =

ρ
(b)
A ⊗ρ

(b)
C . Importantly, Bob’s instrument is distinct from anything he could implement classically

and I(A : C|B) 6= 0.

each outcome and Alice and Charlie’s states are conditionally independent; however, if

he chooses any other instrument, Alice and Charlie’s states remain correlated (at least

for some outcomes). Thus, with respect to the instrument defined by ΠB, the process has

Markov order 1, whereas it has larger Markov order for generic instruments. Importantly,

the POVM elements of Bob’s measurement are non-orthogonal, so the corresponding

instrument has no classical counterpart. Lastly, the quantum CMI of the process tensor

does not vanish I(A : C|B) ≈ 0.059. Nonetheless, knowing Bob’s measurement outcome

with respect to ΠB allows one to reconstruct the entire ABC state and therefore the

process.

More generally, the example above is a particular case of the following construc-

tion: we can consider any ΥFMH =
∑
x Υ(x)

F ⊗ ∆(x)
M ⊗ Υ̃(x)

H such that ΥFMH ≥ 0 and

tr
[
∆(x)†
M O(y)

M

]
= δxy ∀ x, y, where each O(y)

M is a CP map in a collection that forms

an instrument JM = {O(y)
M }. Such processes can have non-vanishing quantum CMI,

I(F : H|M) > 0, when the Choi operators of the O(y)
M do not all commute; indeed,

I(F : H|M) is not monotonic with respect to instruments in M (it can increase or

decrease, even on average), and is therefore a poor quantifier for memory strength.
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Nonetheless, such processes have finite Markov order with respect to the instrument

JM . This observation directly leads to the proposition of Theorem 5.3.

d.2 finite markov order does not imply vanishing quantum cmi

Proof of Theorem 5.3. From the structure of Eq. (5.9) it is clear that there exists a

history-blocking instrument sequence, namely that comprising the projectors onto each

of the m orthogonal subspaces. Begin by rewriting Eq. (5.9) as a regular sum by pro-

jecting onto the constituent orthogonal subspaces of the decomposition

ΥCMI=0
FMH =

⊕
m

pmΥ̃(m)
FML ⊗ Υ̃(m)

MRH
(D.2)

=
∑
m

pmΠ(m)
MLΥ̃(m)

FMLΠ(m)
ML ⊗Π(m)

MRΥ̃(m)
MRH

Π(m)
MR .

Consider now the instrument made up of the projectors in the above decomposition,

i.e., JM = {Π(m)
ML ⊗Π(m)

MR}. This constitutes a valid instrument sequence as it sums to

an identity operator on BL(HM ) which is CPTP. It also constitutes a history-blocking

sequence for the process described by ΥCMI=0
FMH , as for each realisation of the instrument,

the future and history are conditionally independent

trM
[(

Π(m′)
ML ⊗Π(m′)

MR

)T
ΥCMI=0
FMH

]
(D.3)

= trM

[∑
m

pmΠ(m)
MLΥ̃(m)

FMLΠ(m)
ML ⊗Π(m)

MRΥ̃(m)
MRH

Π(m)
MRδmm′

]

= pm′trM
[
Υ̃(m′)
FMLΠ(m′)

ML ⊗ Υ̃(m′)
MRH

Π(m′)
MR

]
= pm′trML

[
Υ̃(m′)
FML

]
⊗ trMR

[
Υ̃(m′)
MRH

]
= Υ(m′)

F ⊗ Υ̃(m′)
H ,

where we use the orthogonal projector identity Π(m)Π(m′) = δmm′Π(m) and the trace

properties of cyclicity and linearity, and in the final line absorbed the probability into

Υ̃(m′)
H to yield the exact form of Eq. (4.4).

We now examine the structure of vanishing quantum CMI processes in further detail:

this serves to illuminate the connection between processes with finite Markov order with

respect to instruments comprising only orthogonal projectors and those with vanishing

quantum CMI, which we explore in Section 5.2. Continuing from Eq. (D.2), note that

the projectors in the decomposition are not necessarily rank-1; we can thus expand the

conditional process tensor parts in terms of a basis within each m subspace as
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Υ̃(m)
FML ⊗ Υ̃(m)

MRH
= Υ(m)

F ⊗Π(m)
ML ⊗Π(m)

MR ⊗ Υ̃(m)
H (D.4)

+
∑
ss′

Υ̃(m,s)
F ⊗ ξ(s)

ML ⊗ ξ
(s′)
MR ⊗ Υ̃(m,s′)

H .

The ξML/R encode the off-diagonal elements within each m subspace (since the projector

Π(m)
ML ⊗Π(m)

MR encodes all of the diagonal elements), and can therefore be chosen such

that tr
[
ξ
(s)
ML/R

]
= 0 and Π(m)

ML/Rξ
(s)
ML/R = δmsξ

(m)
ML/R ∀ m, s. In this expansion, neither

Υ̃(m,s)
F nor Υ̃(m,s′)

H are required to be proper process tensors, since the ξML/R do not

necessarily represent physical operators. We therefore have

ΥCMI=0
FMH =

∑
m

pmΥ(m)
F ⊗Π(m)

ML ⊗Π(m)
MR ⊗ Υ̃(m)

H (D.5)

+
∑
m,s,s′

pmΥ̃(m,s)
F ⊗ ξ(m,s)

ML ⊗ ξ
(m,s′)
MR ⊗ Υ̃(m,s′)

H .

Note that if the M subspaces in the decomposition of Eq. (5.9) (see also Eq. (D.2)) are

all 1-dimensional, i. e., the projectors in Eq. (D.2) are all rank-1, we only have the first

term in the above equation

ΥCMI=0
FMH =

∑
m

pmΥ(m)
F ⊗Π(m)

ML ⊗Π(m)
MR ⊗ Υ̃(m)

H . (D.6)

Regarding the converse statement of Theorem 5.3, we have shown examples of pro-

cesses with finite Markov order with non-vanishing quantum CMI (Examples 5.1, 5.2 and

the generalised collision model of Section 4.3 all display this feature, and for an explicit

calculation see Ex. D.1). The analysis above shows that the structural constraint re-

quired to guarantee vanishing quantum CMI is strict; processes with finite Markov order

must only satisfy the more relaxed structure outlined in Theorem 5.1, and it is therefore

insufficient to conclude that such processes have vanishing quantum CMI. Furthermore,

even if a given process has finite Markov order with respect to an instrument sequence

comprising only rank-1, orthogonal projectors, the process can still have non-vanishing

quantum CMI. In this case, since any such set of projectors form a self-dual set, we can

reconstruct the process via Eq. (5.2) as

ΥFMH =
d∑

x=1
Υ(x)
F ⊗Π(x)

M ⊗ Υ̃(x)
H +

∑
y

Υ̃(y)
FMH , (D.7)

with tr
[
Π(x)
M Υ̃(y)

M

]
= 0 ∀ x, y. Even though the projectors in the history-blocking instru-

ment are not necessarily the same as those that project onto the subspaces defined in

the decomposition of Eq. (5.9), this condition does not imply that the process tensor

168



D.2 finite markov order does not imply vanishing quantum cmi

is block-diagonal in some basis of BL(HM ); rather, the process can have off-diagonal

elements with respect to the subspaces defined by {Π(x)
M } and satisfy Eq. (D.7). This

implies that there are processes with non-vanishing quantum CMI but finite Markov

order.

To summarise, the salient points from this analysis are as follows. Firstly, suppose that

a process has finite Markov order with respect to an instrument sequence comprising

only orthogonal projectors that are not rank-1: in this case, there is no reason that

the future-history correlations within each m subspace must obey the product structure

outlined in Eq. (D.6), and hence the process can have non-vanishing quantum CMI. This

is shown explicitly in Example D.2 of Appendix D.3. However, similar behaviour also

arises in an operational interpretation of classical stochastic processes, as discussed in

Section 4.2: if an experimenter cannot measure realisations of the process sharply, i. e.,

with sequences of rank-1 projectors, then the statistics observed do not necessarily have

vanishing classical CMI, even if the true underlying process is one of finite Markov order

(see the examples of Appendix C.3).

Secondly, suppose that a process has finite Markov order with respect to an instrument

sequence comprising only sharp, orthogonal projectors. The condition tr
[
Π(x)
M Υ̃(y)

M

]
=

0 ∀ x, y of Eq. (D.7) does not imply that the process must be block-diagonal in some

basis of BL(HM ), as is required for the quantum CMI to vanish (see Eq. (D.2)), and it

follows that there exist such processes with non-vanishing quantum CMI. In contrast to

the earlier point regarding instrument sequences comprising higher-rank projectors, the

present statement is indeed a fundamentally quantum mechanical phenomenon. In the

classical setting, finite Markov order with respect to sharp realisations of the process

and the classical CMI vanishing are equivalent statements (see Subsection 2.1.6).

It is lastly interesting to consider why these two notions are equivalent in the classical

setting but not for quantum processes. Suppose that a classical process has finite Markov

order with respect to the sequence of sharp projectors {Π(m)
M }; then, the process can be

written of the form in Eq. (D.7). However, in the classical setting, where there can be no

off-diagonal terms, tr
[
Π(x)
M Υ̃(y)

M

]
= 0 ∀ x, y indeed implies that Υ̃(y)

M = 0. Alternatively,

d orthogonal projectors are informationally-complete in the classical setting; thus, the

process must be of the form of Corollary 5.2, with the projectors on the M block. In

either case, the process is then of the form of Eq. (D.6) (by choosing either HML or

HMR to be trivial), meaning the quantum CMI vanishes.
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d.3 fuzzy orthogonal projective measurements on a quantum

process

For the sake of completeness, here we provide a quantum mechanical analog of Exam-

ple C.1. As in the classical case, when fuzzy projective measurements are allowed and

such a sequence can block the effect of history on the future, the CMI over the statistics

observed does not necessarily vanish.

Example D.2 (Process with non-vanishing quantum conditional mutual information

but finite Markov order for a sequence of fuzzy, orthogonal projectors). Consider the

process depicted in Fig. D.2. Begin with the four two-qubit Werner states defined as

ρ
(x)
3i1i(r) := rβ(x) + (1− r)12 , (D.8)

where r ∈ (0, 1) and each β(x) ∈ BL(H3i ⊗H1i) is the projector of one of the four Bell

pairs

|ψ±〉 := (|00〉 ± |11〉)/
√

2 and |φ±〉 := (|01〉 ± |10〉)/
√

2. (D.9)

Now take some symmetric, IC qubit POVM {Π(x)
2i }, such as the tetrahedral measurement

defined in Example D.1. In terms of its dual set {∆(x)
2i }, construct the following state

µ3i2i1i(r) :=
∑
x

1
4ρ

(x)
3i1i(r)⊗ ∆(x)

2i . (D.10)

This object is positive, and therefore a valid quantum state, only for r ∈ (0, 1/3],

which correspond to the values for which the Werner states defined in Eq. (D.8) are

separable. Now, suppose that the system associated to H2i represents a qutrit: the first

two levels are described by Eq. (D.10), the state of which is mixed with probability

q ∈ (0, 1) with an arbitrary tensor product state σ3i ⊗ σ1i in product with the third

level basis state |2〉, giving the overall initial system-environment state

ρ3i2i1i(q, r) = qµ3i2i1i(r) + (1− q)σ3i ⊗ |2〉〈2|2i ⊗ σ1i . (D.11)

The process proceeds by initially preparing this state and feeding out the ρji marginal

state at each timestep tj = {t1, t2, t3}. No matter what operations are implemented on

the system at these timesteps, the process acts to discard whatever is fed back into it;

therefore, it has trivial output spaces and the corresponding process tensor is

Υ3i:1i(q, r) = ρ3i2i1i(q, r)⊗ 12o1o . (D.12)
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D.3 fuzzy orthogonal projective measurements on a quantum process

Figure D.2: Process with non-vanishing quantum CMI but finite Markov order with respect to
fuzzy, orthogonal projectors. The tripartite state ρ3i2i1i as defined in Eq. (D.11) is depicted on the
left. Here, if an experimenter cannot distinguish between measurement outcomes in the {|0〉, |1〉}
subspace of H2i , represented by the dashed, blue boxes on the right, then the conditional state
ρ
(x)
3i1i for each outcome is product. If, on the other hand, the experimenter can resolve sharp

measurements in the {|0〉, |1〉} subspace and implement, e. g., the operations {O(x)
2i } = {Π

(x)
2i },

then for each outcome realised, the conditional state ρ(x)3i1i is a correlated Werner state, defined
in Eq. (D.8). The fuzzy orthogonal measurement at timestep 2i blocks the influence of history
on the future, although a sharp measurement resolving all three outcomes does not. Lastly, the
quantum CMI for this process does not vanish.

Now, consider the instrument made up of the following two fuzzy, orthogonal oper-

ations O(1)
2i = (1− |2〉〈2|)2i and O(2)

2i = |2〉〈2|2i . With respect to this instrument, the

conditional process tensors for each outcome are

Υ(1)
3i2o1o1i =

13i

2 ⊗ 12o1o ⊗ 11i

2 and Υ(2)
3i1o1i = σ3i ⊗ 12o1o ⊗ σ1i . (D.13)

Thus, Eq. (4.4) is satisfied and the process has Markov order 1 with respect to this

instrument comprising only fuzzy orthogonal projectors. (Note that this process is not

Markovian, as an IC instrument of causal breaks does not block the history.) However,

had the experimenter been able to resolve measurements in the {|0〉, |1〉} subspace ofH2i ,

e. g., apply the instrument comprising the operations O(x)
2i = Π(x)

2i for x ∈ {1, 2, 3, 4} and

O(5)
2i = |2〉〈2|2i , then the conditional process tensors for each outcome are

Υ(x)
3i1o1i = ψ

(x)
3i1i ⊗ 12o1o and Υ(5)

3i1o1i = σ3i ⊗ 12o1o ⊗ σ1i . (D.14)

For each outcome x observed in the {|0〉, |1〉} subspace, the conditional future and history

processes exhibit correlations via one of the four Werner states, which are separable, but

not product, and therefore correlated. Similarly, if the experimenter applied the sharp

projectors that make up the fuzzy history-blocking instrument, i. e., measure the three

outcomes associated to {|0〉〈0|, |1〉〈1|, |2〉〈2|} at t2, the conditional states for outcomes
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processes with finite memory length

0 and 1 are again correlated. Lastly, note that this process has non-vanishing quantum

CMI: a straightforward calculation shows that I(F : H|M) = q for Υ3i :1i(q, r) defined

in Eq. (D.12).
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