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Abstract

The dialectic relationship between physics and information is perhaps best exemplified
through thermodynamics: A theory that connects our knowledge of the world to our capability
to control and thus manipulate it. Active control over physical processes plays a crucial role
regarding our ability to implement desired transformations in practice and therefore should
be incorporated to define a meaningful notion of complexity. Such complexity often manifests
itself in terms of complicated physical behaviour: Intricate multi-partite correlation structures,
difficult-to-model evolution, and layered multi-time phenomena. Generally speaking, what one
deems to be a difficult task—either from a physical or information-theoretic standpoint—is
largely dictated by the required degree of spatio-temporal control, i.e., control over both multiple
degrees of freedom as well as memory effects on different timescales. This cumulative thesis
aims to provide a holistic picture regarding the intricate interplay between thermodynamics,
complexity, and multi-time phenomena, and lay out the ensuing implications for our ability to
control and process quantum information. A core thread running throughout is the following
question: What is a complex (quantum) system or process, and how can we describe and exploit
control complexity and/or memory effects as a resource for (quantum) information processing?

We first consider the task of cooling a physical system—the paradigm for a difficult task
from a thermodynamic perspective (due to the Third Law of Thermodynamics)—and analyse
how the degree of control over the cooling machines impacts performance objectives. We
demonstrate that, given arbitrary control over a system and a thermal machine, the apparent
contradiction between two fundamental statements of thermodynamics—namely Landauer’s
famous erasure principle (and protocol) and Nernst’s “unattainability” formulation of the Third
Law of Thermodynamics—can be resolved within a unified framework. We show that in order to
saturate the Landauer limit for the energy cost of preparing a perfect pure state (corresponding
to the lowest temperature) in finite time, one necessarily requires an unbounded level of fine-
grained and complex control over spatial degrees of freedom. This result establishes control
complexity as a resource that must be accounted for in order to develop a meaningful theory of
thermodynamics, in line with the spirit of Nernst’s law. We further demonstrate how three key
resources—namely energy, time, and control complexity—can be traded-off amongst one another:
For instance, we present an efficient cooling protocol that exploits control over memory effects
to dramatically reduce the temperature of the system after a finite cooling time (at finite energy
cost). The level of control required in such optimal cooling protocols is reminiscent of Maxwell’s
demon, which is in some sense at odds with the true spirit of thermodynamics, i.e., as a theory
of minimal information and control requirements. Thus, we subsequently develop a formalism
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to treat the task of cooling with solely thermodynamic resources: Machine states that begin
thermal and exclusively interactions that can be driven by a heat engine. This setting therefore
does not allow for the precise control and work source assumed by Maxwell’s demon and thus
embodies the assumption of minimal control over the transformation itself at the very outset.
We then derive the ultimate bound for the energy cost of cooling in this fully thermodynamic
setting, which we dub the Carnot-Landauer limit.

Moving away from the notion of complexity in terms of the difficulty of achieving thermo-
dynamic tasks, we subsequently drop the thermodynamic assumptions and consider the more
general setting of open quantum processes, asking similar questions regarding the most general
constraints the laws of physics place upon our ability to process information. In the temporal
setting, control complexity often manifests itself in the form of memory effects, i.e., correlations
in time. On the one hand, control over memory effects can lead to significant performance
enhancement for many tasks of interest (e.g., as we have seen for cooling) and the simulation
of exotic phenomena; on the other, lack of control over the memory leads to correlated noise
which makes processes with memory difficult to characterise, simulate, and predict. Starting
from a description of the most general type of open quantum dynamics (with memory), we
ask the question: Which physical traits (or processes) are fundamentally quantum and what
resources are required to observe such non-classical behaviour? As we show, the answer depends
highly upon whether or not the underlying process is complex (i.e., with memory) or simple (i.e.,
memoryless). In particular, we connect an operational notion of classicality that is sensible for
general processes and probing instruments in terms of measurement non-invasiveness (which can
be decided on the basis of observed statistics alone) with various structural notions that are often
related to non-classicality, such as coherence, discord, (non-)commutativity, and entanglement.
Lastly, we present an entirely novel genuinely quantum multi-time phenomenon: The existence
of Markovian (i.e., memoryless) statistics that nonetheless fundamentally require memory in the
underlying quantum process to be faithfully reproduced; a phenomenon that can be witnessed
by the activation of hidden quantum memory. Thus, all in all, we provide a well-rounded notion
of complexity in the quantum realm: For one thing, by demonstrating the impact of control
upon the connection between information and thermodynamics; for another, by laying out the
interplay between structural and operational notions of classicality and its dependence on the
underlying memory complexity of the process at hand.

We conclude with a brief summary that contextualises our results within the broader re-
search landscape concerning the foundations of both thermodynamics and quantum theory, open
quantum dynamics, and optimal control. Finally, we present a number of open challenges that
must be overcome if we are to understand, manipulate, and control the complexity that quantum
mechanics both affords and challenges us with.

Keywords: Information; Control; Complexity; Memory; Quantum Theory; Thermodynamics;
Cooling / Erasure; Open System Dynamics; Temporal Correlations; Classicality.
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Kurzfassung

Das dialektische Verhältnis von Physik und Information lässt sich wohl am besten am
Beispiel der Thermodynamik verdeutlichen. Diese Theorie verknüpft unser Wissen über die
Welt mit unserer Fähigkeit, sie zu kontrollieren und zu beeinflussen. Aktive Kontrolle über
physikalische Prozesse spielt eine wichtige Rolle bei der Implementierung gewünschter Trans-
formationen und sollte dementsprechend ein elementarer Baustein für eine sinnvolle Definition
des Begriffs der Komplexität sein. Komplexität manifestiert sich häufig anhand von komplizier-
tem physikalischem Verhalten, wie etwa Korrelationsstrukturen zwischen mehreren Systemen,
schwer zu modellierenden Zeitentwicklungen und vielschichtigen, multitemporalen Phänomenen.
Was als schwierige Aufgabe angesehen wird—sei es vom physikalischen oder informationthe-
oretischen Standpunkt her—wird im Allgemeinen weitgehend durch den dafür notwendigen
Grad an räumlicher und zeitlicher Kontrolle—sowohl über viele Freiheitsgrade als auch über
temporale Erinnerungseffekte—diktiert. Die vorliegende kumulative Dissertation zielt darauf ab,
ein ganzheitliches Bild des vielschichtigen Zusammenspiels von Thermodynamik, Komplexität,
und multitemporalen Phänomenen zu zeichnen und die sich daraus ergebenden Folgen für
unsere Fähigkeit Quanteninformation zu kontrollieren und verarbeiten darzulegen. Der rote
Faden, der sich durch die gesamte Arbeit zieht, ist die folgende Frage: Was ist ein komplexes
(Quanten-)System oder ein komplexer (Quanten-)Prozess und wie können Kontrollkomplexität
und/oder temporale Erinnerungseffekte als Ressource für die (Quanten-)Informationsverarbeitung
beschrieben und genutzt werden?

Zu diesem Zweck betrachten wir zunächst das Problem der Kühlung physikalischer Systeme,
ein aus thermodynamischer Sicht paradigmatisches Beispiel einer anspruchsvollen Aufgabe (auf
Grund des dritten Hauptsatzes der Thermodynamik), und analysieren, wie sich der Grad der Kon-
trolle über die verwendeten Kühlmaschinen auf die Leistungsziele auswirkt. Wir zeigen, dass, bei
unbegrenzter Kontrolle über ein System und eine zusätzliche thermische Maschine, der scheinbare
Widerspruch zwischen zwei grundlegenden Aussagen der Thermodynamik—nämlich das berüh-
mte Landauer-Prinzip und Nernsts „Unerreichbarkeitsformulierung“ des dritten Hauptsatzes
der Thermodynamik—aufgelöst werden kann. Wir legen dar, dass man zum Erreichen der
Landauer-Grenze der Energiekosten für die Herstellung eines perfekten reinen Zustands in
endlicher Zeit notwendigerweise ein unbegrenztes Maß an präziser und komplexer Kontrolle über
räumliche Freiheitsgrade benötigt. Dieses Resultat etabliert Kontrollkomplexität als Resource,
die, um eine sinnvolle Theorie der Thermodynamik zu entwickeln—ganz im Sinne Nernsts—
notwendigerweise mit in die Betrachtung einbezogen werden muss. Darüber hinaus zeigen wir
wie drei Schlüsselressourcen—nämlich Energie, Zeit und Kontrollkomplexität—gegenseitig aus-
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getauscht werden können: Zum Beispiel präsentieren wie einen effizienten Kühlungsalgorithmus,
der Kontrolle über temporale Erinnerungseffekte ausnutzt um die Temperatur eines Systems
nach endlicher Kühlzeit (und unter endlichem Energieaufwand) dramatisch reduziert. Ein solches
Maßan Kontrolle erinnert an Maxwells Dämon, der in gewisser Weise im Widerspruch zu den
Grundgedanken der Thermodynamik als einer Theorie steht, die minimale Annahmen über
Informations- und Kontrollbedarf macht. Dementsprechend entwickeln wir einen Formalismus,
der es erlaubt, Kühlung unter Annahme von ausschließlich thermodynamischen Ressourcen zu
behandeln, d.h. Maschinen, die sich anfänglich in einem thermischen Zustand befinden und
Wechselwirkungen, die ausschließlich von Wärmekraftmaschinen angetrieben werden. Diese
Einschränkungen verhindern die präzise Kontrolle, die Maxwells Dämon benötigen würde, und
inkorporieren daher von Beginn an die Annahme minimaler Kontrolle über die verwendeten
Transformationen. Im Anschluss leiten wir eine allgemeine untere Schranke für die Energiekos-
ten eines Kühlungprozesses, welche wir als Carnot-Landauer-Grenze bezeichnen, unter diesen
vollständig thermodynamischen Annahmen ab.

Anschließend lassen wir die thermodynamischen Annahmen fallen und betrachten die allge-
meinere Situation offener Quantendynamik, indem wir Fragen über die Beschränkungen stellen,
die die Gesetze der Physik unserer Fähigkeit zur Informationsverarbeitung auferlegen. Unter
diesen Paradigma manifestiert sich Komplexität häufig in der Form temporaler Erinnerungsef-
fekte, d.h. Korrelationen in der Zeit. Auf der einen Seite kann Kontrolle über Erinnerungseffekte
zu erheblichen Leistungssteigerungen bei vielen praktischen Aufgaben (wie wir zum Beispiel an-
hand von Kühlungsprozessen gesehen haben) sowie der Simulation exotischer Phänomene führen.
Auf der anderen Seite führt ein Mangel an Kontrolle über die Erinnerungseffekte zu korrelierten
Fehlern, was die Charakterisierung, Simulation und Vorhersage von Prozessen mit temporalen
Erinnerungseffekten erschwert. Ausgehend von einer allgemeinen Beschreibung offener Quanten-
dynamik (inklusive Erinnerungseffekten) stellen wir die Frage: Welche Eigenschaften (oder
Prozesse) sind grundlegend quantenmechanisch und welche Ressourcen sind erforderlich, damit
sich ein solches nichtklassisches Verhalten manifestiert? Wie wir zeigen, hängt die Antwort
dieser Frage stark davon ab ob der zugrunde liegende Prozess komplex (d.h. inklusive Erinner-
ungseffekte) oder einfach (d.h. ohne Erinnerungseffekte) ist. Insbesondere verbinden wir die
operationelle Formulierung klassischer Eigenschaften im Sinne störungsfreier Messungen, ein Kri-
terium, welches allein auf Grundlage von Beobachtungsstatistiken entschieden werden kann, mit
verschiedenen strukturellen Begriffen wie Kohärenz, Discord, (Nicht-)Kommutativität und Vers-
chränkung. Zuletzt stellen wir ein völlig neuartiges, genuines Quanten-Multitemporalphänomen
vor: Die Existenz markowscher (d.h. „erinnerungsloser“) Statistik, für deren getreue Erzeugung
die zugrunde liegenden Quantenprozesse über temporale Erinnerung verfügen müssen, ein Phäno-
men, das sich durch die Aktivierung von verborgenen Quantenerinnerungseffekten nachweisen
lässt. Insgesamt stellen wir ein ausgewogenes Verständnis von Komplexität im Quantenregime
bereit: Auf der einen Seite, indem wir den Einfluss von Kontrolle auf die Verbindung zwischen
Information und Thermodynamik aufzeigen; auf der anderen Seite, indem wir das Zusammenspiel
von strukturellen und operationalen Begriffen von „Klassikalität“, sowie dessen Abhängigkeit
von der temporalen Erinnerungskomplexität des zugrunde liegenden Prozesses darstellen.
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Anhand einer kurzen Zusammenfassung betten wir unsere Resultate in den größeren Forschung-
szusammenhang ein, sowohl im Bezug auf die Grundlagen der Quantentheorie und Thermo-
dynamik, offene Quantendynamik, als auch die Theorie optimaler Kontrolle. Zum Abschluss
präsentieren wir einige offene Herausforderungen, die überwunden werden müssen um die Kom-
plexität, die Quantenmechanik erlaubt—und mit der sie uns konfrontiert—zu verstehen, zu
kontrollieren und zu beeinflussen.
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Preamble

Information is Physical [3, 4]. This famous realisation of Rolf Landauer is arguably one of the
most relevant of modern times: Indeed, it has served as a precursor for the recent paradigmatic
shift in the way we understand information processing in the context of our physical world.

Prior to Landauer, the foundations of the theory of information had been laid down largely
in terms of an abstract, mathematical formulation, most notably due to Claude Shannon [5].
The theoretic considerations were, nonetheless, deeply rooted in questions of a high degree of
practical relevance: What is the minimal amount of information required to communicate a
message? What is the maximum rate at which information can be transmitted over a noisy
communication channel? How can one encrypt a message such that it is protected from potential
eavesdroppers during transmission? Early developments of information theory provided the
corresponding ultimate limitations by way of deriving optimal compression schemes [5], noisy
channel coding theorems [5–7], and secure cryptographic protocols [8], amongst others [9–11].

Given such optimal strategies, the concern then shifted to the possibility of their imple-
mentation in realistic scenarios. In retrospect, it is clear that the answer depends upon “the
rules of the game”, or, more formally, control over the resources at hand: How exactly is the
message being encoded, transmitted, and decoded? What kinds of (and how many) communication
channels does one have access to? How powerful can a potential eavesdropper be and what is a
sufficient level of security? In short, information is not simply some abstract entity, but rather
must be considered within the context set by the laws of physics, which dictate how it can be
encoded, stored, transmitted, and retrieved [12]. Although such concerns were being analysed
and overcome within various engineering contexts before Landauer, his principle perhaps best
exemplifies the profound and foundational connection between physics and information. What is
difficult to achieve in practice determines the realistic performance of implementing any protocol;
thus, physics places fundamental limitations on the processing of information.

Importantly, this relationship between physics and information is not one-sided [13]: Reason-
able information-theoretic axioms can be posited to derive the laws of (classical, quantum, and
even potential post-quantum) physics [14–20], and it seems logical to believe that any task leading
to a contradiction with respect to such axioms (e.g., those set by the famous non-signalling
Popescu-Rohrlich (PR)-boxes [21], or concerning backwards-in-time signalling [22]) should not
be possible to achieve in reality.1 In this sense, the theory of information sets a boundary upon

1Of course, just because we have never witnessed a practical implementation of such a task does not mean
that we can rigorously exclude such possibilities on a scientific basis.
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the laws of physics; or, at least, what we can say about them.2

We therefore have, in the modern scientific approach, a dialectics of physics and information.

The mediator of this relationship revolves around the notions of complexity and control.
Physical systems or processes with many intricately connected and interacting “parts” are
typically viewed as complex and require a lot of information to describe. On the flip side, given
the ability to discern and control such vast amounts of information allows one to simulate such
complex phenomena (potentially with overheads; see, e.g., Ref. [23]). Clearly, in practice, one’s
ability to extract, process, and utilise such complex information requires a high degree of control
over the physical systems at hand. From an operational perspective then, complexity is not only
a property of the underlying physical structures (e.g., states, processes) but also hinges upon
the envisaged setup; in particular, regarding the kinds of measurements and manipulations of
said objects that can be performed. In this sense, complexity is the amalgam of both paradigms,
stemming from the interplay between a priori information content, physical restrictions and
limitations upon the level of control, and the ensuing difficulty of achieving certain tasks.

Within this context, this dissertation addresses the following question: What is a complex
physical system or process, and what role does control over such complexity play in our ability
to process (quantum) information? Of course, such a complex3 issue cannot be fully distilled
and resolved within the confines of a single thesis, and here—bound by natural physical and
information-theoretic constraints—we merely “scratch the surface”; nonetheless, we hope that
the reader finds the insights presented to be profoundly interesting, captivating, and illuminating.

To this end, we consider two main themes: In Part I, we take a paradigmatic difficult task
from a thermodynamic perspective, namely the cooling of a physical system (or, equivalently,
the erasure of information), and consider it from both fundamental and practical viewpoints.
This analysis will emphasise the necessity of a high degree of control complexity to saturate
the ultimate limitations—both regarding how cold a system can be made and at what resource
cost—set by the laws of thermodynamics. In this investigation, we will see the pivotal role
played by our ability to control the environment (or auxiliary machines)4 in order to implement
optimal cooling protocols on a physical system—a crucial information processing task. In
Part II, we focus our attention on multi-time phenomena—in particular, memory effects—as
the manifestation of complexity in open processes involving systems interacting with structured
environments. We first connect various structural notions of quantumness (or non-classicality),
namely coherence, discord, and non-commutativity, to a purely operational one that can be
assessed solely via observed experimental data. Leveraging these results, we uncover a novel
genuinely quantum multi-time phenomenon—hidden quantum memory—which demonstrates
a new type of complexity that does not exist in the classical realm, further exemplifying the
intricate relationship between complexity, time, and control in quantum information processing.

2Indeed, the broader scientific method relies on a complex social praxis of recording data, repeating experiments,
and communicating results—all of which fall within the confines of information processing.

3Pardon the pun.
4Strictly speaking, an environment is inaccessible by definition; whenever we switch perspectives to permit

control over such auxiliary systems, we will use the term machine.
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Part I

The interplay between physics and information comes to the fore when considering the
“village witch” [24] of physical theories: Thermodynamics. Indeed, one can reasonably argue
that the reason thermodynamics is so unique amongst physical theories is that it appears to
be fully robust against the underlying theory, and this might be due to the fact that it is, at
its base, a theory of information. As it largely concerns average behaviour, thermodynamics
is arguably not a fundamental physical theory per se, but rather seemingly emerges from
statistical mechanics whenever one does not have fine-grained information about and control
over the system of interest. At the same time, this elevates thermodynamics above other physical
theories as perhaps the truly operational one, with questions concerning resources, costs, and
practical implementations—all of which depend upon the information and control that an agent
assumes—built into its core.

It is within this context that Landauer made his pivotal breakthrough [3], establishing
a concrete link between physics and information processing via thermodynamics. Landauer
considered the task of erasing information, which is a pivotal sub-routine for various information
processing protocols, such as setting up a blank initial register for a computer [12]. Starting from
a pragmatic perspective, Landauer realised that in any such procedure, information must first
be encoded in some physical system, meaning that one begins with a (generally noisy/mixed)
state—such as a bit of information stored in the position of an atom being in one half of a box
or the other, unbeknownst to the agent—and the goal is to physically transform said state to a
pure one—e.g., such that the atom is in one fiducial half of the box with certainty.

At the outset, said goal can be achieved in a straightforward manner: The agent could simply
swap the information-bearing system with a suitable one in a pure state. This solution, however, is
at odds with our thermodynamic experience, which stipulates that one is not privy to such detailed
information concerning microscopic degrees of freedom of the environment, i.e., everything
external to the system, but rather is pragmatically assumed to have minimal information,
perhaps regarding some macroscopic quantities such as average energy or temperature.

The formal setup of the problem should then demand that the environment cannot begin in
a pure state, but instead must be a thermal state of finite temperature, which was historically
derived as the state of maximal ignorance that is consistent with certain macroscopic observa-
tions [25–27].5 Under this assumption, Landauer demonstrated that erasing any information
stored in the system necessitates a minimum amount of heat being dissipated into the environ-
ment [3]. Information processing has physical consequences [12, 28]: Landauer’s bound poses
the fundamental minimal energy cost of erasing information.

Current computers erase information all the time, and in doing so necessarily heat up—but
the heat dissipated here largely comes from engineering inefficiencies and is typically orders
of magnitude above the Landauer limit [29, 30]. Indeed, only recently have some (extremely
costly) experiments been performed that come close to saturating the Landauer bound in terms
of the dissipated heat [31–34]. To do so, such experiments employ complex interactions between

5Indeed, temperature parametrises average energy at maximal degree of ignorance.
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the system to be erased and its thermal environment: Although the initial environment state
incorporates the assumption of maximal ignorance, the operational control required to achieve
the fundamental thermodynamic limit requires precise control over microstate interactions.

This is often the case in implementing the optimal procedure for thermodynamic protocols.
Indeed, Landauer’s limit can alternatively be formulated in terms of the Second Law of Thermo-
dynamics,6 which can famously be saturated by Maxwell’s demon [35]; saturating the Landauer
limit requires a similarly omnipotent agent [36–39]. Thus, with such optimal procedures we find
ourselves at the boundary of thermodynamics, i.e., concerning the fundamental limitations of
what can be achieved with (potentially highly complex) physical transformations upon some
system of interest with the aid of an initially thermal environment.

Importantly, Landauer’s limit (and the finite-energy protocol to achieve it) applies to any
logically irreversible transformation, e.g., partial erasure of information. From a thermodynamic
perspective, the task of erasing information is a special case of cooling a physical system, namely
bringing a (mixed) initial state closer to its ground state, or more generally, toward any pure
state.7 Roughly 50 years prior to Landauer’s information-theoretic approach, Walther Nernst
considered the task of cooling and demonstrated it to be paradigmatically difficult from a
thermodynamic perspective, putting forth the Third Law of Thermodynamics [40, 41].

While various formulations of the Third Law abound, the one that we will find to be
the most insightful throughout this dissertation is that infinite resources are required to cool
any physical system to absolute zero temperature [42]; said formulation is also known as the
Unattainability Principle [43]. Indeed, what is common across experimental demonstrations
regarding cooling a system as much as possible (see e.g., Refs. [31–34, 44, 45]) is the enormous
amount of resources necessarily invested. Thus, from a thermodynamic perspective, the task of
cooling a physical system to absolute zero temperature—i.e., preparing a pure state or completely
erasing information—provides an archetype for a fundamentally difficult goal to achieve.

Although both Landauer and Nernst considered this problem in the classical realm, the
pervasiveness of thermodynamics applies equally well in the quantum setting, and the core
concepts, limitations, and difficulties (and then some) carry over, forming the basis for the
emerging field of quantum thermodynamics [46]. However, at first glance, their two statements
appear at odds with one another: On the one hand, Nernst states that infinite resources are
required to prepare a pure state; on the other hand, Landauer explicitly demonstrates an erasure
procedure that does just that with finite (indeed, minimal) energy cost. Nonetheless, they cannot
be simply “two sides of the same coin”, as that would imply that the Second and Third Laws
of Thermodynamics are one and the same. By scrutinising the physical implementation of any
perfect cooling procedure, we will come to understand that there is no true contradiction here,
but rather that there exist various meaningful resources that can be utilised in different ways to
the same end, and that furthermore one such resource must diverge in order to (asymptotically)

6The Second Law states that for any system that interacts with some (initially uncorrelated) environment,
the sum of the local entropy changes must be non-negative; Landauer’s bound on the dissipated heat arises as a
direct consequence of assuming the environment begins in a thermal state at some fixed temperature.

7Strictly speaking, there is a finite additional energy cost dictated by the local Hamiltonian of the system
with respect to information erasure that must here be considered; however, in practice this is negligible compared
to the heat dissipated into the environment, and does not impact any fundamental statements.
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attain a pure state (in the spirit of Nernst’s Law): For instance, Landauer’s erasure protocol
minimises energy but at the expense of taking infinite time.

Understanding the ultimate limitations set by thermodynamics on the task of cooling under
various levels of assumed control, as well as outlining how such fundamental bounds can be
saturated, and moreover demonstrating the possible trade-offs between energy, time, control
complexity, and memory effects as resources, is the core focus of Part I. We begin in Chapter 1
by developing a cohesive and thermodynamically consistent framework to approach the problem
in full generality, before moving to show how control over memory effects can be exploited to
drastically enhance cooling performance in Chapter 2.

Chapter 1 focuses on the ultimate limitations of cooling and the relationship between
the (seemingly contradictory) perspectives put forth by Landauer and Nernst regarding their
attainability. Importantly, although computation can be performed using only logically reversible
gates in principle [47–49], it also demands the initialisation of the input registers in pure states
(as well as resetting states to such “blank” states throughout the computational process for
greater efficiency), thus ultimately also requiring logical irreversibility in the form of information
erasure and dealing with the ensuing heat that is necessarily dissipated. Heat is, of course,
detrimental to reliable information processing as it introduces spurious noise: Such noise can be
mitigated in the classical setting where states are stable and error correction schemes scalable
and robust, but poses a fundamental issue in the quantum realm, leading to unmanageable errors
and short coherence times and rendering any possible “quantum advantages” all but a pipe
dream [50, 51]. We must therefore understand the practical limitations of efficiently resetting
quantum registers, i.e., the conditions for saturating the Landauer bound and, more importantly,
exactly how to do so and at the expense of which resources.

In this chapter, we address these questions and, in doing so, are unavoidably confronted
with Nernst’s Third Law of Thermodynamics [40, 41], which states that an infinite amount of
resources is required to cool a system to absolute zero temperature [42, 43]. The precise nature
of these resources, and potential trade-offs between them, however, were previously left in the
dark, leaving one to grasp for isolated examples. Landauer’s erasure protocol, for instance,
minimises the energy cost and can be mimicked by a sequence of individually simple interactions,
but must be implemented quasi-statically and therefore comes at the expense of diverging time;
in this sense, time can be seen as a resource that diverges in this protocol to attain a pure state,
in line with Nernst’s Third Law. Alternatively, by investing a diverging amount of energy, one
can create a pure state in a single operation (i.e., minimal time) by swapping the target system
with a sufficiently pure (sub)space of an auxilliary thermal machine. Does this mean that one of
the two—energy or time—must diverge in order to create a pure state?

As we demonstrate, the answer is, perhaps surprisingly: No. For any quantum system, we
show how one can prepare a pure state with minimal energy (i.e., Landauer cost) and in finite
time. Upon closer inspection, we identify the hidden resource behind this seemingly paradoxical
statement: Control Complexity. Loosely speaking, control complexity can be quantified in
terms of both the number of and manner in which an agent addresses physical degrees of
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freedom throughout a protocol. Specifically, we show that with an unconstrained level of
control (i.e., diverging control complexity), both finite energy and finite time suffice for perfect
cooling; whereas, in the spirit of Nernst’s unattainability principle, finite control complexity
remains insufficient. In addition to providing this fundamental conceptual insight, our proofs
are constructive in the sense that we present protocols that attain said ultimate limits when any
one of the three resources diverges.

By explicitly accounting for the level of assumed control and introducing the notion of
control complexity, we emphasise a crucial resource that is oftentimes overlooked in quantum
thermodynamics. For example, note that infinite-dimensional thermal systems are, in principle,
readily available in many physical contexts [25–27]. The crucial point, though, is that in order
to usefully employ these for desired (thermodynamic, or quantum information processing) tasks,
one requires a high level of control over them [35, 37]: For instance, such an infinite dimensional
thermal machine is not sufficient to cool at the Landauer limit if the control complexity of the
interaction does not also diverge. Our analysis brings the concept of control complexity to the
forefront and demonstrates that it must be considered in order to understand the practical
limitations of manipulating quantum systems. In essence, our work takes a complimentary
approach to that of standard resource theories by constructing optimal protocols—both for
finite-dimensional systems and harmonic oscillators, and with arbitrary Hamiltonians—that
saturate ultimate limiting bounds given sufficient resources.

In doing so, we see that protocols saturating the Landauer bound are reminiscent of a
Maxwellian demon with perfect control over all degrees of freedom [35, 37]. More concretely, in
order to saturate the Landauer bound, the protocols that we derive require fine-tuned microstate
control that can only be implemented with the aid of a coherent external work source, i.e.,
a quantum battery [52–55] with time-dependent control and a precise clock [56–58]. From a
thermodynamic perspective, this may seem unsatisfactory, as the joint system-plus-machine
is not isolated—indeed, it has been argued that Maxwell’s demon “cannot operate” [59]. To
remedy this shortcoming, we extend our analysis to explicitly account for a thermodynamic
energy source (i.e., a hot and a cold bath) and close the joint system by restricting to global
energy-conserving unitary transformations.

This incoherent control setting corresponds to a minimal level of overall control, where an
agent need only switch on and off an interaction in order to generate a spontaneous transformation;
this could be seen as a thermodynamically-driven quantum computer, i.e., with only a heat engine
driving the computational process [60–63]. Thus, the assumption of incoherent control provides
a fully thermodynamic paradigm, considering both an initial thermal state of the machine as
well as the system-machine interaction to be implementable with minimal (i.e., thermodynamic)
external control. In this chapter, we highlight the distinction between what is possible given
the assumption of arbitrary (coherent) control versus thermodynamic (incoherent) control, in
particular providing a “no-go” theorem that demonstrates the impossibility of preparing a pure
state with incoherent control in finite time and with finite control complexity regardless of the
amount of energy drawn from the hot bath; this is in stark contrast with the coherent control
setting, where a suitable work source can be used to achieve said goal.
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Continuing within this fully thermodynamic paradigm, we then show how one can achieve a
pure state with finite energy cost at the expense of either diverging time or control complexity by
mimicking the corresponding coherent control protocol with repeated incoherent sub-procedures.
However, the price of doing so is that the Landauer bound for said energy cost is not attainable
for any realistic (i.e., finite temperature) hot and cold baths. In its stead, we derive a novel
ultimate limit for this scenario (in equality form), which we dub the Carnot-Landauer bound,
being a modification of the Landauer limit with additional factors accounting for the Carnot
efficiency of a heat engine connecting the two thermal baths. Importantly, in the limit of an
ideal engine connected to an infinitely hot bath, this bound reduces to the Landauer limit, which
is consistent with intuition, as an infinite-temperature heat bath can be modelled as a work
source that can deliver energy at no entropy change.

This result is novel, fundamental and practically relevant: It is fundamental because it
generalises Landauer’s bound to a fully thermodynamic setting and it is practical inasmuch as it
provides the ultimate limitations concerning thermodynamically driven quantum information
processing. Furthermore, we provide protocols that saturate the Carnot-Landauer bound for
baths of any temperature, demonstrating how to achieve said limits for the energetic cost of
cooling with only thermal resources. This latter point is crucial, as the cost of control is often
the “Achilles’ heel” that ruins any potential quantum advantage—said cost is mitigated in the
incoherent control paradigm, which embodies the assumption of minimal control at the outset.

Our work here thus both generalises Landauer’s erasure principle and, at the same time,
unifies it with the Third Law of Thermodynamics. The unification arises by considering
(asymptotic) trade-offs between various resources that are necessary for cooling physical systems
or erasing information: As we show, if any two of the resources (energy, time, or control
complexity) are restricted to be finite, the third must necessarily diverge in order to create a
pure state, in line with Nernst’s unattainability principle. The generalisation is provided via the
incoherent control paradigm, where only energy-conserving unitaries driven by a heat engine
can be used to implement the cooling protocol; thus, not only is the initial state of the machine
thermal (as Landauer originally envisaged), but also the level of control of the agent in line
with thermodynamic assumptions (i.e., no time-dependent fine-tuned control like a Maxwellian
demon, but rather only the ability to switch on and off energy-conserving interactions).

In this first chapter, we mainly consider cooling performance in the asymptotic setting, i.e.,
with one of the relevant resources allowed to diverge, in order to connect concepts regarding
resource usage with Nernst’s unattainability principle to provide fundamental conceptual insights.
As a final result, we analyse a pragmatic situation in which all three resources are restricted
to be finite. This corresponds to the practically relevant case of having control over only a
finite-sized machine as well as both finite time and energy at one’s disposal. The question of
what can and cannot be achieved in this setting, as well as the optimal strategies to do so
(whenever possible), is a pressing open problem that is difficult to address in general, as the full
energy structure and microscopic details of the states and transformations involved come more
prominently into play. By focussing on special cases and comparing the finite-resource behaviour
of different (coherent) control strategies that all asymptotically achieve a pure state (with either
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time or control complexity diverging) and at Landauer energy cost, we demonstrate a number of
salient points regarding the interplay between time, energy and control complexity regarding
such imperfect cooling (i.e., cooling to finite temperature or creating an approximately pure
state). We additionally examine the relationship between the two extremal control paradigms
considered by comparing a coherent and a similar incoherent protocol and demonstrate that
more resources are required in the latter setting to achieve the same performance as the former.

At this point, we consider the issue of “Landauer vs. Nernst” to be resolved: They are, in
a sense, both right, but Landauer’s considerations focussed on the special case of minimising
energy resources at the expense of diverging time or control complexity. We now move on to
concentrate on such resource trade-offs in the more pragmatic finite-resource setting. Here,
the implementation of any cooling protocol to reach a particular desired temperature (when
achievable) becomes a complicated expression of various microscopic details which is generally
difficult to optimise with respect to, say, the energy cost. Similarly, the coolest achievable
temperature itself, given any finite amount of input energy, time, and control complexity,
depends upon particularities of the entire configuration. However, disregarding the constraint
of minimising over the energy cost, the optimal protocol (regarding the final temperature) is
relatively clear and can be deduced. This is the main focus of Chapter 2: Understanding
the relationship between time and control complexity in terms of the impact on the achievable
temperature with finite energy cost (and assuming coherent control).

To return to the broader picture for a moment and set this present work into a relevant
context, recall that efficient and reliable quantum technologies rely on using cold states to
cleanly encode information [12, 64]. As we have discussed, in any physical implementation
of an information processing task, there is a trade-off concerning how resources should be
allocated. With respect to the cost of cold state preparations in particular, the Third Law
of Thermodynamics stipulates that one requires infinite energy, time, or control complexity
to prepare perfectly cold states—none of which is feasible. Thus, perfectly pure states are
impossible to prepare, and so a more pragmatic aim concerns preparing states as cold as possible.
Our work in this chapter focuses on understanding the (finite) resources needed, and how to
best use them, in order to prepare a state of desired (finite) temperature.

With this in mind, we fix the energy cost to be finite (and sufficient to achieve a desired
final temperature) and analyse the trade-off between time and control complexity as resources.
In the previous chapter, we mainly considered the resource of complexity in terms of control
over spatial degrees of freedom; here, we shift perspective to consider complexity in the form of
temporal control over memory effects. The corresponding physical assumption is that the agent
can not only control complex spatial (i.e., many-party or high-dimensional) operations, but can
additionally do so on timescales shorter than the natural rethermalisation timescales of the
machine. With the ever-increasing precision and control with which one can manipulate quantum
systems, such an assumption is not out of near-term reach in natural (i.e., noisy) settings, and
even closer in proof-of-principle experiments. With this consideration, we effectively map a
spatial notion of control complexity—i.e., in terms of the number machine systems involved in
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each interaction—onto a temporal one, namely the ability to control and recycle used machines
in time. Such a picture implies that the machine serves as a memory mechanism, establishing
memory as a particularly pertinent type of complexity in the temporal setting (an idea that we
will later return to in Part II).

Generally speaking, memory effects indeed play a crucial role in complex phenomena oc-
curring at the nanoscale, including physical and chemical processes underpinning cutting-edge
technologies [65, 66]. Depending on the level of control enjoyed by an agent over the system
and its interactions with the memory carriers, such effects can lead to either an advantageous
or detrimental impact on the figure of merit at hand [67–80].8 In this chapter, we highlight
how control over such memory effects—concretely, the speed at which the environment can
be addressed—can provide significant advantage for the task of cooling quantum systems; in
particular, we develop a protocol that displays rapid (i.e., short time resource) cooling at the
expense of requiring a higher degree of experimental control over the memory.

To do so, we put forth a general framework for dealing with memory effects in refrigeration
schemes over multiple cycles. This is the relevant paradigm for realistic studies of the efficiency
of cyclic [24, 81] and autonomous [82, 83] quantum machines as well as algorithmic cooling
techniques [44, 84–88]. In the general case (i.e., with arbitrary memory), fairly comparing
the performance of the former concrete approaches is difficult due to particular variations and
assumptions in each setting; on the other hand, the overarching resource theory of quantum
thermodynamics (see, e.g., Refs. [89, 90]) proves too general to isolate the true source of any
advantage.

The biggest conceptual challenge that our work in this chapter overcomes thus concerns
the inclusion of memory effects that do not immediately trivialise the problem or introduce
unwanted artificial advantages from arbitrarily increased control or other resources. We have
solved this problem by introducing a generic microscopic mechanism for memory transfer through
a physically motivated generalised collision model [91–95]; while not completely general regarding
memory per se, this approach permits a tractable amount of memory into the dynamics and
allows for meaningful comparison between various memory structures. Specifically, our framework
does not offer increased (with respect to the memoryless setting) control over the accessible set
of system-machine interactions, coherence, or any other resource, except for the ability to access
machine subsystems that have been interacted with in previous cycles.9

Our main result shows—perhaps surprisingly—that with memory, one can achieve an
exponential improvement in cooling performance in the number of memory carriers. This
improvement is reminiscent of a similar enhancement demonstrated by HBAC, where the
experimenter is offered control over auxiliary “compression” qubits [44, 84–88]; indeed, not
only is our result here equivalent to this setting for qubit systems, it generalises the HBAC
scenario to arbitrary target systems, machines, and interaction Hamiltonians. Moreover, our
approach offers further generalisation by allowing for adaptive cooling strategies: We derive the

8Recall that whenever the memory is uncontrollable, such a memory-carrying system is typically referred to
as an environment; whenever it is controllable, we rather use the term machine.

9In other words, the memoryless scenario (which has been analysed in Refs. [82, 83]) is a straightforward
special case of the situation with memory, namely when the number of memory carriers is zero.
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adaptive stepwise optimal protocol (with respect to the ground-state population at each time)
and demonstrate a finite-time advantage over the asymptotically optimal non-adaptive scheme.
Lastly, our results reduce to all known results in the memoryless setting [82, 83], and, being
based upon majorisation theory, apply to all reasonable notions of cooling, such as increasing
the ground state population, driving the system to a thermal state at lower temperature or
reducing the entropy (which are generally inequivalent for high-dimensional systems) [96].

In summary, our work here both generalises and unifies a number of seemingly disconnected
approaches to quantum cooling in the presence of memory. Viewed from the context outlined in
Chapter 1, we can read these results as demonstrating the trade-off behaviour between time
and control complexity (in the particular form of control over memory effects) to achieve a
desired cooling procedure with practical resources, providing an important initial foray into the
realm of developing optimal strategies for cooling with finite resources.

We now take a step back to consider the “bigger picture” and set said works in a contextual
relationship with what is to come in the second part of this dissertation. At its core, the
first part of this thesis focuses on the notion of complexity. Abstractly, this can be (and
historically mainly has been) considered from a purely information-theoretic standpoint: Complex
correlations in spatial or temporal datasets [11, 97], algorithmic or computational notions of
complexity [9, 10, 98, 99], and in terms of the difficulty of winning strategic games and/or
estimating mathematical problems [100]. From the more concrete physical perspective, we
intuitively think of complex states or processes as those that are either complicated to describe,
display exotic behaviour, or can be used to achieve difficult tasks; with regard to the latter in
particular, we see the importance of control. Thermodynamics—being, in a sense, the physics of
information—inextricably links these perspective, leading to the notion of Control Complexity.

Concerning physical processes, we have seen how control complexity has both spatial—i.e.,
access to multiple environmental degrees of freedom in a fine-tuned manner—and temporal—i.e.,
control over memory effects across multiple timescales—elements to it. So far, we have analysed
this link for a prototypical difficult thermodynamic task, namely cooling; however, the connection
does not stop there. More broadly, parallels can be drawn between control complexity and
memory effects on the one hand with various thermodynamic phenomena (and beyond) on the
other. For instance, below we will briefly (and somewhat “hand-wavingly”) discuss two types of
complex thermodynamic behaviour that can be simulated given control over the memory, before
transitioning to the realm of open (quantum) processes more broadly.

Take, for example, the idea of ergodicity, which, loosely speaking, states that for most physical
processes, a system will tend to explore its entire phase-space uniformly as it evolves (due to
unavoidable interactions with the environment and the ensuing chaos). For non-ergodic processes,
there are all sorts of complex structures in the evolution that make the dynamics difficult to
characterise when the environment is inaccessible: Aperiodic recurrences, erratic behaviours
where the system gets “stuck” in particular “pockets of phase-space”, long-term and complicated
multi-time correlations, to name but a few. On the other hand, for ergodic processes, all such
behaviours “wash out” over time, thereby allowing one to replace (mathematically difficult and

10



physically complex) time averages with (relatively simple) ensemble averages. Flipping the
paradigm, given the ability to engineer and control the environment and its interactions with
the system, one can simulate such non-ergodic processes and subsequently the aforementioned
complex physical phenomena.

A somewhat related—albeit distinct—example concerns thermalisation, i.e., the phenomenon
that physical systems tend to equilibrate and therefore (at least for macroscopic observables)
take on stable values with small fluctuations. Intuitively, the underlying mechanism for therm-
alisation is that the environment continuously dissipates information away from the system,10

thereby driving it towards some fixed equilibrium state, which, in the case of a thermodynamic
environment is typically a thermal state for which measurements of macroscopic observables
lead to sharp distributions. Such dissipation of information embodies the assumption that the
process is memoryless: If, on the other hand, a process has memory, then true thermalisation
cannot occur, as it must eventually display recurrent behaviour. Again, given control over the
memory (i.e., temporal control over system-environment interactions and environmental degrees
of freedom), one can realise the ability to do something that is thermodynamically difficult,
namely keep a system from equilibrating (which is its natural tendency).

However, concerning the impact of memory control upon physical behaviours, one need not
start from the foundations of thermodynamics; similar connections to those above tend to hold
in general throughout physics. Although thermodynamics provides a well-justified starting point
for analysing natural phenomena (i.e., loosely speaking, what we tend to see under minimal
assumptions), it is also interesting to see how far these ideas go when considering engineered
processes (i.e., given control with respect to the laws of physics more broadly). For instance,
both of the above examples occur similarly in the classical and quantum settings. However, there
are fundamental differences between classical and quantum processes, both with and without
memory. In order to satisfactorily identify and quantify these differences, though, it is first
necessary to provide a proper delineation between which processes one considers to be classical
and which to be quantum. As we will see, what it means for a process to “look” classical is
highly dependent upon whether or not there is memory (and how one probes it). Moreover,
there is a fundamental distinction between quantum and classical memory itself, leading to
intricate and complex temporal correlations that cannot be attained in the classical realm.

In the first part of this thesis, we saw how control complexity fundamentally limits our ability
to process (quantum) information in both space and time with respect to thermodynamics.
As we turn to the second part of this dissertation, we drop the thermodynamic assumptions
and shift our focus more broadly to consider the ultimate limitations set by physics upon
spatio-temporal (quantum) information processing; thus, we move to the more general paradigm
of open (quantum) processes (without thermodynamic constraints), where we will see complicated
multi-time phenomena arising as a signature of complexity.

10More generally, even isolated complex systems have a phase space so large that they effectively become their
own environments and equilibrate accordingly; additionally, meaningful notions of equilibration consider the fact
that one can typically only measure highly degenerate (i.e., macroscopic) observables, making the formulation yet
another instance of an interplay between the underlying dynamics and the level of control. See, e.g., Ref. [101].
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Part II

The open systems paradigm begins from the assumption that no system is truly isolated:
Environmental effects impact the evolution of any system of interest, typically in a non-negligible
fashion [65]. This idea can be applied to the classical setting, introducing spurious sources
of noise by way of subjective ignorance on the part of the agent, leading to the theory of
classical stochastic processes. Similarly, accounting for environmental interactions that are
not directly accessible in the quantum realm leads to the formulation of quantum stochastic
processes. However, here, in addition to the randomness that arises due to subjective ignorance
of the environment, one must deal with the fundamental randomness associated to quantum
measurement, as we will discuss in detail below.

In contrast to our earlier considerations, in general, the environment and its interactions
with the system need not be thermal—which can be considered synonymous with “simple”—
but rather can be structured, correlated, and complex, typically leading to exotic dynamical
behaviour such as aperiodic recurrences [65, 66], resistance to thermalisation (as exemplified,
e.g., in decoherence-free subspaces [102]), and multi-time correlations [103–106], to name but
a few (see Refs. [107–109] for in depth reviews). Control over such memory effects—as we
have seen in the special case of open quantum processes involving thermal environments—
can improve efficiency and the ability to perform certain difficult tasks. To mention some
prominent (non-thermal) examples, such tasks include the creation, manipulation and long-
term preservation of coherences and correlations [69, 110], reservoir engineering to simulate
complicated dynamical evolution [74, 77, 79, 111–119], sophisticated and robust quantum
error characterisation and correction in the presence of (temporally) correlated noise [120–122],
optimal dynamical decoupling procedures [68, 123, 124], and advanced design for quantum circuit
architectures [106, 125–136].

Thus, we see the importance for understanding, characterising, and exploiting potential
memory effects in open quantum processes, which is ever-increasing due to technological im-
provements that allow us to manipulate interactions with enhanced levels of speed, precision,
and complexity. Although characterising classical stochastic processes with memory is already a
daunting task due to the sheer amount of data that must be recorded (which, in general, grows
exponentially in the length of the memory), there is no problem from a theoretic perspective
since the joint probability distribution over sequences of measurement outcomes corresponds
precisely to the description of the stochastic process itself. On the other hand, when one tries to
do similar in the quantum setting, one faces an immediate breakdown of formalism [137–139]:
Here, the invasive nature of quantum measurements tends to blur the line between the agent
and the underlying process per se, which has historically lead to a “zoo” of (non-equivalent and
even sometimes incompatible) definitions of memory for quantum stochastic processes [140].

To see the fundamental “issue” in quantum mechanics, note that, in order to experimentally
probe an open process (classical, quantum, or even beyond), one sequentially probes a system
of interest across multiple points in time and records the corresponding family of probability
distributions over outcomes; we refer to this as the operational description or observational
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data. In particular, whenever we refer to an “operational” property, we mean something that
is deducible from such measurement statistics alone, without requiring any reference to a
particular underlying description. In the classical setting, there is no difference between said
operational description and the underlying dynamical model that engenders said statistics—they
are equivalent descriptions of the same process.11 Thus, from the observational data alone,
one can deduce the correct behaviour of the underlying classical stochastic process, completely
characterise it and determine all of its properties.

In the quantum realm, things become significantly more complicated. Again, from an
operational standpoint, the probing procedure of a quantum process is the same as above;
however, here the joint probability distribution over a sequence of outcomes no longer coincides
with the dynamical description of the underlying process. This distinction can be seen in
multiple ways (as we will explore throughout the second part of this thesis), but a particularly
enlightening one is the fact that from a single joint probability distribution recorded from probing
an open quantum dynamics over time, one cannot deduce the correct behaviour of the process
upon any subset of times, leading to the breakdown of the so-called Kolmogorov consistency
conditions [145, 146], which we now discuss.

To exemplify the breakdown of Kolmogorov consistency and the ensuing difficulty in char-
acterising quantum processes, consider performing three steps of a Stern-Gerlach experiment
in sequence, with the apparatus measuring the spin first in the σz direction, then σx, and
finally σz again. For the initial state |+〉 := 1√

2(|0〉 + |1〉), the experimenter would record
P(z3, x2, z1) = 1

8 for all possible outcomes z1, z3 ∈ {↑, ↓} and x2 ∈ {←,→}. However, suppose
now that the experimenter does not make a measurement at time t2, which we denote by the
identity instrument I2. For any classical stochastic process, the latter experiment would yield
probabilities that can be deduced from those of the former via marginalisation; in other words,
there is no difference between “not measuring” and “measuring and averaging” over all possible
outcomes. However, in the quantum realm, the experimenter would record the probabilities
P(↑3, I2, ↑1) = P(↓3, I2, ↓1) = 1

2 and P(↑3, I2, ↓1) = P(↓3, I2, ↑1) = 0. Evidently, this is not
equivalent to

∑
x2 P(z3, x2, z1) = 1

4 , i.e., marginalising over the probabilities from the experiment
when all three times are measured, which is how one would deduce such behaviour when consid-
ering classical stochastic processes. Throughout, we will refer to statistics for which summing
over outcomes at superfluous times leads to the correct “contained” probability distributions as
Kolmogorov consistent, and those that do not (e.g., as above) as inconsistent. Finally, note that
this example has nothing to do with memory and only concerns measurement invasiveness; as
we will see below, things become even more complicated when memory is involved.

To properly describe the second experimental procedure, one must explicitly “do nothing” at
the superfluous time rather than measure at all three times and then marginalise over statistics;
the latter only leads to the correct description in the classical realm because measurements are
non-invasive, and thus doing nothing is equivalent to measuring and subsequently averaging
over statistics. In the quantum setting, this is not the case. This breakdown of Kolmogorov

11We implicitly assume the experimenter to make sharp measurements, in line with the standard assumptions
pertaining to classical stochastic processes. If noisy classical measuring devices are used, the two descriptions no
longer coincide and one runs into similar trouble as in the quantum setting (see, e.g., Refs. [141–144]).
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consistency [145, 146]—i.e., the ability to deduce the sub-statistics that correctly describe
the behaviour on fewer times from the full statistics—is a result of the fact that quantum
measurements are invasive in general, which in turn provides the origin of the lauded Leggett-
Garg inequalities which can be understood as a test for measurement invasiveness [147–149].
Put simply, it implies that the joint probability distribution for any fixed choice of instrument
does not fully characterise a quantum stochastic process, in stark contrast to the classical case.

As a consequence, in order to operationally characterise a quantum process, one would need
to record the (distinct) set of joint probability distributions for every possible choice of probing
instruments,12 and from this observational data infer the correct dynamical description of the
underlying process at hand, i.e., perform a full multi-time quantum process tomography [129, 150].
Besides being practically much more resource intensive than its classical counterpart, such
techniques have only recently been developed and employed to assess multi-time phenomena in
quantum theory, i.e., to describe quantum processes with memory [128–136, 150, 151].

As we saw in the example above concerning the three Stern-Gerlach devices, measurement
invasiveness makes it tricky to operationally describe processes that are sequentially probed at
multiple (i.e., more than two) times, even in the absence of memory. To circumvent the issue of
measurement invasiveness, many studies regarding open quantum dynamics have attempted to
forego the necessity of a truly multi-time description and define important properties such as
memorylessness in terms of (sets of) two-time statements, for which a clear operational picture can
be formulated in terms of quantum channels [152–158]. However, such approaches only provide
partial information, since memory is a genuinely multi-time phenomenon that is unsatisfactorily
captured when only considering two-time correlations. Hence, throughout the second part of this
dissertation, we will employ the formalism of quantum combs/process tensors [125, 126, 129]
to analyse multi-time behaviour. These are genuinely multi-time approaches to open quantum
processes that provide complete descriptions of complex processes with memory and are not
plagued by the aforementioned problems, as they encode the correct probability distributions
over sequential measurement outcomes for all possible choices of instruments (including, for
instance, “not measuring” at certain times). In other words, they constitute a single object that
provides a full operational characterisation of the underlying process at hand.

While this approach makes it clear that there exists an unambiguous description of quantum
processes, what one sees of them is quite naturally highly dependent upon how one probes
them. For instance, modifying the Stern-Gerlach example above to the case where all three
devices measure the spin in the computational basis, one would no longer observe any difference
in the recorded statistics between

∑
z2 P(z3, z2, z1) and P(z3, I2, z1), since the intermediate

measurement is now non-invasive with respect to the state at the second timestep (which
contains no coherence with respect to said measurement basis). Thus, we see that making
inferences about the underlying process from operational data concerns an intricate relationship
between the underlying structural properties of the process and one’s ability to resolve them.

Similarly, the discussion regarding a proper analysis of memory effects hinges largely on
the interplay between structural properties and operational ones, which is a general theme

12Or at least a full basis of them, due to the linearity of probabilistic theories such as quantum theory.
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throughout quantum theory of which many relevant instances abound: Well-known examples of
the former include coherence, discord, commutativity, and entanglement; examples of the latter
would be criteria based upon measurement invasiveness (e.g., Leggett-Garg inequalities [147–149],
Kolmogorov consistency [145, 146]), contextuality (e.g., Kochen-Specker theorem [159, 160]),
non-locality (e.g., Bell inequalities [161–163]). From the perspective of practical information
processing, it is arguably the latter operational types of criteria that are more important as they
have direct observational consequences “built in”. Although beginning with certain structural
properties often leads to quite clear operational repercussions, doing so requires a “leap of faith”
in the validity of the assumptions and the models. Beginning with concrete operational data is
more scientifically justified (as it makes no model-dependent assumptions); however, inferring
structural properties based upon observed data alone is oftentimes rather nuanced, especially
given certain operational restrictions such as limited control or restricted measurements.

The relationship between entanglement and non-locality provides a prime example. For
simplicity, we consider the Clauser, Horne, Shimony, and Holt (CHSH) game [164]. Assuming
an initially separable quantum state (structural), it is clear that the CHSH correlation function
cannot exceed the classical bound of 2 (operational/experimentally testable) [161], and similarly
assuming an initially entangled quantum state (structural), it cannot exceed the Tsirelson bound
of 2
√

2 (operational) [165]. Conversely, suppose that, for a choice of measurements and a given
state, one collects statistics and computes the CHSH correlation function to be of a certain
value (operational). From this, and knowledge of the measurements performed, what can be
inferred about the entanglement properties of the measured state (structural)? Some questions
are easy to answer: If the CHSH correlation function exceeds 2, one can conclude that the state
must be entangled (this is an example of an entanglement witness [166, 167]). Other questions
are much more difficult: If the CHSH correlation function is less than 2, it might be that the
state is entangled, or it might be just that the measurement combinations where not chosen
correctly (in the sense that they can reveal the entanglement of the underlying state). For such
characterisations (i.e., conclusive inferences about the underlying structural properties based
upon operational data), one typically requires performing more complicated experiments to
eventually rule out the validity of certain assumptions.

While this delicate relationship between structural properties and their ultimate expression
in observed data is well-known and studied for spatial properties of quantum states, it is much
less explored in the temporal setting, i.e., for (multi-time) quantum processes, where invasiveness
of measurements and quantum memory play a pivotal role. One might even say that certain
Leggett-Garg type inequalities provide the only such connection in the temporal scenario that is
broadly known, and the following results that we present go far beyond these.

The overall focus of Part II of this dissertation concerns such relationships between struc-
tural and operational properties in the context of multi-time open quantum processes. We
begin in Chapter 3, where we consider the question of “classicality” for open processes with
memory, making a connection between Kolmogorov consistency (as an operational definition of
a classical stochastic process) and the ability (or lack thereof) of the underlying (potentially
quantum) process to generate and detect structural properties that are often related to notions
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of classicality, such as coherence and discord. We characterise the structure of all processes that
could meaningfully be considered classical (i.e., that hide any potential underlying quantumness)
when probed in a fixed basis, and further show that memory plays a fundamental role by demon-
strating that there are processes with memory that cannot hide their quantumness, no matter
how they are probed (which cannot occur for memoryless processes). Following this, we take a
similar approach to study the link between commutativity—a structural property at the very
core of quantum theory—and classicality in Chapter 4. After shedding light upon a number
of complications that make the relationship between these two properties rather layered, we
generalise Gerhardt Lüders’ theorem [168] (which answers such questions for two-time processes)
to the multi-time setting. Lastly, in Chapter 5, we conclusively demonstrate a clear distinction
between quantum stochastic processes without memory (structural property) and Markovianity
of observed statistics (operational property), uncovering two new genuinely quantum multi-time
phenomena—namely, hidden quantum memory and incompatibility of Markovian statistics, i.e.,
memory effects that are fundamentally present but cannot be directly observed. Neither of
these phenomena can occur in the classical setting and they serve to witness the impossibility of
positing any possible underlying memoryless description in quantum mechanics, even though
the observed statistics do not display any non-Markovianity.

Chapter 3 concerns the connection between structural and operational notions of classicality
for multi-time open quantum processes (both with and without memory). Since its inception—
more than 100 years ago—quantum theory has not ceased to baffle scientists with counter-intuitive
phenomena. One of the more vexing, and notoriously unanswered questions, is: Which traits
are fundamentally quantum? Determining what makes a phenomenon genuinely quantum and
quantifying the underlying dynamical resources that are necessary to observe a deviation from
classical behaviour in real experimental conditions constitute two related fundamental questions
that still await a fully satisfactory answer.

While there exist myriad proposals for demarcation between classical and quantum phenomena
based upon certain structural features, from an experimental perspective, they appear somewhat
unsatisfactory. In reality, we do not categorise the world in abstract mathematical terms, nor
do we have direct experimental access to them.13 Consequently, an operationally accessible
notion of genuine quantumness should not be based upon structural concepts either, but solely
in terms of experimentally measurable entities. Although the concrete mathematical structure
of quantum mechanics possesses many traits that are absent in classical theory (e.g., coherence,
discord, and entanglement, to name but a few) and have consequently been postulated to be
genuinely quantum resources, to date, the explicit relation between such underlying structural
features of quantum theory to concrete, observable phenomena that are classically inexplicable
remains unclear and under active debate.

One possible avenue that ensures such properties are clearly classified in terms of directly
accessible behaviour is to begin with the operational approach: Here, the classicality of a
phenomenon is investigated directly from observable quantities (e.g., probability distributions

13As per Asher Peres [169]: “Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory.”
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over measurement outcomes), without any additional assumptions on the underlying theory.
This line of reasoning has lead to the famous Kochen-Specker [159, 160], Bell [161–163], and
Leggett-Garg [147–149] inequalities which must be satisfied in classical physics but can be
violated in quantum mechanics, therefore providing an operational test for demarcation. The
question regarding which kind of underlying quantum resources are required to lead to such
non-classical observations then relies upon connecting said operational violations back to the
dynamical and structural properties. Importantly, this latter concern returns us to understanding
the ensuing implications that underlying structural properties have upon observed statistics:
Experimentally accessible entities provide the clear-cut definition of classicality, while structural
properties play a secondary (albeit important) role as necessary requirements for (but not
definitions of) a delineation from classical behaviour.

In this chapter, we provide a definition for the classicality of a process that is a priori rooted
in experimentally observable phenomena only. This shift in perspective allows us to identify
the class of processes that rightfully carry the moniker “quantum”, as well as the dynamical
resources required to realise them, thereby bridging the apparent divide between genuinely
quantum resources and observable non-classical phenomena for general temporal processes.

Our approach is fully general in the sense that it considers all possible processes where a
system of interest (potentially interacting with an inaccessible environment carrying memory) is
probed at multiple times. In this setting, satisfaction of the fundamental Kolmogorov consistency
conditions between observed statistics—meaning that all “sub-statistics” can be readily deduced
by marginalising over the full joint probability distribution, i.e., any potential measurement
non-invasiveness is not detectable in the statistics—provides a meaningful operation definition
of classicality. Indeed, these conditions form the mathematical foundation of the theory of
classical stochastic processes and provides a set of experimentally-testable requirements that every
classical stochastic process must satisfy [145, 146]. Based on this line of demarcation between
the classical and the quantum regime, we characterise the set of all quantum processes that
fundamentally cannot be understood in classical terms, quantify the amount of non-classicality,
and identify the underlying physical mechanisms that lead to their non-classicality. While similar
results had previously been derived for the limited class of memoryless processes, our present
results—based on the quantum comb/process tensor description of general quantum stochastic
processes with memory—relinquish previously necessary restrictions on the considered dynamics
and provide a comprehensive picture of non-classicality for all conceivable kinds of temporal
processes (within quantum theory).

In particular, we show a clear distinction between the quantum resources necessary to
observe non-classicality depending on whether or not the process has memory, and identify the
relevant resources in both scenarios. For memoryless processes, it is the ability for the process
to generate and detect coherences—an often used structural signifier of quantumness—in the
system state that is tantamount to non-classical behaviour [170]. Somewhat surprisingly, when
memory effects are present, an open quantum process can display non-classical behaviour even
if the state of the measured system never displays any coherences (as we demonstrate), thus
underlining a fundamental difference between quantum processes that keep track of their history
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and those that do not. In the former case, we show that it is the quantum discord that is built
up between the probed system and its environment (and subsequently detected), that determines
the quantumness of the process. Additionally, we demonstrate that while processes without
memory can always “hide” their quantumness (in the sense that there always exists choices of
measurements at different times such that the observed statistics will not display invasiveness),
on the other hand, there exist genuinely quantum processes with memory that can never appear
classical (i.e., for any choice of measurements).

On the whole, our results here provide a comprehensive picture of non-classicality for open
processes, and firmly connect abstract, mathematical notions of quantumness with a fully
operational one. Exploring the full space of conceivable processes, we show that the structure of
non-classicality in quantum mechanics is multi-layered, and a fundamental gap arises between
processes with and without memory. Besides this theoretical progress, the concepts we introduce
are immediately applicable to a wide array of experimental situations, like, e.g., quantum trans-
port phenomena [70, 171–173], where it is becoming increasingly important to systematically and
quantitatively assess whether or not reported advantages are actually due to quantum resources,
or if such quantum resources are merely unavoidably present, but do not necessarily contribute
to observed speed-ups.

In Chapter 4, we retain the Kolmogorov consistency conditions as an operational notion of
classicality but shift the structural concern to the commutativity of measurement operators—yet
another fundamentally non-classical structural feature that is at the origin of the Heisenberg
uncertainty principle [174–176]. Intuitively, commutativity of a pair of observables implies that
they are jointly measurable; in other words, given an arbitrary quantum state, the order in
which the measurements are performed is inconsequential—each experimental configuration
will yield the same statistics nonetheless. Clearly, such a concept is related to measurement
non-invasiveness, i.e., Kolmogorov consistency.

Indeed, this connection has been considered by Lüders [168] for the case of projective
measurements and subsequently extended to more general scenarios concerning two sequential
measurements [177–179]. In this two-time setting, is has been shown that commutativity and
Kolmogorov consistency coincide in many cases, justifying commutativity as a sensible notion
of classicality from a structural as well as an operational standpoint. However, as we discuss
throughout this chapter, such a direct link between these two a priori distinct concepts can
only be meaningfully established in the situation where only two sequential measurements are
being performed. In the multi-time setting with non-trivial dynamics taking place between
measurements, it is unclear how Lüders’ results carry over and what operators play the role of
“observables” whose commutativity should be checked for general (i.e., not necessarily projective)
measurement schemes.

In particular, both the underlying dynamics and the effects of the measurement devices
must be properly accounted for. For processes with memory, deriving the relevant operators
is fraught with difficulty due to the requirement of tracking the entire history of both the
process and measurement outcomes. Thus, we limit our considerations to the memoryless
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scenario throughout this chapter, which, as we will see, is nonetheless significantly rich. As
we demonstrate, in the memoryless setting, one can fully capture the interplay between the
dynamics and the measurements by combining them into individual operators; it is then not
necessarily the commutativity of the bare measurements (i.e., pertaining to the measurement
instruments themselves) per se, but rather the effective measurements (i.e., the measurements
combined with the underlying dynamics) that render the observed statistics classical or not.

An additional difficulty that becomes immediately apparent in the multi-time setting is the
fact that one does not have access to a full basis of quantum states as is assumed in the two-time
case. For instance, in Lüders’ original consideration, it is only under the assumption that
measurement non-invasiveness holds for all states that allows one to derive a state-independent
criterion on the observables themselves (namely their commutativity). While one could, in
principle, invoke similar assumptions in the multi-time case, these would be far removed from
the reality of most experimental schemes and would fail to cover even the simplest of special
cases, e.g., for sequences of projective measurements. Thus, we make no such assumptions and
consider fully general measurement sequences.

The consequences of doing so are two-fold. Firstly, it is no longer possible to make strong
statements on the (effective) measurement operators alone, but rather only some concerning
their complicated interplay with the system states at each time. In other words, we can no longer
hope to derive state-independent statements such as commutativity of pertinent operators, but
rather must consign ourselves to searching for weaker ones, such as commutativity with respect to
the set of possible system states at each point in time. Secondly, allowing for general instruments
means that, even though the process itself has no memory (by assumption), all of the statements
that we make concern the entire (multi-time) sequence of history and future measurement
outcomes. As we discuss throughout the chapter, this is because general instruments can
perpetuate information on the level of the system itself since they do not reset the state of the
system to a known one (e.g., consider a weak measurement)—thus, although the process per se
carries no memory, the effects of the instruments serve to introduce a memory mechanism. As a
consequence, the possible states at any given time depend upon an entire sequence of historic
outcomes in general, as do all involved future “measurement” operators.

In this chapter, we take all of these considerations into account and identify the relevant oper-
ators that determine the non-invasiveness of measurements (and thus classicality of the observed
statistics) for the multi-time setting (with non-trivial, memoryless dynamics between times)
and analyse the conditions for which commutativity—or weaker versions thereof—correspond
to satisfaction of the Kolmogorov consistency conditions (and vice versa). Our analysis—in
the same vein as Chapter 3, albeit with a focus on commutativity instead of coherence and
discord—therefore connects structural with operational notions of classicality for multi-time
processes with general measurement settings.

For the special case of two sequential measurements, our results coincide with those of Lüders;
however, as we demonstrate and for the reasons described above, the general situation is much
more layered. We first show that commutativity (of the relevant operators) is a far stronger
condition than Kolmogorov consistency; thus, just as in Chapter 3 where we saw that there are
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processes that generate coherence/discord but the observed statistics remain classical, here we
see a similar result where the relevant operators need not commute to ensure classical statistics.
We then show that weakening said commutativity to one with respect to the system states at
hand provides too weak a condition, before proposing a condition of “absolute” commutativity
(with respect to the system states) which—while being weaker than commutativity per se—still
implies classicality.

In the converse direction, we find that satisfaction of Kolmogorov consistency does not
necessarily imply any of the previously considered commutator relations, as we show by way
of various examples. We then derive additional conditions—namely such that the possible
set of states at each time essentially forms a basis with respect to all later measurement
Kraus operators (which are assumed Hermitian)—whose satisfaction, when taken together with
multi-time statistics that are Kolmogorovian, implies commutativity amongst relevant operators.

We finally relate our considerations to the important special case of sequences of projective
measurements in a fixed basis, as was considered in the previous Chapter 3. There, we saw that
in the memoryless setting, Kolmogorov consistency is equivalent to dynamics that do not generate
and detect coherences—a three-time statement that can be judged on the basis of neighbouring
dynamical maps alone. This restriction to neighbouring maps is made possible since projective
measurements—unlike general measurements—break the flow of information through the system
and it is thus not necessary to consider entire sequences of outcomes for the structural analysis of
processes that yield classical statistics. When considering the relationship between commutativity
and classicality, as we do in Chapter 4, we show that, although the aforementioned properties
concerning the generation and detection of coherence (or lack thereof) follow directly from those
we provide here for more general measurement scenarios, it is difficult to identify generally
applicable commutator relations even in this special case where the measurements are restricted
to sharp projective ones.

All in all, our work in this chapter offers yet another comprehensive analysis regarding
the connection between structural—yet not directly observable—properties of multi-time open
quantum processes and operational notions of classicality, further exemplifying the complex
interplay between dynamics and the types of possible interrogations that quantum mechanics
affords in the multi-time setting.

So far, we have seen that measurement non-invasiveness and the ensuing breakdown of
Kolmogorov consistency can be related to various quantum dynamical resources, providing a
distinctly non-classical signature. Finally, in Chapter 5, we take a deeper look at the differences
between classical and quantum stochastic processes without memory and the subsequent impact
such a structure entails for observational data, in particular regarding the connection between
memorylessness and Markovianity; here, Markovianity concerns the memory properties of
the observed statistics, while memorylessness concerns those of the underlying dynamics that
engenders them.14

14Following the reasoning of Chapters 3 and 4, it will not come as a surprise that these two notions—former
operational, the latter structural—generally do not coincide.
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In the classical realm, as is well known, these two properties are one and the same: Any
memoryless process leads to Markovian statistics; and conversely for any Markovian statistics
derived from probing a classical process, one can build a memoryless dynamical description in
terms of an independent sequence of stochastic matrices that faithfully reproduces the observed
statistics. This is due to the non-invasiveness of classical measurements. More concretely, in the
classical case, a single multi-time joint probability distribution over measured outcomes fully
characterises the process—thereby encoding both all structural properties of the underlying
dynamics such as memory effects and operational ones like Markovianity [145]. As we have
discussed, this is not true for quantum stochastic processes, first and foremost due to the fact
that quantum measurements are generally invasive [146].

As alluded to above, if one probes a memoryless quantum process with general instruments,
information can be transmitted through the system itself, leading to temporal correlations and,
in general, non-Markovian statistics (even in classical physics) [131]. However, this no longer
holds true when restricting to sharp, projective measurements:15 In this case, as we demonstrate,
any observed statistics gathered by probing a memoryless quantum process leads to Markovian
statistics, just as in the classical setting.

Thus, at first glance, it seems as if the property of memorylessness manifests itself on the
operational level (i.e., the observed statistics) in the same way for both classical and quantum
processes. In the converse direction, it is clear that given a set of Markovian statistics deduced
from probing a quantum process, one does not have enough information to uniquely construct a
memoryless dynamical model since—in contrast to the classical setting—projective measurements
do not span the full space of quantum measurement operations. Nonetheless, it is reasonable to
assume that given any Markovian statistics, there exists some (potentially fictitious) memoryless
quantum process that faithfully reproduces said statistics.

As we show in this chapter, such a model always exists whenever the measurements happen
to be non-invasive: Indeed, this case boils down to the classical settings, where the observation of
Markovian statistics is equivalent to the existence of a unique underlying memoryless dynamics.
However, in the general case, i.e., where the measurements are invasive, such an equivalence is
no longer guaranteed to exist.

Fundamentally, the potential absence of a memoryless quantum model that describes observed
Markovian statistics stems from the following issue: Although one might be able to construct
an independent sequence of quantum channels (i.e., a memoryless model) that describes the
Markovian statistics on the full set of times, this is generally insufficient to deduce the correct
statistics on any subset of times (which we refer to as “sub-statistics”). Again, the root cause
of this problem is that quantum measurements are invasive, and thus a memoryless model
constructed from the full measurement data will generally produce incorrect statistics for
situations in which the experimenter opts to not measure the system at certain points in time.

Thus, it is clear that a naïve construction of a memoryless quantum model to describe
observed Markovian statistics does not work. More generally though, the question arises whether

15Or, more generally, any instrument that breaks the flow of information, e.g., by measuring the system and
feeding forward a state that is independent of the measurement outcome. Such instruments have been referred to
as “causal breaks” and they play a crucial role in the proper definition of memoryless quantum processes [128, 180].
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some memoryless model exists that can faithfully reproduce observed Markovian statistics on the
full set of times and also all corresponding sub-statistics. In this chapter, perhaps surprisingly,
we demonstrate that this is not the case and show that quantum processes can lead to Markovian
statistics that fundamentally require memory for their creation, uncovering a novel genuinely
quantum multi-time phenomenon.

We do so by showing that, in addition to Markovianity of the full statistics for any memoryless
quantum process probed by sharp projective measurements, all sub-statistics must also be
Markovian. Moreover, all such Markovian sub-statistics must coincide in the sense that they
are independent of “how they are obtained”. Specifically, this means that any conditional
probabilities can only depend on the most recent outcome (this amounts to Markovianity), and
additionally these conditional probabilities are independent of whether measurements prior to the
most recent outcome were performed or not; we refer to this latter property as “compatibility”.

We prove our main proposition by way of constructing explicit counter-examples. First,
we present a four-step quantum process that leads to Markovian statistics when probed in
the computational basis at all four points in time; however, if the experimenter chooses
to not measure at the second time, the sub-statistics deduced are non-Markovian—that is,
the conditional probabilities at the fourth time given knowledge of the third measurement
outcome are not independent of the first measurement outcome. More concretely, we have
P(x4|x3, x2, x1) = P(x4|x3) but P(x4|x3, I2, x1) 6= P(x4|x3) (with the latter showing dependence
on x1). Such “hidden” memory that is activated for certain sub-statistics is in direct contradiction
with a dynamical description of a memoryless quantum process.

Hence, we can understand the detection of hidden memory as an operational witness of
memory effects in the underlying process. This naturally begs the question: What if both the
full statistics and all sub-statistics are Markovian—does there then always exist a memoryless
quantum process that faithfully reproduces them? We show that this is not the case by constructing
an example that satisfies all of these former requirements but the resulting Markovian conditional
probabilities are nonetheless incompatible. This again provides a contradiction with the possibility
of finding a memoryless quantum process that faithfully reproduces the observed Markovian
statistics. Thus, incompatibility of Markovian statistics serves as a finer witness for memory in
the underlying process than the activation of hidden memory (with the latter being an example
of incompatible statistics by definition).

Our results in this chapter imply that there exist Markovian statistics for which memory
in the underlying quantum process is not just present but indeed required, since it is im-
possible to construct any memoryless quantum process that reproduces them. Additionally,
both situations for witnessing this—whether the sub-statistics are Markovian and incompatible
or non-Markovian (i.e., hidden memory)—cannot occur in the classical setting and require
measurement invasiveness to be possible. Importantly though, the concept of hidden quantum
memory is not merely a different manifestation of measurement invasiveness. Rather, it is a
distinct and fundamental multi-time quantum memory effect; for instance, while memoryless
quantum processes can violate Leggett-Garg inequalities, they cannot lead to hidden quantum
memory. In this sense, we have uncovered a novel type of genuinely quantum multi-time phe-
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nomenon. Lastly, our results here are similar in spirit to other quantum traits that require
precisely the resource in their implementation that they ultimately hide, such as quantum
channels that preserve all separable states but cannot be implemented via local operations and
classical communication [167, 181, 182], non-signalling maps that require signalling [183], and
maximally incoherent operations that necessitate coherent resources [184–186], to name but a few.

Overall, in the second part of this dissertation, we rigorously analyse and exemplify various
connections between structural or dynamical properties on the one hand and entirely operational
ones on the other, in particular with regard to the setting of open quantum processes probed at
multiple points in time. In the end, we once again see that how complex (i.e., how much memory)
or how non-classical a process looks boils down to a question of control—e.g., what types of
measurements one can implement and what type of correlations one examines. Thus, Part II is
an analysis of the interplay between memory and control, and their connection to underlying
but a priori inaccessible properties. Taken together with the considerations of Part I, we have
made a substantial foray into developing a holistic understanding of the intricate interplay
between thermodynamics, complexity, and multi-time phenomena, and in particular
the ensuing implications for quantum information processing. We finish the dissertation
with a Concluding Discussion, where we summarise the broader significance of our results
and present an outlook on future research directions.

Note

As indicated in the List of Publications, this thesis is a cumulation of a number of
completed works; as such, although the chapters are linked thematically through the interplay
of thermodynamics, complexity, and multi-time phenomena in quantum information processing,
they can be read and understood as stand-alone pieces. Consequently, although we have
aimed for consistency in notation, language, and general presentation style throughout this
dissertation overall, there are inevitably slight inconsistencies to be found between chapters. For
the convenience of the reader, we provide a list of commonly used acronyms below.
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Acronyms

CNOT Controlled-NOT

XOR Exclusive-OR

CHSH Clauser, Horne, Shimony, and Holt

CJI Choi-Jamiołkowski Isomorphism

CP Completely Positive

CPTP Completely Positive and Trace Preserving

HBAC Heat-Bath Algorithmic Cooling

LP Linear Program

MIO Maximally Incoherent Operation

NCGD Non-Coherence-Generating-and-Detecting

NDGD Non-Discord-Generating-and-Detecting

NISQ Noisy Intermediate-Scale Quantum

POVM Positive Operator-Valued Measure

PR Popescu-Rohrlich

QRF Quantum Regression Formula

RW Reeb and Wolf
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CHAPTER 1
Landauer vs. Nernst:

What is the True Cost of
Cooling a Quantum System?

Philip Taranto*, Faraj Bakhshinezhad*, Andreas Bluhm†, Ralph Silva†, Nicolais Friis, Maximil-
lian P. E. Lock, Giuseppe Vitagliano, Felix C. Binder, Tiago Debarba, Emanuel Schwarzhans,
Fabien Clivaz, and Marcus Huber

Abstract. Thermodynamics connects our knowledge of the world to our capability to
manipulate and thus to control it. This crucial role of control is exemplified by the third law
of thermodynamics, Nernst’s unattainability principle, which states that infinite resources
are required to cool a system to absolute zero temperature. But what are these resources and
how should they be utilised? And how does this relate to Landauer’s principle that famously
connects information and thermodynamics? We answer these questions by providing a
framework for identifying the resources that enable the creation of pure quantum states.
We show that perfect cooling is possible with Landauer energy cost given infinite time or
control complexity. However, such optimal protocols require complex unitaries generated by
an external work source. Restricting to unitaries that can be run solely via a heat engine,
we derive a novel Carnot-Landauer limit, along with protocols for its saturation. This
generalises Landauer’s principle to a fully thermodynamic setting, leading to a unification
with the third law and emphasises the importance of control in quantum thermodynamics.

Under review. Manuscript submitted on 25 Jan 2022.
arXiv:2106.05151

*,† denotes equal contributions.
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Author Contribution

In this work, the doctoral candidate contributed significantly to the conception and
formulation of the theoretical framework and methods, the proofs of the main results, the
writing and revising of the manuscript, and the organisation and supervision of the project
overall. In particular, the main technical contributions of the doctoral candidate were the
development and application of both the coherent and incoherent control paradigms to
address the task of cooling; the demonstration of all finite-dimensional asymptotic cooling
protocols in both settings; the derivation of the Carnot-Landauer limit; the development
of a thermodynamically meaningful notion of control complexity and the derivation of
relevant conditions upon it regarding the ability to perfectly cool at minimal energy cost;
and the comparison of cooling paradigms and resources for imperfect (i.e., finite resource)
cooling.
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1.1 Introduction

What is the cost of creating a pure state? Pure states appear as ubiquitous idealisations
in quantum information processing and preparing them with high fidelity is essential for
quantum technologies such as reliable quantum communication [187, 188], high-precision
quantum parameter estimation [189–191], and fault-tolerant quantum computation [51, 64].
Fundamentally, pure states are prerequisites for ideal measurements [192] and precise
timekeeping [58]. To answer the above question, one could turn to Landauer’s principle,
stating that erasing a bit of information has an energy cost of at least kBT log(2) [3].
Alternatively, one could consult Nernst’s unattainability principle (the third law of
thermodynamics) [40], stating that cooling a physical system to its ground state requires
diverging resources. At the outset, it seems that these statements are at odds with one
another. However, Landauer’s protocol requires infinite time, thus identifying time as
a resource according to the third law [42, 43, 193–195]. Does this mean either infinite
energy or time are needed to prepare a pure state?

The perhaps surprising answer we give here is: No. We show that finite energy and
time suffice to perfectly cool any quantum system and we identify the previously hidden
resource—control complexity—that must diverge (in the spirit of Nernst’s principle) to
do so. Intuitively, a good proxy for control complexity is the effective dimension of the
system-machine interaction in a given protocol. The ultimate limit on the energetic cost
of cooling is still provided by the Landauer limit, but in order to achieve it, either time or
control complexity must diverge.

At the same time, heat fluctuations and short coherence times in quantum technolo-
gies [50] demand that both energy and time are not only finite, but minimal. Therefore,
in addition to proving the necessity of diverging control complexity for perfect cooling
with minimal time and energy, we develop protocols that saturate the ultimate limits.
We demonstrate that mitigating dissipation comes at the practical cost of controlling
fine-tuned interactions that require a coherent external work source, i.e., a quantum bat-
tery [54, 55, 196–198]. From a thermodynamic perspective, this may seem unsatisfactory:
Nonequilibrium resources imply that the total system is not closed, and the optimal
protocol (saturating the Landauer bound) is reminiscent of a Maxwellian demon with
perfect control.

Accordingly, we also consider an incoherent control setting restricted to global energy-
conserving unitaries with a heat bath as thermodynamic energy source. This setting
corresponds to minimal control, where interactions need only be switched on and off
to generate transformations, i.e., a heat engine drives the dynamics [60–63, 199]. The
incoherent-control setting is therefore thermodynamically consistent inasmuch as both
the machine state is assumed to be thermal (and to rethermalise between control steps)
and the permitted control operations are those implementable solely via a heat engine.
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In this paradigm, we show that the Landauer bound is not attainable, derive a novel
limit—which we dub the Carnot-Landauer bound—and construct protocols that saturate
it. The Carnot-Landauer bound follows from an equality phrased in terms of entropic and
energetic quantities that must hold for any state transformation in the incoherent control
paradigm; in this sense, the Carnot-Landauer equality adapts the equality version of
Landauer’s principle developed in Ref. [200] to a fully (quantum) thermodynamic setting.

Our work thus both generalises Landauer’s erasure principle and, at the same time,
unifies it with the laws of thermodynamics. By accounting for control complexity, we
emphasise a crucial resource that is oftentimes overlooked but, as we show, must be
taken into account for any operationally meaningful theory of thermodynamics. Here,
we focus on the asymptotic setting that allows us to connect this resource with Nernst’s
unattainability principle; beyond the asymptotic case, the gained insights also open
the door to a better understanding of the intricate relationship between energy, time
and control complexity when all resources are finite, which will be crucial for practical
applications; we provide a preliminary analysis to this end. Lastly, our protocols saturating
the Carnot-Landauer bound pave the way for thermodynamically-driven (i.e., minimal
control) quantum technologies.

1.2 Overview & Summary of Results

There are two types of thermodynamic laws: Those, like the second law, that bound
(changes of) characteristic quantities during thermodynamic processes, and those, like the
third law, which state the impossibility of certain tasks. Landauer’s principle is of the
former kind (indeed, it can be rephrased as a version of the second law), associating a
minimal heat dissipation to any logically irreversible process, thereby placing a fundamental
limit on the energy cost of computation. The paradigmatic logically irreversible process is
that of erasing information, i.e., resetting an arbitrary state to a blank register. In other
words, perfectly cooling a system to the ground state, or more generally, preparing a pure
state.

Nernst’s unattainability principle is of the latter kind, stating that perfectly cooling a
system requires diverging resources. The resources typically considered are energy and
time: On the one hand, perfect cooling can be achieved in finite time at the expense of
an energy cost that diverges as the ground state is approached; on the other hand, the
energy cost can be minimised by implementing a quasistatic process that saturates the
Landauer limit but takes infinitely long.

These two types of thermodynamic laws are intimately related, but details of their
interplay have remained elusive: Under which conditions can the Landauer bound be
saturated and what are the minimal resources required to do so? Which protocols
asymptotically create pure states with given (diverging) resources? What type of control
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Figure 1.1: Thermodynamic Framework. We consider the task of cooling a quantum system in two
extremal control scenarios, with each step of both paradigms comprising two primitives. The top panel
depicts the coherent-control scenario: In the control step (left), an agent can use a work source W to
implement any global unitary on the system S and machineM, which both begin thermal at inverse
temperature β; in cooling the target, energy and entropy is transferred to the machine. The machine then
rethermalises with its environment (right), thereby dissipating the energy it gained in the control step.
The bottom panel depicts the incoherent-control scenario: The machine is bipartitioned into a cold part
at inverse temperature β and a hot part at inverse temperature βH < β. In the control step, the agent
switches on an interaction between the three systems, represented by a global energy-conserving unitary
UEC. In the rethermalisation step, the interaction is turned off and both subsystems of the machine
rethermalise to their respective initial temperatures; the hot part draws energy from the heat bath while
the cold part dissipates heat to its environment. In both paradigms, we quantify the control complexity
as the effective dimension accessed by the unitary operation in a given control step (i.e., the dimension of
the system-machine Hilbert space upon which the unitary acts non-trivially).

do such protocols require and how difficult are they to implement? We address these
questions by considering the task of cooling a quantum system in two extremal control
paradigms (see Fig. 1.1): One driven by a coherent work source and the other by an
incoherent heat engine. Within this context we establish three main results:

1. Perfect cooling is possible with coherent control provided either energy, time, or
control complexity diverge. In particular, it is possible in finite time and at Landauer
energy cost with diverging control complexity.

2. Perfect cooling is possible with incoherent control, i.e., with a heat engine, provided
either time or control complexity diverge. On the other hand, it is impossible with
both finite time and control complexity regardless of the amount of energy drawn
from the heat bath.

3. No process driven by a finite-temperature heat engine can (perfectly) cool a quantum
system at the Landauer limit. Nonetheless, the Carnot-Landauer limit, which we
introduce here (as a consequence of a stronger equality), can be saturated for any
heat bath, given either diverging time or control complexity.
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In the following, we discuss each of these results in turn in more detail and provide
a systematic study concerning the asymptotic interplay of energy, time and control
complexity as thermodynamic resources, as well as develop insight into the finite-resource
regime for some special cases.

1.2.1 Perfect Cooling with Coherent Control (Work Source)

We begin by considering cooling with coherently-controlled resources (see Fig. 1.1, top
panel). We first analyse energy, time and control complexity as resources that can be
traded off against one another in order to optimise cooling performance, before focusing
on the role of control complexity. Lastly, we consider the task of cooling systems (to finite
temperatures) with all resources restricted to be finite.

Energy, Time, and Control Complexity as Resources

Whereas Landauer’s limit sets the minimum heat that must be dissipated—and
thereby the minimum energy cost—for cooling any physical system, the third law makes
no specification that energy must be the resource minimised (or that time must diverge).
One might instead consider using a source of unbounded energy to perfectly cool a system
as quickly as possible. Additionally, control complexity plays an important role as a
resource, inasmuch as its divergence permits perfect cooling at the Landauer limit in
finite time. As summarised in Table 1.1, we present coherently-controlled protocols that
perfectly cool an arbitrary finite-dimensional target system using thermal machines when
any one of the resources—energy, time or control complexity—diverges; moreover, the
resources that are kept finite saturate protocol-independent ultimate bounds.

The cooling protocol using diverging energy is the simplest. Here, one exchanges all
populations of the target system with those of a thermal machine with suitably large
energy gaps to sufficiently concentrate the initial machine population in the ground state
of the target. This exchange requires a single system-machine unitary and is of finite
complexity (in a sense discussed below). Nonetheless, the energy drawn from the work
source in this protocol diverges; indeed, as we show, any protocol that cools perfectly
with both finite time and control complexity requires diverging energy.

Instead, one might wish to minimise the energy cost and saturate the Landauer bound.
In the coherent control setting, for any transformation %S 7→ %′S enacted via a unitary
interaction with a thermal machine at inverse temperature β, the dissipated heat ∆EM is
given by [200]:

β∆EM = ∆̃SS + I(S :M)%′SM +D(%′M‖%M). (1.1)

Here, the r.h.s. involves the (von Neumann) entropy decrease ∆̃SS of the system, the
mutual information I(S :M)%′SM built up between system and machine, and the relative
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Energy Time Complexity
Q
ud

it →∞ 1 1
2d(d− 1)

Landauer →∞ 1
2d(d− 1)

Landauer 1 →∞

H
.O

.

→∞ 1 →∞ (Gaussian)
Landauer →∞ →∞ (Gaussian)
Finite (> Landauer) →∞ 1 (Non-Gaussian)
Landauer 1 →∞ (Gaussian)

Table 1.1: Coherent-Control Cooling Protocols for Finite-Dimensional (Qudit) and Har-
monic Oscillator Systems. Landauer energy cost refers to saturation of Eq. (1.2) and complexity
refers to the effective dimension (see Definition 1.1); time is measured as the number of unitary operations
with a fixed complexity. In the qudit case, the system and machine dimensions are equal: dS = dM =: d.

entropy D(%′M‖%M) of the final machine state with respect to the initial one; the latter
two terms are non-negative and can be dropped to yield the Landauer bound:

β∆EM ≥ ∆̃SS . (1.2)

We now focus on cooling protocols that saturate this limit. Given a diverging amount
of time, the target system can be sequentially coupled with a machine of finite complexity
that rethermalises between control steps in such a way that the final target system state
is arbitrarily close to the ground state for any initial temperature. Alternatively, one can
compress all the operations applied in the diverging-time protocol into one global unitary
that achieves the same final states, thereby achieving perfect cooling at the Landauer limit
in a single unit of time but with an infinitely complex interaction. That is, the diverging
temporal resource of repeated interactions with a single, finite-size machine is replaced by
a single interaction with a larger machine of diverging complexity (as described below).
However, this particular way of constructing complex control protocols is not necessarily
unique. It is thus natural to wonder if diverging control complexity is a generic feature
necessary to achieve perfect cooling at the Landauer limit in unit time and indeed, how to
quantify control complexity that is operationally meaningful between the extreme cases of
being either very small or divergent, as we now turn to discuss.

Role of Control Complexity

To address this issue, we first provide protocol-independent structural conditions
that must be fulfilled by the machine to enable (1) perfect cooling and (2) cooling at
Landauer cost; combined, these independent conditions provide a necessary requirement,
namely that the machine must have an unbounded spectrum (from above) and be infinite-
dimensional (respectively) for the possibility of (3) perfect cooling at the Landauer limit.
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Such properties of the machine Hamiltonian define the structural complexity, which sets
the potential for how cool the target system can be made and at what energy cost. As
the name suggests, this is entailed by the structure of the machine, e.g., the number of
energy gaps and their arrangement, and as such provides a static notion of complexity.
However, given a machine with particular structural complexity, one may not be able to
utilise said potential due to constraints on the dynamics that can be implemented. For
instance, one may be restricted to only two-body interactions, or operations involving
only a few energy levels at a time. Assuming a sufficient structural complexity at hand,
such constraints limit one from optimally manipulating the systems. Thus, the extent to
which a machine’s potential is utilised depends on properties of the dynamics of a given
protocol, i.e., the control complexity.

Although it is intuitive that a unitary coupling the system to many degrees of freedom
of the machine should be considered complex, it is a priori unclear how to quantify control
complexity in a manner that both:

1. Corresponds to our intuitive understanding of the word “complex”, meaning “difficult
to implement”; and

2. Is consistent with Nernst’s third law in the sense that its divergence is necessary to
reach a pure state (when all other considered resources are restricted to be finite).

Many notions of complexity put forth throughout the literature to capture the first point
above do not necessarily satisfy the second, as we will discuss later. Here, we take the
opposite approach and seek a minimal notion of complexity that is first and foremost
consistent with the third law of thermodynamics, which we hope to develop further to
incorporate the idea of quantifying how difficult a protocol is to implement.

As a first step in this direction, a good proxy measure of control complexity is the
effective dimension of a unitary operation, i.e., the dimension of the subspace of the global
Hilbert space upon which the unitary acts nontrivially:

Definition 1.1. The effective dimension is the minimum dimension of a subspace A
of the joint Hilbert space HSM in terms of which the unitary can be decomposed as
USM = UA ⊕ 1A⊥ :

d eff := min dim(A) : USM = UA ⊕ 1A⊥ . (1.3)

Intuitively, given any (sufficiently large) machine dimension, the effective dimension
captures how much of the machine takes part in the controlled interaction. While any
dynamics that requires a high amount of control must accordingly have large effective
dimension, the converse does not necessarily follow: There exist dynamics with correspond-
ing large (even infinite) effective dimensions (e.g., Gaussian operations on two harmonic
oscillators, such as those enacted by a beam splitter) that are easily implementable and
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do not require high levels of control, as we discuss further below. Nevertheless, using the
definition above we show that any protocol achieving perfect cooling at the Landauer
limit necessarily involves interactions between the target and infinitely many energy levels
of the machine. In other words, no interaction restricted to a finite-dimensional subspace
suffices.

The effective dimension therefore provides a minimal quantifier for control complexity:
It is the quantity that must diverge in order to (perfectly) cool at minimal energy
cost—thus, it satisfies the above point 2. Moreover, it requires no assumption on the
underlying structure of the machine, with the results holding for either collections of
finite-dimensional systems or harmonic oscillators. However, its drawback comes from the
fact that it alone does not necessarily capture a notion of complexity that corresponds to
what is always difficult to achieve in practice. In other words, its divergence is insufficient
for optimal cooling, as we highlight by example. Put simply, the effective dimension does
not necessarily satisfy the above point 1. Indeed, in all of the protocols that we present, the
degrees of freedom of the machine must be individually addressed in a fine-tuned manner
to permute populations optimally, demonstrating that an operationally meaningful notion
of control complexity must take into account factors beyond the effective dimensionality
accessed by an operation. Later in this article, we analyse a number of potential candidates
for such a definition of control complexity and highlight various shortcomings. Lastly, we
demonstrate ways of achieving these conditions with paradigmatic quantum systems.

Imperfect Cooling with Finite Resources

The above results set the ultimate limitations for cooling inasmuch as the protocols
saturate optimal bounds by using diverging resources. In reality, however, any practical
implementation is limited to having only finite resources at its disposal. According to the
third law, a perfectly pure state cannot be achieved in this scenario. Nonetheless, one
can prepare a state of finite temperature by investing said resources appropriately. In
this finite-resource setting, the interplay between energy, time and control complexity is
rather complicated. First, the cooling performance is stringent upon the chosen figure
of merit for the notion of cool—the ground-state population, purity, average energy, or
temperature of the nearest thermal state are all reasonable candidates, but they differ
in general [82]. Second, the total amount of resources available bounds the reachable
temperature in any given protocol. Third, the details of the protocol itself influence the
energy cost of achieving a desired temperature. In other words, determining the optimal
distribution of resources is an extremely difficult task in general and remains an open
question.

We therefore focus here on the paradigmatic special case of cooling a qubit target
system by increasing its ground-state population in order to highlight some salient points
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regarding cooling to finite temperatures. First, we compare the finite performance of two
distinct coherent control protocols that both asymptotically saturate the Landauer limit;
nonetheless, at any finite time, their performance varies. The first protocol simply swaps
the target qubit with one of a sequence of machine qubits whose energy gaps are distributed
linearly; the second involves interacting the target with a high-dimensional machine with
a particular degeneracy structure. Although the latter cannot be decomposed easily into a
qubit circuit (thereby making it more difficult to implement in practice), one can compare
the two protocols fairly by fixing the total (and effective) dimension to be equal, i.e.,
comparing the performance of the linear sequential qubit machine protocol after N + 1
qubits have been accessed with that of the latter protocol with machine dimension 2N+1.
In doing so, we see that the simpler former protocol outperforms the more difficult latter
one in terms of the energy cost at finite times, emphasising the fact that difficulty in
practice does not necessarily correspond to complexity as a thermodynamic resource.
Additionally, we analyse the cooling rates at which energy and time can be traded off
amongst each other in the linear qubit sequence protocol by deriving an analytic expression.
Lastly, we compare the performance of a coherent and an incoherent control protocol that
use a similar machine structure to achieve a desired final temperature. We see that the
price one must pay for running the protocol via a heat engine is that either more steps or
more complex operations are required to match the performance of the coherent control
setting. This example serves to elucidate the connection between the two extremal control
scenarios relevant for thermodynamics.

We now move to consider asymptotic cooling behaviour in the incoherent-control
setting.

1.2.2 Perfect Cooling with Incoherent Control (Heat Engine)

The (asymptotic) results presented so far pertain to cooling with the only restriction
being that the machines are initially thermal. In particular, there are no restrictions
on the allowed unitaries. In general, the operations required for cooling are not energy-
conserving and require an external work source. With respect to standard considerations
of thermodynamics, this may seem somewhat unsatisfactory, as the joint system is, in the
coherent setting, open to the universe. When quantifying thermodynamic resources, one
typically restricts the permitted transformations to be energy-conserving, thereby closing
the joint system and yielding a self-contained theory.

We therefore analyse protocols using energy-conserving unitaries. With this restriction,
it is not possible in general to cool a target system with machines that are initially thermal
at a single temperature, as was considered in the coherent-control paradigm [82]. Instead,
cooling can be achieved by partitioning the machine into one cold subsystem C that
begins in equilibrium at inverse temperature β and another hot subsystem H coupled
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to a heat bath at inverse temperature βH < β [82, 83] (see Fig. 1.1, bottom panel). In
other words, one uses a hot and cold bath to construct a heat engine that cools the target.
As we demonstrate, perfect cooling can be achieved in this setting as pertinent resources
diverge. However, the structure of the hot bath plays a crucial role regarding the resource
requirements. In particular, we present a no-go theorem that states that perfect cooling
with a heat engine using a single unitary of finite control complexity is impossible, even
given diverging energy drawn from the hot bath. This result is in stark contrast to its
counterpart in the coherent-control setting, where diverging energy is sufficient for perfect
cooling. This highlights that the incoherent-control setting is a fundamentally distinct
paradigm that must be considered independently.

1.2.3 The Carnot-Landauer Limit

In the incoherent-control setting, we derive an equality-form adaptation of Landauer’s
bound on the minimum heat dissipated (or, the minimum amount of energy drawn from
the hot bath), which we dub the Carnot-Landauer limit. The generalisation of Eq. (1.1)
to the incoherent-control setting is:

∆F (β)
S + η∆EH = − 1

β
[∆SS + ∆SC + ∆SH +D(%′C||%C) +D(%′H||%H)]. (1.4)

Here, the l.h.s. involves the free-energy change of the target system ∆F (β)
S and the Carnot

factor η := 1− βH
β

of the heat engine, while the r.h.s. involves changes in entropy ∆S of
all subsystems and relative entropy terms D( r‖ r) pertaining to the changes of the hot and
cold parts of the machine. Importantly, the sum of terms in parentheses on the right-hand
side are non-negative and can be dropped to yield the Carnot-Landauer inequality:

∆F (β)
S + η∆EH ≤ 0. (1.5)

This inequality poses the ultimate limitation for the energy cost of information processing
in a fully thermodynamic setting.

By explicitly accounting for a thermal energy source to drive the protocol, we generalise
Landauer’s erasure principle and, at the same time, unify it with the laws of thermo-
dynamics. The consideration of cooling vis-a-vis information erasure already adapts
Landauer’s principle to a more concrete physical setting by specifying a target system
Hamiltonian. By further incorporating a heat-bath energy source and requiring overall
energy conservation we connect the heat dissipated during a cooling process with the ther-
modynamic resource driving it. Analysing the resource costs in turn provides a unification
of cooling (and, as such, erasure) with the laws of thermodynamics. For instance, the
Carnot efficiency between the two baths determines the cooling efficiency, implying that
Landauer-cost cooling is impossible within any resource theory of thermodynamics with
finite-temperature heat baths. Moreover, considering an infinite-temperature heat bath
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Heat Bath Energy Time Complexity

βH ∈ [0, β] →∞ 7 7

βH ∈ [0, β] Carnot-Landauer →∞ 1
βH ∈ [0, β] Carnot-Landauer 1 →∞

Table 1.2: Incoherent-Control Cooling Protocols for Finite-Dimensional Systems. Carnot-
Landauer energy cost refers to saturation of Eq. (1.5), β is the initial inverse temperature of the target
system and cold part of the machine, and βH that of the hot part.

resource (which can be identified as a work source) one recovers the relation between work
and free-energy difference that embodies the second law of thermodynamics. Alternatively,
if one were to consider the incoherent-control scenario with any finite-temperature hot
bath and not specify an energetic structure of the target system, i.e., not attribute a
Hamiltonian to the target, the Landauer information erasure procedure fuelled by a heat
engine is recovered. Taking both of these reductions together yields the regular Landauer
bound, i.e., perfectly efficient information erasure where the heat dissipated into the
environment is exactly that drawn from the energy source.

Due to the restriction to energy-conserving unitaries, it is a priori unclear if the
Carnot-Landauer bound is attainable and, if so, how to attain it. This problem persists
for the special case where the heat-bath temperature tends to infinity and the bound
reduces to the standard Landauer limit. To shed light on this issue, we first present cooling
protocols that saturate the Landauer bound with an infinite-temperature heat bath. We
do so by fine-tuning the machine structure such that the desired cooling transitions are
energy-conserving. Subsequently, we study the more general case of finite-temperature heat
baths, where we present protocols that saturate the Carnot-Landauer limit [i.e., Eq. (1.5)]
for arbitrary heat baths. As in the coherent-control setting, these protocols require either
diverging time or control complexity. These results, summarised in Table 1.2, provide
a comprehensive understanding of the resources required to perfectly cool at minimum
energy cost in a setting that aligns with the resource theories of thermodynamics.

1.3 Main Results

To arrive at these conclusions, we introduce a framework that encompasses both
cooling and erasure, providing a unified approach to Landauer’s principle and the laws of
thermodynamics. Crucially, this allows us to track all energetic and entropic exchanges
throughout the process and relate the heat dissipated into the surrounding environment
(i.e., the central quantity of Landauer’s principle) [3, 12, 37, 200] to the resources that
an agent utilises to perform a desired transformation (i.e., the costs relevant to the third
law) [42, 43, 193–195].
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Importantly, all of the protocols we present are constructive proofs in the sense that
they prove that perfect cooling is possible under certain conditions (e.g., infinite energy,
time, or control complexity), and not the inverse, i.e., that no protocol exists that achieves
the same with finite resources. However, note that the existence of a finite-resource
protocol that perfectly cools would violate the unattainability principle, implying that
either it is incorrect or there is a hidden resource unaccounted for. By establishing such
protocols, we show that the three resources can be traded-off amongst each other to
approach perfect cooling as long as any one diverges. Whenever we say “achievable with
diverging X”, we mean that one can construct a procedure that takes the initial state
to within arbitrarily small distance ε from the ground state, i.e., %S →ε |0〉〈0|S , for any
suitably-chosen distance measure, and that X diverges in the limit ε → 0. Similarly,
“at the (Carnot-)Landauer limit” should be interpreted as asymptotic saturation of said
bound. The scenarios where energy is minimised correspond to those in which the
(Carnot-)Landauer limit is asymptotically attained as either time or control complexity
diverge.

Landauer energy cost refers to saturation of Eq. (1.2); Carnot-Landauer energy cost
refers to saturation of Eq. (1.5). Both of these equations are derived in Appendix A.1.
Here, we use the proxy of effective dimensionality to represent the control complexity
(see Definition 1.1). The control complexity of a complete swap between a target system
and a machine of the same dimension d := dS = dM is deff = 1

2d(d− 1) and that of any
exchange of two energy levels (e.g., |i, j〉 ↔ |j, i〉 or |i, j + 1, k〉 ↔ |i + 1, j, k + 1〉 as
considered in the incoherent-control protocols) is deff = 1. We quantify the time duration
of any given protocol by the number of required consecutive unitary operations with fixed
complexity. While the physical time passing is also a function of the interaction strength
and multipartite nature of the interactions giving rise to the respective unitaries [52, 53],
it is clear that each operation takes finite time, and a diverging number of unitaries thus
implies diverging physical time. In the incoherent-control setting, β refers to the initial
inverse temperature of the target system and cold part of the machine, whereas βH is the
initial temperature of the hot part of the machine.

1.3.1 Framework

Consider a target system S in an initial state %S described by a unit-trace, positive
semidefinite operator with associated Hamiltonian HS . An auxiliary machineM, initially
uncorrelated with S and in equilibrium with a reservoir at inverse temperature β := 1

kBT
,

is used to cool the target system. The initial state ofM is thus of Gibbs form

%M = τM(β,HM) := e−βHM

ZM(β,HM) , (1.6)
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where HM is the machine Hamiltonian and ZM(β,HM) := tr
[
e−βHM

]
its partition

function. Throughout this article we only consider Hamiltonians with discrete spectra,
i.e., with an associated separable Hilbert space that has a countable energy eigenbasis.
Moreover, for the most part we consider finite-dimensional systems (or sequences thereof)
and deal with infinite-dimensional systems separately.

As shown in Fig. 1.1, one step of a cooling process comprises two sub-procedures: First,
a joint unitary is implemented during the control step; second, the machine rethermalises
to the ambient temperature. A cooling protocol is determined by the initial conditions
and any concatenation of such primitives.1 We consider two extremal control paradigms
corresponding to two classes of allowed global transformations. The coherent control
paradigm permits arbitrary unitaries on SM; in general, these change the total energy
but leave the global entropy invariant and thus require an external work source W. At
the other extreme is the incoherent control paradigm, where the energy source is a heat
bath. Here, the machineM is bipartitioned: One part, C, is connected to a cold bath at
inverse temperature β, which serves as a sink for all energy and entropy flows; the other,
H, is connected to a hot bath at inverse temperature βH ≤ β, which provides energy. The
composite system SCH is closed and thus global unitary transformations are restricted to
be energy conserving. The temperature gradient causes a natural heat flow away from
the hot bath, which carries maximal entropic change with it. Cooling protocols in this
setting can be run with minimal external control, i.e., they only require switching on and
off interactions. We first analyse the coherent-control scenario.

1.3.2 Coherent Control

In the coherent-control setting, a transformation %S → %′S is enacted via a unitary U
on SM involving a thermal machine %M = τM(β,HM), i.e.,

%′S := trM
[
U(%S ⊗ %M)U †

]
. (1.7)

For such a transformation, there are two energy costs contributing to the total energy
change, which must be drawn from a work source W. The first is the energy change
of the target ∆ES := tr

[
HS(%′S − %S)

]
; the second is that of the machine ∆EM :=

tr
[
HM(%′M − %M)

]
, where %′M := trS

[
U(%S ⊗ %M)U †

]
. The latter is associated with the

heat dissipated into the environment and is given by [200]

β∆EM = ∆̃SS + I(S :M)%′SM +D(%′M‖%M), (1.8)

where S(%) := −tr [% log(%)] is the von Neumann entropy, ∆̃SA := S(%A) − S(%′A),2

I(A : B)%AB := S(%A) +S(%B)−S(%AB) (with marginals %A/B := trB/A [%AB]) is the mutual

1One could refer to bothM and the transformations applied as the machine and call the systemM itself
the working medium inasmuch as the latter passively facilitates the process, in line with conventional parlance;
however, we use the terminology established in the pertinent literature.

2Note the differing sign conventions (denoted by the tilde) that we use for changes in energies, ∆EX := E′X−EX ,
and in entropies, ∆̃SX := SX − S′X , such that energy increases and entropy decreases are positive.
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information between A and B, and D(%‖σ) := tr [% log(%)] − tr [% log(σ)] is the relative
entropy of % with respect to σ, with D(%‖σ) := ∞ if supp[%] * supp[σ]. We derive
Eq. (1.8) and its generalisation to the incoherent-control setting in Appendix A.1. The
mutual information is non-negative and vanishes iff %AB = %A ⊗ %B; similarly, the relative
entropy is non-negative and vanishes iff % = σ. Dropping these terms leads to the Landauer
bound [3]

β∆EM ≥ ∆̃SS . (1.9)

The Landauer limit holds independently of the protocol implemented, i.e., it only
assumes some unitary was applied to the target and thermal machine. For large machines,
the dissipated heat is typically much greater than the energy change of the target;
nonetheless, the contributions can be comparable at the microscopic scale. We will assume
that the target begins in equilibrium with the reservoir at inverse temperature β, i.e., in
the initial thermal state %S = τS(β,HS), with no loss of generality since such a relaxation
can be achieved for free (by swapping the target with a suitable part of the environment;
however, see Ref. [201] for a discussion of initial state dependency of the bound). We
will track all energetic and entropic quantities and refer to the asymptotic saturation of
Eq. (1.9) with %′S pure as perfect cooling at the Landauer limit.

Equation (1.8) provides insight for understanding the conditions required for saturating
the Landauer bound. Although for finite-dimensional machines only trivial processes
of the form USM = US ⊗ 1M saturate the Landauer limit [200], we show how it can be
asymptotically saturated with nontrivial processes by considering diverging machine and
interaction properties, as we elaborate on shortly. Any such process must asymptotically
exhibit no correlations such that I(S :M)%′SM → 0 and effectively not disturb the machine,
i.e., yield %′M → %M such that D(%′M‖%M)→ 0. Indeed, any correlations created between
initially thermal systems would come at the expense of an additional energetic cost [202–
204] whose minimisation is a problem that has so far only been partially resolved [205].
However, it has been shown that for any rank non-decreasing process, there exists a
thermal machine and joint unitary such that for any ε > 0, the heat dissipated satisfies
β∆EM ≤ ∆̃SS+ε [200], thereby saturating the Landauer limit. Here, we present protocols
that asymptotically achieve both this and perfect cooling (in particular, effectively decrease
the rank), and provide necessary conditions on the underlying resources required to do so.

From an alternate perspective, the third law makes no specification that the energy is
the resource minimised (or that time must diverge), and so we also present a protocol that
uses an unbounded source of energy to perfectly cool the target in unit time. Additionally,
as we discuss, the concept of control complexity plays an important role as a resource,
inasmuch as allowing for its divergence permits perfect cooling at the Landauer limit in
unit time. The following thus provides a comprehensive analysis of cooling with respect
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to a trinity of resources—energy, time, and control complexity—that can be traded off
amongst each other.

1. Diverging Energy.—We first consider the situation in which time and control
complexity are fixed to be finite, while the energy cost is allowed to diverge. Here, we
present:

Theorem 1.1. With diverging energy, any finite-dimensional quantum system can be
perfectly cooled using a single interaction of finite complexity.

In addition to being sufficient for perfect cooling with both finite time and control
complexity (i.e., using an effectively finite-dimensional machine), diverging energy is also
necessary. See Appendix A.2 for details.

2. Diverging Time.—We now present a protocol that uses a diverging number of
operations of finite complexity to asymptotically attain perfect cooling at the Landauer
limit [197, 200, 206]:

Theorem 1.2. With diverging time, any finite-dimensional quantum system can be
perfectly cooled at the Landauer limit via interactions of finite complexity.

Sketch of proof.—We first show that any system can be cooled from %S = τS(β,HS) to
τS(β∗, HS), with β∗ ≥ β, using only β−1 ∆̃SS units of energy. Our proof is constructive in
the sense that we provide a protocol that achieves the Landauer energy cost as the number
of operations diverges. The individual interactions in this protocol are of finite control
complexity as they simply swap the target system with one of a sequence of thermal
machines with increasing energy gaps. In this way, the final state τS(β∗, HS) can be made
to be arbitrarily close to |0〉〈0|S for any initial temperature.

The proof is presented in Appendix A.3, along with a more detailed dimension-
dependent energy cost function for the special case of equally spaced Hamiltonians.

3. Diverging Control Complexity.—By reconsidering the diverging-time protocol above,
a trade-off can be made between time and control complexity. As illustrated in Fig. 1.2,
one can consider all of the operations {Uk = e−iHktk}k=1,...,N required in said protocol
to make up one single joint interaction Utot := limN→∞

∏N
k=1 Uk = e−iHtotttot acting on a

larger machine, thus setting the time required to be unity (in terms of the number of
operations before the machine rethermalises). In other words, for any finite number N of
unitary transformations Uk, there exists a total Hamiltonian H(N)

tot and a finite time tN
that generates the overall transformation U (N)

tot := ∏N
k=1 Uk; since tN is finite, we can set it

equal to one without loss of generality by rescaling the Hamiltonian as H̃(N)
tot = tNH

(N)
tot .

Here, we refer to the limit N → ∞ as diverging control complexity. Compressing a
diverging number of finite-complexity operations thus yields a protocol of diverging control
complexity. The fact that there exists such an operation that minimises both the time and
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Figure 1.2: Notions of Complexity. We consider structural (left) and control complexity (right).
Structural complexity concerns properties of the machine Hamiltonian. For perfect cooling it is necessary
that the largest energy gap diverges [see Eq. (1.10)]. Moreover, an infinite-dimensional machine with
particular energy-level structure is required for saturation of the Landauer bound. Control complexity
refers to properties of the unitary that represents a protocol. The yellow box in the foreground represents a
unitary U involving the entire machine, whereas the smaller yellow columns in the background represent a
potential decomposition (e.g., of the diverging-time protocol) into unitaries Ui involving certain subspaces
of the overall machine. Not only must the target system interact with all levels of an infinite-dimensional
machine for Landauer-cost cooling, it must do so in a fine-tuned way.

energy requirements follows from our constructive proof of Theorem 1.2. We therefore
have:

Corollary 1.1. With diverging control complexity, any finite-dimensional quantum system
can be perfectly cooled at the Landauer limit in unit time.

1.3.3 Notions of Complexity

Although the protocol described above has diverging control complexity by construction,
one need not construct complex protocols in this way, and so the natural concern becomes
understanding the generic features that enable perfect cooling at the Landauer limit in
unit time. We provide a detailed study in Appendix A.4, and here summarise the key
methods.

Structural Complexity

We split the consideration of complexity into two parts: First, the protocol-independent
structural conditions that must be fulfilled by the machine and, second, the dynamic control
complexity properties of the interaction that implements a given protocol. Regarding the
former, first note that one can lower-bound the smallest eigenvalue λmin of the final state
%′S (and hence how cold the system can become) after any unitary interaction with a
thermal machine by [200]

λmin(%′S) ≥ e−β ω
max
M λmin(%S), (1.10)
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where ωmax
M := maxi,j |ωj − ωi| denotes the largest energy gap of the machine Hamiltonian

HM with eigenvalues ωi. It follows that perfect cooling is only possible under two
conditions: Either the machine begins in a pure state (β →∞), or HM is unbounded, i.e.,
ωmax
M →∞. Requiring β <∞, a diverging energy gap in the machine Hamiltonian is thus

a necessary structural condition for perfect cooling. Independently, another condition
required to saturate the Landauer limit can be derived for any amount of cooling: In
Ref. [200], it was shown that for any finite-dimensional machine, there are correction
terms to the Landauer bound which imply that it cannot be saturated; these terms only
vanish in the limit where the machine dimension diverges.

We thus have two independent necessary conditions on the structure of the machine
that must be asymptotically fulfilled to achieve relevant goals for cooling: The former is
required for perfect cooling; the latter for cooling at the Landauer limit. Together, these
conditions imply the following:

Corollary 1.2. To perfectly cool a target system with energy cost at the Landauer limit
using a thermal machine τM(β,HM), the machine must be infinite-dimensional and ωmax

M ,
the maximal eigenvalue of HM , must diverge.

The unbounded structural properties of the machine support the possibility for perfect
cooling at the Landauer limit; we now move to focus on the control properties of the
interaction that realise said potential (see Fig. 1.2). This leads to the distinct notion
of control complexity, which differentiates between protocols that access the machine
in a more or less complex manner. The structural complexity properties are protocol-
independent and related to the energy spectrum and dimensionality of the machine,
whereas the control complexity concerns properties of the unitary that represents a
particular protocol.

Control Complexity

We begin by demonstrating that the effective dimension (nontrivially) accessed by
a unitary (see Definition 1.1) must diverge to achieve perfect cooling at the Landauer
limit, thereby providing a good proxy for control complexity in the sense that it aligns
with Nernst’s third law. Intuitively, the effective dimension of a unitary operation is
the dimension of the subspace of the global Hilbert space upon which the unitary acts
nontrivially, in other words the part of the joint space that is actually accessed by
the control protocol. This quantity can be computed by considering a given cooling
protocol and finite unit of time T (which we can set equal to unity without loss of
generality) with respect to which the target and total machine transform unitarily by
decomposing the Hamiltonian in USM = e−iHSMT in terms of local and interaction terms,
i.e., HSM = HS ⊗ 1M + 1S ⊗HM + Hint. The effective dimension then corresponds to
rank(Hint). With this definition at hand, we have:
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Theorem 1.3. The unitary representing a cooling protocol that saturates the Landauer
limit must act nontrivially on an infinite-dimensional subspace of supp(HM). This implies
d eff →∞.

Intuitively, we show that if a protocol only accesses a finite-dimensional subspace of
the machine, then the machine is effectively finite-dimensional inasmuch as a suitable
replacement can be made while keeping all quantities relevant for cooling invariant.
Invoking the main result of Ref. [200] then implies that there are finite-dimensional
correction terms such that the Landauer limit cannot be saturated.

However, accessing an infinite-dimensional machine subspace is far from sufficient
for reaching the Landauer limit. This motivates searching for a more detailed notion of
control complexity that takes the energy-level structure of the machine into account. The
manifestation of such control seems to be system-dependent, precluding our ability (so
far) to present a universal quantifier of control complexity, as we elaborate upon below.
Thus, even though further conditions need to be met to achieve perfect cooling at minimal
energy cost in unit time (as we discuss below), whenever we talk of an operation with finite
control complexity, we mean those represented by a unitary that acts (nontrivially) on a
finite-dimensional subspace of the target system and machine. In contrast, by diverging
control complexity, we mean a unitary that couples the target (nontrivially) to a full basis
of the machine’s Hilbert space, whose dimension diverges.

The protocols that we present that achieve perfect cooling at Landauer cost make use
of machines and interactions with a far more complicated structure than suggested by the
necessary condition of infinite effective dimensionality. In particular, the interactions couple
the target system to a diverging number of subspaces of the machine corresponding to
distinct energy gaps. Moreover, there are a diverging number of energy levels of the machine
both above and below the first excited level of the target. These observations highlight
that fine-tuned control plays an important role. Indeed, both the final temperature of the
target as well as the energy cost required to achieve this depends upon how the global
eigenvalues are permuted via the cooling process. First, how cool the target becomes
depends on the sum of the eigenvalues that are placed into the subspace spanned by the
ground state. Second, for any fixed amount of cooling, the energy cost depends on the
constrained distribution of eigenvalues within the machine. Thus, in general, the optimal
permutation of eigenvalues depends upon properties of both the target and machine. To
highlight this, we consider the task of cooling a maximally mixed target system with the
additional constraint that the operation implemented lowers the temperature as much as
possible. This allows us to derive a closed-form expression for the distribution of machine
eigenvalues alone that must be asymptotically satisfied as the machine dimension diverges.
Although global fine-tuning conditions can be derived similarly for any particular setup
considered, a generic set of necessary control complexity conditions (beyond diverging
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effective dimensionality) remains an open problem. This concept is even more important in
the case where all resources are finite, as particular structures of machines and the types of
interactions permitted play a crucial role in both how much time or energy is spent cooling
a system and how cold the system can ultimately become (see, e.g., Refs. [83, 207, 208]).

Finally, as a representative for infinite-dimensional systems, we treat harmonic oscillator
target systems separately in Appendix A.5. In the infinite-dimensional setting, the
difficulty of implementing an operation is often related to the polynomial degree of
its generators. Here, we see some friction with respect to Definition 1.1: A generic
Gaussian unitary operation (i.e., one generated by a Hamiltonian at most quadratic in
the mode operators) between a harmonic oscillator target and machine already implies
infinite effective dimensionality. In light of this, we first construct a protocol that
achieves perfect cooling at the Landauer limit with diverging time using only sequences of
Gaussian operations [i.e., those typically considered to be practically easily implementable
(cf. Refs. [54, 209]), but nonetheless with infinite effective dimensionality according to
Eq. (1.3)]. In contrast, we then present a protocol that demonstrates that perfect cooling is
possible given diverging time and operations acting on only a finite effective dimensionality
(i.e., using non-Gaussian operations), with a finite energy cost that is greater than the
Landauer limit; whether or not a protocol that saturates the Landauer limit exists in this
setting remains an open question. Lastly, we present a unit-time perfect cooling protocol
with diverging control complexity that can nonetheless be realised using only Gaussian
operations.

The discussion above illustrates some key challenges in defining a measure of control
complexity that satisfies natural desiderata: Such a measure should correspond to the
difficulty of implementing operations in practice and simultaneously cover all possible
physical platforms, including finite-dimensional systems such as, e.g., specific optical
transitions of electrons in the shell of trapped ions, and infinite-dimensional systems such
as the state-space specific modes of the electromagentic field. The effective dimension that
we use as a proxy manages to cover all such systems and provides a rigorous mathematical
criterion that every physical protocol will necessarily have to fulfil in order to cool at
minimal energy cost. As we have seen, however, infinite effective dimension is insufficient
for cooling at the Landauer limit and it may not be all that difficult to achieve in
continuous-variable setups. This begs the question of how this minimal definition of
complexity can be extended in order to more faithfully represent what is difficult to
achieve in practice. Intuitively, a property that seems to be important in lowering the
energy cost of cooling is that the energy levels of the machine are distributed in such a
way that they (approximately) densely cover the interval [ω1, ω

∗], where ω1 is the first
energy gap of the target system and ω∗ is the maximal energy gap, which corresponds
to setting the final achievable temperature of the system (for perfect cooling, note that
one requires ω∗ → ∞). Let us denote the number of distinct energy gaps in a (fixed)
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interval as the variety. Whether or not the variety of energy gaps of the machine used
must diverge—in line with the third law—to cool at the Landauer limit remains an open
question.

1.3.4 Incoherent Control

We now analyse the energy–time–complexity trinity within the incoherent-control
setting (see Fig. 1.1). Here, we focus on finite-dimensional systems and leave the analysis
of infinite-dimensional ones to future work. As we will see, the structure of the hot
bath plays a crucial role in the ability to cool perfectly, especially regarding the resource
requirements.

In the incoherent-control setting, an adaptation of the (equality-form) Landauer bound
on the minimum heat dissipated (or, as we phrase it here, the minimum amount of energy
drawn from the hot bath) can be derived, which we dub the Carnot-Landauer limit:

Theorem 1.4. Let Fβ(%X ) := tr[HX%X ] − β−1S(%X ) be the free energy of a state %X
with respect to a heat bath at inverse temperature β, ∆F (β)

S := Fβ(%′S)− Fβ(%S), and let
η := 1− βH

β
∈ (0, 1) be the Carnot efficiency with respect to the hot and cold baths. In the

incoherent-control setting, the quantity

∆F (β)
S + η∆EH = − 1

β
[∆SS + ∆SC + ∆SH +D(%′C||%C) +D(%′H||%H)] (1.11)

satisfies the inequality

∆F (β)
S + η∆EH ≤ 0. (1.12)

Equation (1.12) holds due to the non-negativity of the sum of local entropy changes and
the relative-entropy terms. The derivation is provided in Appendix A.1, where we also
show that the usual Landauer bound is recovered in the limit of an infinite-temperature
heat bath.

The incoherent-control setting is fundamentally distinct from the coherent-control
setting in terms of what can (or cannot) be achieved with given resources. For instance,
consider the case where one wishes to achieve perfect cooling in unit time and with finite
control complexity with diverging energy cost. In the coherent-control setting, this task
is possible in principle (see Theorem 1.1). On the other hand, in the incoherent-control
setting, we have the following no-go theorem (see Appendix A.6 for a proof):

Theorem 1.5. In the incoherent control scenario, it is not possible to perfectly cool any
quantum system of finite dimension in unit time and with finite control complexity, even
given diverging energy drawn from the hot bath, for any non-negative inverse temperature
heat bath βH ∈ [0, β <∞).
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This result follows from the fact that in the incoherent-control setting, the target system
can only interact with subspaces of the joint hot-and-cold machine with respect to which
it is energy degenerate. For any operation of fixed control complexity, there is always a
finite amount of population remaining outside of the accessible subspace, implying that
perfect cooling cannot be achieved, independent of the amount of energy drawn from the
hot bath.

The above result emphasises the difference between coherent and incoherent controlling,
which means that it is a priori unclear if the Carnot-Landauer bound is attainable and, if
so, how to attain it. Indeed, the restriction to energy-conserving unitaries generally makes
it difficult to tell if the ultimate bounds can be saturated in the incoherent-control setting,
and which resources would be required to do so. We present a detailed study of cooling in
the incoherent-control setting in Appendix A.6, where we prove the following results. We
begin by demonstrating incoherent cooling protocols that saturate the Landauer bound in
the regime where the heat-bath temperature goes to infinity. We do so by fine-tuning the
machine structure such that the desired cooling transitions between the target system
and the cold and hot parts of the machine are rendered energy conserving. In particular,
we prove:

Theorem 1.6. In the incoherent control scenario, for an infinite-temperature hot bath
βH = 0, any finite-dimensional system can be perfectly cooled at the Landauer limit with
diverging time via interactions of finite control complexity. Similarly, the goal can be
achieved in unit time with diverging control complexity.

Following our analysis of infinite-temperature heat baths, we study the more general
case of finite-temperature heat baths. In Appendix A.7, we detail cooling protocols that
saturate the Carnot-Landauer limit for any finite-temperature heat bath. More precisely,
we prove:

Theorem 1.7. In the incoherent control scenario, for any finite-temperature hot bath
0 < βH < β, any finite-dimensional quantum system can be perfectly cooled at the Carnot-
Landauer limit given diverging time via finite control complexity interactions. Similarly,
the goal can be achieved in unit time with diverging control complexity.

As in the coherent-control setting, these protocols use either diverging time or control
complexity to asymptotically saturate the Carnot-Landauer bound. The results presented
in this section therefore provide a comprehensive understanding of the resources required
to perfectly cool at minimum energy cost in a setting that aligns with the resource theories
of thermodynamics.
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1.3.5 Imperfect Cooling with Finite Resources

Although throughout most of the article we focus on the asymptotic achievability of
optimal cooling strategies, the protocols that we construct provide insight into how said
asymptotic limits are approached. This facilitates a better understanding of the more
practically relevant questions that are constrained when all resources are restricted to
be finite: i) How cold can the target system be made? and ii) at what energy cost? In
line with Nernst’s third law, the answer to the former question cannot be perfectly cold
(i.e., zero temperature). The answer depends upon how said resources are configured
and utilised. For instance, given a single unitary interaction of finite complexity in the
coherent-control setting, the ground-state population of the output state can be upper
bounded in terms of the largest energy gap of the machine, ωmax [see Eq. (1.10)]. On the
other hand, supposing that one can reuse a single machine system multiple times, then
as the number of operation steps increases, the ground-state population of the output
state approaches (1 + e−βωmax)−1 from below [82]. There is clearly a trade-off relation
here between time and complexity, and a systematic analysis of the rate at which these
quantities can be traded off against one another warrants further investigation. Similarly,
the energy cost to reach a desired final temperature also depends upon the distribution of
resources, as we now examine.

Given access to a machine of a certain size (as measured by its dimension), one could
ask: What is the optimal configuration of machine energy spectrum and global unitary to
cool a system as efficiently as possible? Here, we compare two contrasting constructions
for the cooling unitary in the coherent-control setting for a qubit target system (with
energy gap ωS)—both of which asymptotically achieve Landauer cost cooling, but whose
finite behaviour differs. The first protocol considers a machine of N qubits whose energy
gaps increase linearly from the first excited state energy level of the system ω1 = ωS to
some maximum energy level ωN = ωmax, which dictates the final achievable temperature.
In this protocol, the target system is swapped sequentially with each of the N qubits
in order of increasing energy gaps; we hence refer to it as the linear qubit machine
sequence. The second protocol we consider is presented in full in Appendix A.4.4 and
inspired by one presented in Ref. [200] (see Appendix D therein); we hence refer to it as
the Reeb and Wolf (RW) protocol. Here, the global unitary acts on the system and a
high-dimensional machine with an equally-spaced Hamiltonian whose degeneracy doubles
with each increasing energy level, i.e., it has a singular ground state, a two-fold degenerate
first excited state, a four-fold degenerate second excited state, and so on; the final energy
level has an extra state so that the total dimension is 2N+1 (where N is the number
of energy levels). In particular, the unitary performs the permutation that places the
maximal amount of population in the ground state of the target system. Due to the
structure of both protocols, one can make a fair comparison between them, contrasting the
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Figure 1.3: Imperfect Cooling Comparison. We compare the cooling performance of a degenerate
qubit target system using either N machine qubits of linearly increasing energy accessed sequentially
versus a single unitary on a 2N dimensional machine, the latter being a finite adaptation of a protocol
presented Ref. [200]. We set β = 1 and fix 1−ε to be the desired final ground-state population of the target.
We plot the inverse of the excess work cost above the Landauer limit, W − β∆̃SS , confirming that the
surplus work cost in both cases scales with N−1. Interestingly, we see that the protocol in which the target
is sequentially swapped with machine qubits outperforms that which uses a high-dimensional unitary (at
equal overall control complexity) in terms of energy cost required to reach a desired temperature.

single unitary on a 2N -dimensional machine in the RW protocol versus the composition of
N two-qubit swap unitaries in the linear machine sequence, i.e., such that both protocols
access a machine of the same size overall.

As shown in Fig. 1.3, although both protocols asymptotically tend to the Landauer limit,
their finite behaviour differs. Indeed, the work cost of the linear qubit machine sequence
protocol outperforms that of the RW protocol. This is somewhat surprising, as the latter
is a complex high-dimensional unitary whereas the former a composition of qubit swaps;
although both protocols have the same effective dimension in this comparison overall, this
highlights that difficulty in the lab setting need not correspond to resourcefulness in a
thermodynamic sense. Indeed, developing optimal finite cooling strategies for arbitrary
systems and machines is difficult in general and remains an important open question.
Nonetheless, in Appendix A.8, we derive the rate of resource divergence of the sequential
qubit protocol to further clarify the trade-off between time and energy for this protocol.

Finally, we contrast the two extremal thermodynamic paradigms considered by compar-
ing the energy cost of a coherently-controlled cooling protocol to an incoherently-controlled
one that achieves the same final ground-state population. Intuitively, the latter setting
requires more resources to achieve the same performance as the former due to the fact
that only energy-resonant subspaces can be accessed by the unitary, and hence only a
subspace of the full machine is usable. This implies that a greater number of operations
(of fixed control complexity) are required to achieve similar results as the coherent setting,
as demonstrated in Appendix A.8 explicitly. Indeed, determining the optimal cooling
protocols for a range of realistic assumptions remains a major open avenue.
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1.4 Discussion

1.4.1 Relation to Previous Works

A vast amount of literature concerning quantum thermodynamics considers resource
theories (see Refs. [89, 90] and references therein), whose central question is: What
transformations are possible given particular resources, and how can one quantify the value
of a resource? While this perspective sheds light on what is possible in principle, it does
not per se concern itself with the potential implementation of said transformations. Yet,
the unitary operations considered in a resource theory will themselves require certain
resources to implement in practice. Focusing only on a resource-theoretic perspective
would thus overlook the question: How does one optimally use said resources? Our results
focus on this latter question and highlight the role of complexity in optimising resource
use.

Concurrently, by considering arbitrary unitary operations (akin to our coherent-control
paradigm without limitations on machine size) Refs. [197, 206] and [200], studied the
potential saturation of the second law of thermodynamics and Landauer’s limit, respectively.
Refs. [197] and [206] develop a similar protocol to our diverging time protocol in the
context of work extraction and demonstrate its optimality for saturating the second law.
However, these works do not discuss the practical viewpoint that the goal can be achieved
in a smaller number of operations by allowing the latter to be more complex, as we
emphasise. On the other hand, Ref. [200] considers the resources required for saturation
of the Landauer limit and show an important result regarding structural complexity,
namely that the machine must be infinite dimensional to cool at the Landauer limit. Our
analysis regarding complexity begins here and continues to elucidate the key complexity
properties that enhance the efficiency of a cooling protocol. In particular, we show that an
infinite-dimensional machine is not sufficient unless the controlled unitary indeed accesses
the entire machine. This leads to the notion of “effective dimension”, which provides
a good proxy for control complexity that is consistent with Nernst’s third law for all
types of quantum machines—from finite-dimensional systems to harmonic oscillators.
Moreover, we highlight that the optimal interactions must be fine-tuned, i.e., they must
couple the system to particular energy gaps of the machine in a specific configuration,
paving the way for a more nuanced definition of control complexity that takes into account
the complicated and precise level of control required. Lastly, we emphasise that the
latter discussion concerns the coherent-control scenario, which is only one of the extremal
control paradigms that we consider. In addition, we consider the task of cooling in a more
thermodynamically consistent setting, namely the incoherent-control paradigm. There we
derive the Carnot-Landauer equality and consequent inequality, which are adaptations of
the Landauer equality [200] and inequality [3], respectively, where the protocol can only
be run via a heat engine.
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1.4.2 Conclusions & Outlook

The results of this work have wide-ranging implications. We have both generalised
and unified Landauer’s bound with respect to the laws of thermodynamics. In particular,
we have posed the ultimate limitations for cooling quantum systems or erasing quantum
information in terms of resource costs and presented protocols that asymptotically saturate
these limits. Indeed, while it is well-known that heat and time requirements must be
minimised to combat the detrimental effects of fluctuation-induced errors and short
decoherence times on quantum technologies [50], we have shown that this comes at a
practical cost of greater control. In particular, we have demonstrated the necessity of
implementing fine-tuned interactions involving a diverging number of energy levels to
minimise energy and time costs, which serves to deliver a cautionary message: Control
complexity must be accounted for to build operationally meaningful resource theories
of quantum thermodynamics. This result posits the effective dimension accessed by a
unitary protocol as a minimal quantifier of control complexity that is fully consistent with
the third law of thermodynamics. Our analysis of the incoherent-control setting further
provides pragmatic ultimate limitations for the scenario where minimal control is required,
in the sense that all transformations are driven by thermodynamic energy and entropy
flows between two heat baths, which could be viewed as a thermodynamically-driven
quantum computer [12]. Nevertheless, the intricate relationship between various resources
here will need to be further explored.

Looking forward, we believe it will be crucial to go beyond asymptotic limits. While
Landauer erasure and the third law of thermodynamics conventionally deal with the
creation of pure states, practical results would need to consider cooling to a finite
temperature (i.e., creating approximately pure states) with a finite amount of invested
resources [83, 207, 208]. In this context, the trade-off between time and control complexity
will gain more practical relevance, as realistic quantum technologies have limited coherence
times and interaction Hamiltonians are limited to few-body terms. Here, operational
measures of control complexity that fit the envisioned experimental setup present an
important challenge that must be overcome to apply our results across various platforms.

Our results strengthen the view that, in contrast to classical thermodynamics, the
role of control is one of the most crucial issues to address before a true understanding
of the limitations and potential of quantum machines is revealed. On the one hand, in
classical systems, control is only ever achieved over few bulk degrees of freedom, whereas
addressing and designing particular microstate control is within reach of current quantum
technological platforms, offering additional routes towards operations enhanced by fine-
tuned control. On the other hand, the cost of such control itself can quickly exceed the
energy scale of the system, potentially rendering any perceived advantages a mirage. This
is exacerbated by the fact that it is not possible to observe (measure) a quantum machine
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without incurring significant additional thermodynamic costs [192, 210] and non-negligible
back-action on the operation of the machine itself [211]. A fully developed theory of
quantum thermodynamics would need to take these into account and we hope that our
study sheds light on the role of control complexity in this endeavour.
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CHAPTER 2
Exponential Improvement for

Quantum Cooling through
Finite-Memory Effects

Philip Taranto, Faraj Bakhshinezhad, Philipp Schüttelkopf, Fabien Clivaz, and Marcus Huber

Abstract. Practical implementations of quantum technologies require preparation of states
with a high degree of purity—or, in thermodynamic terms, very low temperatures. Given
finite resources, the Third Law of thermodynamics prohibits perfect cooling; nonetheless,
attainable upper bounds for the asymptotic ground state population of a system repeatedly
interacting with quantum thermal machines have recently been derived. These bounds
apply within a memoryless (Markovian) setting, in which each refrigeration step proceeds
independently of those previous. Here, we expand this framework to study the effects of
memory on quantum cooling. By introducing a memory mechanism through a generalised
collision model that permits a Markovian embedding, we derive achievable bounds that
provide an exponential advantage over the memoryless case. For qubits, our bound coincides
with that of heat-bath algorithmic cooling, which our framework generalises to arbitrary
dimensions. We lastly describe the adaptive step-wise optimal protocol that outperforms
all standard procedures.

Phys. Rev. Appl. 14, 054005 (2020)
arXiv:2004.00323
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2.1 Introduction

Cooling a physical system is a thermodynamic task of fundamental and practical
importance [24, 42, 46, 81, 192, 194]. On the foundational side, the cooling potential is
limited by the Third Law of thermodynamics, which posits the necessity of an infinite
resource to be able to cool perfectly [43]. This resource is subject to trade-offs: Absolute
zero is attainable in finite time given an infinitely-large environment; alternatively, given
a finite energy source, one can only perfectly cool asymptotically. Practically, one cannot
utilise an infinite resource, so the concern turns to: How cold can a system be prepared
given resource constraints?

Formulating a theory with such constraints is typically scenario-dependent; nonetheless,
one aims to develop theories that are widely applicable. For example, resource theories of
quantum thermodynamics permit energy-conserving unitaries between the system and a
thermal environment [89, 90]. Analysing the transformations for various environments
and dynamical structures illuminates thermodynamic limitations.

Recent work has examined the task of quantum cooling in such a setting [82, 83]; the
main result posits a universal bound for the ground state population of the system in
the infinite-cycle limit. However, these results are derived in a memoryless (Markovian)
setting, which is often not well-justified in experimental platforms where memory effects
can affect the performance. For instance, Landauer’s principle [3] can be violated in the
non-Markovian regime [76, 80].

A natural follow-up is to examine the role of memory in quantum cooling. Depending
on the task and level of control, memory effects can have a detrimental or advantageous
impact [67, 70, 72–75, 77–79, 114]; nonetheless, applications highlight the potential to
be unlocked by controlling the memory via reservoir engineering [68, 69, 71]. Attempts
to generalise thermodynamics to the non-Markovian setting include trajectory-based
dynamical unravellings [212, 213] and those based on the operational process tensor
formalism [128, 129, 214–218], among others [219, 220]. However, such general approaches
typically obscure insight regarding the crucial resources; it is often unclear whether
reported “quantum advantages” are due to genuinely quantum effects (e.g., coherence) or
memory.

Here, we propose a mechanism for memory through a generalised collision model [91,
93, 94], which—while not fully general—permits fair comparison between various memory
structures. We show that in the asymptotic limit, the memory depth of the protocol plays
a critical role and leads to exponential improvement over the Markovian case. Our results
coincide with the limits of heat-bath algorithmic cooling protocols [44, 84–88, 221, 222]
for qubit targets and our framework both unifies and generalises this setting, applying to
all system and environment structures.
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2.2 Task: Cooling a Quantum System

A physical system is never isolated, which necessitates working within the theory of
open systems, where the joint system -environment are closed, but environmental degrees
of freedom are disregarded. Arbitrary environments permit perfect cooling with finite
resources, as any physical transformation on a quantum system can be realised unitarily
with a sufficiently-large environment; thus, further restrictions are necessary.

We consider a system, S, and environment, E, with Hamiltonians HS and HE, re-
spectively. The system and environment begin uncorrelated and in equilibrium at inverse
temperature β := 1

kBT
. The joint system-environment evolves unitarily, with the system

dynamics between the initial time and a later one t described by the dynamical map,
%

(t)
S (β) := Λ(t)[τ (0)

S (β)], defined such that:

%
(t)
S (β) = trE

[
U (t)(τ (0)

S (β)⊗ τ (0)
E (β))U (t)†

]
, (2.1)

where τX(β) denotes a thermal state of X at inverse temperature β, i.e., τX(β) :=
Z−1
X (β) exp(−βHX) with partition function ZX(β) := tr [exp(−βHX)].
The aim is to prepare %(t)

S (β) as cold as possible. Cooling a system, however, can have
several meanings: For one remaining in equilibrium, it could mean driving it to a thermal
state of lower temperature; otherwise, one could consider increasing its ground state
population or purity, or decreasing its entropy or energy. As such notions are generally
nonequivalent, any study of cooling depends on the objective function [82]. We focus
on achieving states that majorise all other potential states; this ensures optimisation of
all Schur-convex/concave functions of the vector of populations ordered with respect to
non-decreasing energy eigenstates, in particular all above notions of temperature.

2.3 Framework: Collision Models with Memory

Above we have described one step of a cooling protocol. In thermodynamic tasks,
however, one is oftentimes interested in the multiple-cycle behaviour. Here, one faces a
choice in how to proceed: One could implement each operation independently of those
previous, i.e., completely refresh the environment between steps, leading to Markovian
dynamics; or, one could temporally correlate the cycles, leading to non-Markovian dynam-
ics. The main difficulty in treating the latter is that memory effects can arise in various
ways: They can be the manifestation of initial correlations, recurring system-environment
or intra-environment interactions; or any combination thereof. In any case, for multiple
cycles, the dynamical map in Eq. (2.1) fails to completely describe the system dynamics,
since system-environment correlations can influence later evolution, in contradistinction
to the Markovian setting, where the environment is entirely forgotten between steps. In
general, one must track all system-environment degrees of freedom to describe the system
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evolution, which becomes unfeasible. Thus, we seek a framework that permits tractable
memory and comparison between different memory structures.

We propose a microscopic model for the environment and its interactions with the
system. We consider a dS-dimensional system with HS = ∑dS−1

i=0 Ei|i〉〈i|S and assume the
environment comprises a number of identical units—which we call machines—each being
a dM -dimensional quantum system with associated Hamiltonian HM = ∑dM−1

i=0 Ei|i〉〈i|M .
We order Hamiltonians with respect to non-decreasing energies, and set E0 = E0 = 0 and
Emax = EdM−1. Assuming that the dynamics proceeds via successive unitary “collisions”
between the system and subsets of machines yields a collision model with memory.

The memory effects that arise from endowing such models with various dynamical
structures have been examined: Considerations include initially correlated machines [223,
224], inter-machine [91, 95, 225–227] or repeated system-machine collisions [112, 115],
or hybrid variations [92–94, 228]. In certain cases, the model exhibits finite-length
memory [106, 130–132]. In the limit of many machines, the system is expected to interact
with only mutually-exclusive subsets of machines; since any used machines never play
a subsequent role, one yields a microscopic picture of Markovian evolution that gives a
Lindbladian master equation in the continuous-time limit [229–232].

Although not fully general, this setting captures tractable non-Markovian dynamics.
In this article, we will analyse the memory effects that arise from repeated system-machine
interactions (see Fig. 2.1). More precisely, we consider k machines to interact with the
system between timesteps, with some ` ≤ k of these carrying memory forward; this
reduces to a Markovian protocol involving k machines for ` = 0. The assumptions are that
the system and all machines begin uncorrelated, and there are no interactions between
memory-carrying machines and fresh ones other than those involving the system. These
are valid whenever the memory-carrying machines relax much slower than those that
rethermalise between steps. We can vary the number of machines in each interaction, k,1

the number of memory carriers, `, the initial temperature, β, and the Hamiltonians.
This generic framework applies to a wide range of protocols. For instance, one can

compare adaptive strategies, where different unitaries are performed between steps, versus
non-adaptive ones, where a fixed dynamics is repeated. Additionally, one can restrict the
allowed unitaries, such as limiting the set from general “coherent” ones (that require an
external energy source) to “incoherent” energy-conserving transformations (where the
cooling resource is an additional hot bath) [83, 233]. Lastly, one could allow the memory
structure itself to be adaptive, where k and ` vary between times; we do not consider this
and instead focus on cooling limits for fixed structures. A choice of k and `, along with
the system and machine dimensions, determines the control complexity afforded to the

1One could consider the restricted case of (k + 1)-partite system-machine interactions that are decomposable
into sequences of p-partite interactions for p ≤ k. We do not make this restriction and allow any multi-partite
interaction to be genuinely so.
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Figure 2.1: Collision Model with Memory. At each step, the system S interacts unitarily with k
machines, of which ` carry forward memory (red lines). Here we illustrate k = 2, ` = 1, with m the total
number of machines used by timestep n.

experimenter: Intuitively, k is related to spatial complexity and ` to temporal complexity.
We now compare the achievable cooling of a system for different memory structures.

2.4 Memory-Enhanced Cooling

The fundamental Markovian cooling bounds have been derived in Refs. [82, 83]. The
optimally-cool system state at any finite time depends upon the energy-level structure
between the system and machines and the level of control. However, in the asymptotic
limit of Markovian operation, the vector of eigenvalues of the asymptotic state (in any
aforementioned control paradigm) is majorised by that of

%∗S(Emax, β, k) =
dS−1∑
n=0

e−βnkEmax

ZS(β, kEmax)
|n〉〈n|S, (2.2)

whenever the initial state τ (0)
S (β) is majorised by %∗S(Emax,β,k); here ZX(β, E) :=∑dX−1

n=0 e−βnE

is a quasi-partition function (depending only on the maximum energy gap of each machine,
Emax). The state in Eq. (2.2) is attainable with coherent control, positing the ultimate
Markovian cooling limit.

The intuition is that the optimal protocol reorders the eigenvalues of the system
and relevant machines at each step such that the maximum population is placed into
the ground state subspace of the system, the second largest into the first excited state
subspace, and so on. When this cycle is repeated with fresh machines at each timestep,
the asymptotic state looks as if it had interacted with only the qubit subspace of each
machine with maximum energy difference. However, the result cannot immediately be
extended to the non-Markovian regime, as its derivation relies on an inductive argument
on the system state at each step; for non-Markovian dynamics, this cannot be expressed
in terms of the previous state, posing a logical roadblock.

Whenever ` > 0 the generalised collision model is non-Markovian. Nonetheless, a
relevant result states that such non-Markovian collision models can be lifted to a Markovian
dynamics on a larger state space [95]. For a system interacting with k machines at each
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step, of which ` feed forward, the dynamics can be embedded into a Markovian one by
considering the system and ` memory carriers as a unified system, which interacts at each
step with k − ` fresh machines; such a process has memory depth `. In Appendix B.1, we
detail the Markovian embedding, which leads to the following results.

2.4.1 Asymptotic Cooling Advantage

We now present the universal cooling bound for the non-Markovian collision model in
the infinite-cycle limit:

Theorem 2.1. For any dS-dimensional system interacting at each step with k identical
dM−dimensional machines, with ` of the machines (labelled L) used at each step carrying
the memory forward, in the limit of infinitely many cycles:

i) The ground state population of S is upper bounded by

p∗(Emax, β, k, `) =
( dS−1∑
n=0

e−βnd
`
M (k−`)Emax

)−1
. (2.3)

ii) The vector of eigenvalues of the output system state is majorised by that of the
following attainable state

%∗S(Emax, β, k, `)=
dS−1∑
n=0

e−βnd
`
M (k−`)Emax

ZS(β, d`M(k − `)Emax)
|n〉〈n|S, (2.4)

whenever the initial state τS(β)⊗ τM(β)⊗` is majorised by

%∗SL(Emax, β, k, `)=
dSL−1∑
n=0

e−βn(k−`)Emax

ZSL(β, (k − `)Emax)
|n〉〈n|SL. (2.5)

Sketch of Proof. We use the Markovian embedding to lift the non-Markovian dynamics of
the target S to a Markovian process for the target-plus-memory carriers SL system, which
interacts with k − ` fresh machines (which we label R) at each step. This implies that
optimally cooling SL is necessary to optimally cool S. From Ref. [82], the asymptotically-
optimal state of SL has the same eigenvalue distribution as Eq. (2.5), whenever the initial
SL state is majorised by %∗SL, and is thus unitarily equivalent to it. As majorisation
concerns all partial sums, given that initial condition, whatever protocol one chooses to
cool S, the asymptotic state cannot be colder than %∗S (which is the coldest S state in the
unitary orbit of %∗SL). This implies that the asymptotic ground state population is upper
bounded by p∗. See Appendix B.2.

There are many noteworthy points: Firstly, the optimal ground state population is
enhanced by d`M compared to the Markovian case, highlighting the drastic role of memory;
in particular, one achieves an exponential improvement in `. Secondly, as the factors in
Eq. (2.4) arise independently from various sources (i.e., S, L and R), the bound extends to
the case where L is an arbitrary dL-dimensional system and R an arbitrary dM -dimensional
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Figure 2.2: Cooling behaviour. We simulate the ground state population after m machines have
been used in the step-wise optimal cooling protocol (see Theorem 2.2) for a qubit system and machines
with fixed β = 0.2, Emax = 1 and Emax = 2. The asymptotic hierarchy agrees with Corollary 2.1, whereas
the complex short-term behaviour can exhibit crossovers.

system (with maximum energy gap E ′max), with d`M → dL and (k − `)Emax → E ′max. This
clarifies that the asymptotic bound only depends on the dimension of L, not on its energy
structure. Lastly, the asymptotic SL state of Eq. (2.5) is unitarily equivalent to a tensor
product state that has Eq. (2.4) as its reduced state on S. Nonetheless, throughout the
cooling protocol correlations build up, due to the finite-time dependence on the energy
structures of the systems involved, before dying out asymptotically; in Appendix B.3, we
explore the role of correlations in more detail.

Returning to Theorem 2.1, Eq. (2.4) allows us to compare limits for various k, `, β and
Emax (see Fig. 2.2):

Corollary 2.1. The asymptotic hierarchy is determined via:

%∗S(Emax, β, k, `)≺(�)%∗S(E ′max, β
′, k′, `′)

if β(k − `)d`MEmax ≤ (>) β′(k′ − `′)d`′ME ′max. (2.6)

2.4.2 Step-Wise Optimal Protocol

The bound is achievable and one protocol to do so reorders the global eigenspectrum
at each step such that they are non-increasing with respect to non-decreasing energy
eigenstates of SL. In the last step, the protocol additionally reorders the eigenvalues of the
obtained SL state largest-to-smallest with respect to non-decreasing energy eigenstates of
S. Precisely, at each step j the system and memory carriers are optimally cooled via a
unitary V (j)

SLR : %(j)
SLR = V

(j)
SLR%

(j−1)
SLR V

(j)†
SLR that acts as2

%
(j)
SLR =

dSd
`
M−1∑
ξ=0

dk−`M −1∑
ω=0

λ↓
ξ·dk−`M +ω|ξω〉〈ξω|, (2.7)

2Here, R refers to the fresh machines included at each step, with an implied identity map on all other systems.
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where |ξω〉 = |ξ〉SL ⊗ |ω〉R and λ↓ denotes the eigenvalues of %(j−1)
SLR in non-increasing

order. This unitary dissipates maximal heat into the machines that play no subsequent
role, and thus at any finite timestep j, the protocol has achieved the coldest SL state
possible given its history, which is crucial for finite-time optimality. By implementing the
sequence {V (j)

SLR}j=1,...,n, although the final (timestep n) SL state %(n)
SL generically exhibits

correlations, there always exists a unitary W (n)
SL that ensures S is optimally cool by further

reordering the eigenvalues under the previous constraint; in the asymptotic limit, i.e.,
when n → ∞, said unitary completely decorrelates SL (whereas at finite times, some
correlation generically remains). However, while this strategy attains the optimally-cool
S for any final timestep n, this protocol is not necessarily step-wise optimal.

To derive the step-wise optimal protocol, consider the unitaryW (j)
SL : σ(j)

SL=W (j)
SL%

(j)
SLW

(j)†
SL

that acts as

σ
(j)
SL =

dS−1∑
µ=0

d`M−1∑
ν=0

λ↓
µ·d`M+ν |µν〉〈µν|, (2.8)

where |µν〉 = |µ〉S⊗|ν〉L and λ↓ here denotes the eigenvalues of %(j)
SL in non-increasing order.

W
(j)
SL optimally cools S given any SL state by unitarily transferring maximal entropy

towards L; thus, if we apply W (j)
SL at each step j after having optimally cooled SL via

V
(j)
SLR until then, i.e., implement U (j)

SLR = W
(j)
SLV

(j)
SLR, S is guaranteed to be optimally cool.

This leads to the following, proven in the Appendix B.4, where we examine finite-time
behaviour.

Theorem 2.2 (Step-wise optimal cooling protocol). By applying U (j)
SLR described above at

each step, the cooling protocol is step-wise optimal regarding the temperature of the system.

2.5 Relation to Heat-Bath Algorithmic Cooling

Above we have derived the cooling limit in a controlled non-Markovian setting; through
the Markovian embedding, we can further make direct connection with Heat-Bath Al-
gorithmic Cooling (HBAC) [44, 84–88, 221, 222], the limitations of which align with our
results for qubit targets. Here, one cools a “target” system by cooling a larger ensemble of
“compression/refrigerant” systems3 via interactions with “reset” systems that rethermalise
between steps. This permits better cooling than cooling the target alone with only reset
systems as a resource; indeed, HBAC protocols are non-Markovian and a special case of
our framework, which treats the compression/refrigerant systems as memory-carrying
machines and the reset systems as fresh machines, as detailed below and in Appendix B.5.

i) Each of the target, memory carrier (compression/refrigerant), and reset systems can
comprise multiple subsystems of arbitrary dimension, with arbitrary energy spectra and

3Together, the target and compression/refrigerant systems constitute what is often called the “computation”
system.
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initial temperatures, which determines the asymptotic hierarchy for different strategies. In
contrast, many HBAC studies focus only on target and reset qubits [84, 87, 221]; although
some consider qudit compression [86] and reset systems [85], no HBAC study has shown
results pertaining to the general qudit-qudit-qudit case. ii) Our results are based on
majorisation (as are those in Refs. [84, 85]), and therefore applicable to more general notions
of cooling than the often-considered ground state population (e.g., in Refs. [44, 86, 221]),
which crucially differ for high-dimensional systems [82]. This is important for quantum
computing—for which cooling is a critical requirement—where high-dimensionality can
simplify logical structures [234–236]. iii) Finally, our results extend the partner-pairing
algorithm—introduced to maximise the ground state population of a qubit in Ref. [84]—to
the most general setting (described above). The partner-pairing algorithm is step-wise
optimal with a complexity that scales polynomially; our protocol achieves the same scaling,
as the sorting required at each step can be achieved with a single operation. Although
these operations depend on the global state at each step, in Appendix B.5 we present
a simple robust algorithm (based on one presented in Ref. [87]) that uses only a fixed
state-independent two-body interaction to reach the asymptotically-optimal state.

By contextualising HBAC within the framework of collision models with memory, our
work provides both a unification and generalisation of HBAC. Moreover, our approach
lends itself to modelling realistic HBAC experiments, where reset systems only partially
thermalise, as considered in Ref. [222].

2.6 Conclusions

In this article, we have put forward a framework for consistently dealing with memory
when cooling quantum systems; indeed, the generalised collision model proposed is versatile
enough to analyse the role of memory in various thermodynamic tasks. In doing so, we
have revealed the potential for exponential improvement in the reachable ground state
population (and more general notions of cooling), yielding drastic enhancement already
for modest memory depths. Through a Markovian embedding of our framework, we could
connect our framework with HBAC, shedding new light on the latter as a particular
class of non-Markovian dynamics. Our results can be read as a generalisation of HBAC
applicable to arbitrary target and compression systems and bath spectra; by putting all
HBAC protocols on an equal footing, our work opens the door to comparative studies
that can now be made fairly. Moreover, we clarify the origin of the advantages that make
HBAC so effective. Together with that of Refs. [82, 83], our work unifies HBAC with
the resource theory of thermodynamics, as all results can be achieved either via coherent
control or energy-conserving unitaries on enlarged systems.

The exponential improvement with respect to the memory carriers stands in contrast
to the only linear enhancement in the number of rethermalising systems, highlighting the
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importance of controllable memory. Thus, given the ability to perform (k + 1)-partite
interactions, having ` = k − 1 of these systems as memory carriers is both the minimum
requirement (as the system-and-memory must be open, otherwise any cooling ability
rapidly diminishes) and, moreover, the optimal configuration. In particular, this implies
that one can achieve the exponential advantage via interactions involving the system
and memory carriers and only one additional reset system. Of course, if ` is large, the
ability to implement complex many-body interactions presents a difficult challenge. To
this end, we have developed an explicit protocol (see Appendix B.5) which necessitates
only a fixed, two-body interaction to achieve the fundamental bound. In particular, this
implies that the attainability of the optimal asymptotic ground state population does not
require implementing highly non-local unitaries. In fact, this robust protocol applies to
arbitrary dimensional systems for the target, memory and reset parts, which is significant
because high-dimensional systems are becoming increasingly relevant for fault-tolerant
quantum computing [234–236]—a major motivation for cooling quantum systems in the
first place.

Our results consolidate the limits for quantum refrigeration in a setting with perfect
control and high-quality isolation of the target and memory carriers. However, in most
experimental scenarios, further challenges arise. We have assumed that the uncontrolled
system-environment interactions are negligible compared to the controlled ones. For finite
times, our results are reliable due to the exponential scaling, which makes it sufficient to
run the protocol for a short time to approximate the asymptotics. An immediate concern
is the impact of uncontrolled interactions: Either to model imperfect target isolation
or to better understand the realistic asymptotics, as for infinite steps, rethermalisation
of the target cannot always safely be neglected. Another assumption worth analysing
is that of perfect control: To implement a unitary perfectly, one requires both precise
clocks [237], which have their own thermodynamic costs [57, 238], and high control over
the interaction terms. While this is plausible for quantum computing devices, other
systems are more challenging to control, particularly those with multi-partite interactions
that are only perturbatively accessible [239]. Lastly, a resource-theoretic approach has
derived the minimum amount of energy required to implement transformations such as
those considered here, which should also be accounted for [240]. Our framework lends
itself to such pragmatic analyses of cooling; deriving similar bounds in realistic settings
highlights the potential to elevate our results beyond fundamental limits and towards
practical guidelines for quantum experiments.
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CHAPTER 3
When is a Non-Markovian Quantum

Process Classical?

Simon Milz, Dario Egloff, Philip Taranto, Thomas Theurer, Martin B. Plenio, Andrea Smirne,
and Susana F. Huelga

Abstract. More than a century after the inception of quantum theory, the question of
which traits and phenomena are fundamentally quantum remains under debate. Here we
give an answer to this question for temporal processes which are probed sequentially by
means of projective measurements of the same observable. Defining classical processes as
those that can—in principle—be simulated by means of classical resources only, we fully
characterise the set of such processes. Based on this characterisation, we show that for
non-Markovian processes (i.e., processes with memory), the absence of coherence does not
guarantee the classicality of observed phenomena and furthermore derive an experimentally
and computationally accessible measure for non-classicality in the presence of memory.
We then provide a direct connection between classicality and the vanishing of quantum
discord between the evolving system and its environment. Finally, we demonstrate that—
in contrast to the memoryless setting—in the non-Markovian case, there exist processes
that are genuinely quantum, i.e., they display non-classical statistics independent of the
measurement scheme that is employed to probe them.

Phys. Rev. X 10, 041049 (2020)
arXiv:1907.05807
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3.1 Introduction

Quantum coherence is considered to be one of the fundamental traits that distinguishes
quantum from classical mechanics [241–243]. Beyond its mathematical deviation from
classical theory, it plays an important role in the enhancement of quantum metrology
tasks [186, 244], constitutes a fundamental requirement for many quantum algorithms [245,
246], and has been conjectured to be necessary for the formulation of efficient transport
models in biology that are consistent with spectroscopic data [70, 247, 248]. Consequently,
the resource theory of coherence [184, 185, 249–255] has been of tremendous interest
in recent years, and has seen rapid development both on the theoretical as well as the
experimental side [256].

Despite such progress and the growing wealth of accompanying evidence that links
coherence to non-classical phenomena, the explicit connection between the two remains
unclear and subject to active debate [257–261]. Put differently, the mere presence of
coherence does not guarantee the existence of effects that cannot be explained on purely
classical grounds, and an unambiguous relationship between coherence and non-classicality
has not been established yet.

In order to provide such a connection, an operationally meaningful and clear-cut
definition of classicality is crucial. One such possible definition is based on experimentally
attainable quantities only, namely the joint probability distributions obtained from
sequential measurements of an observable.1 If these satisfy the Kolmogorov consistency
conditions for all considered sets of measurement times—which provide the starting
point for the formulation of the theory of classical stochastic processes [145, 146]—then
they can, in principle, be explained by a fully classical model and there is therefore
nothing inherently quantum about the observed phenomenon. If they do not, then there
exists no underlying classical stochastic process that could lead to the observed joint
probability distributions, and the corresponding process is considered non-classical. This
characterisation of classicality is in the spirit of the derivation of Leggett-Garg inequalities,
where, instead of classicality, non-invasiveness and macroscopic realism are put to the
test [147, 148]. Indeed, any set of probability distributions that satisfies the Kolmogorov
conditions does not violate the corresponding Leggett-Garg inequalities [149, 263].

Following this line of reasoning, and in a sense to be further specified later more precisely,
in Ref. [170] a one-to-one connection was derived between the notion of classicality based
on the Kolmogorov conditions and the coherence properties of the dynamics of Markovian
(i.e., memoryless) quantum processes: Such a process is classical iff the corresponding
dynamical propagators can never create coherence that can be detected at any later time.
Thus, a direct relation between the mathematical notion of coherence and an operationally

1For a different demarcation line between classical and quantum physics, based on the memory cost required
to simulate a given process, see, e.g., Ref. [262].
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well-defined and broadly applicable notion of classicality has been established. In turn, this
relation provides a direct interpretation of Markovian processes that violate Leggett-Garg
inequalities in terms of the underlying quantum resources. However, this connection only
holds in the memoryless case and does not straightforwardly apply to the non-Markovian
scenario, where, amongst other issues, such propagators cannot be used to compute
multi-time statistics [264].

Here, we go beyond this paradigm of memoryless processes and consider the general
case of non-Markovian dynamics. Such general processes can be described in terms of
higher-order quantum maps, so-called quantum combs [125, 126]. Recently, this framework
has been tailored to the description of open quantum system dynamics [128, 129], and has—
amongst others—found direct application in the characterisation of multi-time memory
effects [106, 130–132] and within the field of stochastic thermodynamics [216–218]. Here,
we employ it to extend the results of Ref. [170] to the non-Markovian case. In particular,
we link spatial quantum correlations or, more precisely, the discord between an observed
system and an environment to the non-classicality of the observed measurement statistics.
Somewhat surprisingly, for the case of general processes—where memory effects play a
non-negligible role—the presence of non-classical phenomena is not solely dependent on
the ability of the process to create or detect coherence, in stark contrast to the memoryless
case. As we will show, the absence of detectable coherence is not necessarily sufficient
to enforce classical behaviour in general. Rather, classicality of multi-time statistics
is inherently linked to quantum discord—which was originally introduced as a means
to distinguish classical spatial correlations from non-classical ones [265–268]—between
the evolving system and its environment. We characterise the complete set of classical
processes and derive a concrete relation between the presence and detectability of discord
and the non-classicality of observed multi-time measurement statistics. This, in turn,
allows for the derivation of experimentally accessible quantifiers of non-classicality and
the categorisation of the resources required for the implementation of a non-classical,
non-Markovian process, paving the way to a clear-cut understanding of non-classicality
on operational grounds.

In a similar manner to the analysis of coherences, our results will predominantly be
phrased with respect to measurements in an arbitrary, but predetermined basis i.e., with
respect to a fixed observable, raising the question if classicality is merely a question of
perspective; in principle, for every process, there could exist a sequential measurement
scheme, that yields classical statistics. While this always holds true for processes in
classical physics, as well as memoryless quantum processes, we show by means of an
explicit example, that this is not necessarily the case for quantum processes with memory;
in the presence of quantum memory, there exists a fundamentally new class of processes,
which we will call genuinely quantum processes, that lead to non-classical statistics
independent of how they are probed.
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Throughout this article, we investigate the question of when a physical process—with
or without memory—can be considered classical, and what classicality implies if we assume
the underlying theory to be quantum mechanics. Concretely, for the most part, we consider
the scenario of a quantum system of interest that is sequentially probed in a fixed basis,
that is, interrogated at successive points in time—like, for example, in Leggett-Garg type
experiments—and we are interested in characterising when the multi-time measurement
statistics resulting from such a scenario can be simulated by a classical stochastic process,
and thus be reasonably considered classical.

As we will make no assumption about the underlying dynamics, the system of interest
can be coupled to an environment that is out of the experimenter’s control and can thus
undergo an open evolution that displays complex classical and quantum memory effects.
The classicality of the observed statistics then depends on the interplay of the dynamics of
the system of interest, the pertinent memory effects, and the way in which the system is
probed. We derive both the structural as well as dynamical properties of general classical
non-Markovian processes, providing an answer to the question: What is a non-classical
process, and what are its key features?

Finally, by dropping the restriction to fixed instruments, we show that an observer-
independent notion of non-classicality exists, i.e., that there are processes that, no matter
how they are probed, display statistics that cannot be simulated by classical stochastic
processes. As such processes cannot exist in the absence of memory, the interplay of
quantum memory effects and quantum dynamics leads to a fundamentally new class of
processes—genuinely quantum processes—that cannot hide their non-classicality.

3.2 Summary of the Main Results

Before providing detailed derivations in the subsequent sections, here, we give a more
concrete overview of the main results of our work. Throughout this article, we define
the classicality of a process based on observed multi-time statistics Pn(xn, tn; . . . ;x1, t1)
for measurements at different times {t1, . . . , tn}. The number of possible outcomes is
always considered to be finite, and, unless stated otherwise, the measurements are given
by measurements in the computational basis {|xk〉〈xk|}. With respect to these statistics,
a process is considered classical (on K times), if the made measurements are non-invasive,
i.e., they satisfy the Kolmogorov conditions

Pn−1(xn, tn; . . . ;���xj, tj; . . . ;x1, t1)

=
∑
xj

Pn(xn, tn; . . . ;xj, tj; . . . ;x1, t1) ∀ n ≤ K, ∀ j . (3.1)

On the other hand, it is Markovian, i.e., memoryless, if the respective conditional probab-
ilities satisfy

P(xn|xn−1, . . . , x1) = P(xn|xn−1) ∀ n ≤ K . (3.2)
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In quantum mechanics, such a process can be modelled by means of Completely Positive
and Trace Preserving (CPTP) {Λtj ,tj−1}, which act on the probed system and describe
the dynamics between measurements, as well as an initial system state ρt0 .

Going beyond the results of Ref. [170], we show that (see Theorem 3.1) a Markovian
process is classical iff it can be modelled by a state ρt0 that is diagonal in the measurement
basis {|xk〉〈xk|} and Non-Coherence-Generating-and-Detecting (NCGD) maps Λtk,tk−1 , i.e.,
maps that satisfy

∆ ◦ Λtj+1,tj◦∆ ◦ Λtj ,tj−1 ◦∆ = ∆ ◦ Λtj+1,tj ◦ Λtj ,tj−1 ◦∆ ∀j , (3.3)

where ∆ is the completely dephasing map in the measurement basis, and ◦ denotes com-
position. Intuitively, maps that satisfy the above equation can create coherences, but not
in a way that can be detected at a later time by means of the employed measurement basis.
Thus, Theorem 3.1 provides a direct connection between coherence and an experimentally
testable notion of classicality in the Markovian case.

Extending to the non-Markovian setting, we show that this direct connection between
coherence and classicality breaks down when memory is present. We provide an explicit
example (Example 3.1) of a dynamics Utj ,ti|`, p〉 = eiφ`p(tj−ti)|`, p〉 acting on a qubit system
(represented by `) coupled to a continuous degree of freedom (represented by p) that—for
the right choice of initial environment state—never displays coherences in the system
state, but exhibits non-classical statistics nonetheless.

When memory plays a non-negligible role, individual CPTP maps that act on the
system alone are insufficient for the computation of multi-time probabilities. Rather,
probabilities are computed by means of higher order quantum maps, called quantum
combs [125, 126]. These maps contain all information about the underlying process at
hand, and multi-time joint probabilities can then be expressed as

PK(xK , tK ; . . . ;x1, t1) = CK [PxK , . . . ,Px1 ] , (3.4)

where CK is the quantum comb of the process and {Pxj} are the Completely Positive (CP)
maps corresponding to measurements with outcome xj, i.e., Pxj [ρ] = 〈xj|ρ|xj〉 |xj〉〈xj|.

We derive a full characterisation of combs that lead to classical statistics in Theorem 3.2,
and make this characterisation more concrete in Theorem 3.2′, employing the Choi-
Jamiołkowski Isomorphism (CJI) that allows one to map higher order quantum maps Cn
onto multipartite quantum states Cn.

Using this full characterisation, a measure M(C) for the non-classicality of a process
C can be derived. We phrase this problem in terms of the operational task of deciding
whether or not a given comb C is classical, and show that the corresponding maximum
probability to guess correctly is given by [see Eq. (3.54)]

P(C) = 1
2[1 +M(C)] , (3.5)
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where M(C) can both be computed efficiently via a linear program [see Eq. (3.56)] and is
accessible experimentally—and could be evaluated based on already existing experimental
data (e.g., in Ref. [269]). We show that, e.g., in the two-time case

M(C) ≤
∑
x2

∣∣∣∣∣P(x2)−
∑
x1

P(x2, x1)
∣∣∣∣∣ , (3.6)

holds, where the right hand side of the above equation is a natural quantifier of classicality,
that is used both theoretically, as well as experimentally (for example in Leggett-Garg
type scenarios) to quantify the non-classicality of sequential measurement statistics.

In the same vein as in the Markovian case, the dynamical properties (in contrast
to the aforementioned structural ones) of classical processes can be obtained. In the
non-Markovian case, a process is fully defined by an initial system-environment state
ηset0 and intermediate system-environment CPTP maps Γtj ,tj−1 . We show that in the
non-Markovian case, rather than the coherences of the system it is the (basis dependent)
system-environment discord [265–268] that determines the classicality of the observed
statistics. In particular, we demonstrate (see Thms. 3.4 and 3.5) that a process is
classical iff it can be modelled by an initial state ηset0 with vanishing (basis dependent)
discord, i.e., ηset0 = ∑

m pm |xm〉〈xm| ⊗ ξm, and a set of system-environment maps that is
Non-Discord-Generating-and-Detecting (NDGD), i.e.,

∆ ◦ Γtj+1,tj ◦∆◦Γtj ,tj−1 ◦∆ = ∆ ◦ Γtj+1,tj ◦ Γtj ,tj−1 ◦∆ , (3.7)

where the completely dephasing map ∆ acts on the system alone. Analogously to the
Markovian case, the above equation implies that the maps {Γtj ,tj−1} can create discord,
but said discord cannot be detected by means of later measurements on the system in
the chosen measurement basis. In turn, this result provides a direct connection between
quantum discord and the classicality of a quantum process. Additionally, it also gives
an a posteriori explanation why the absence of coherence in Example 3.1 did not lead to
classical statistics (for an explicit discussion of the discord that leads to of non-classical
statistics in Example 3.1, see its continuation Example 3.3).

While, in principle, these aforementioned results do not rely on the fact that we assume
measurements in onefixed basis, but could similarly be obtained for different (but fixed)
instruments at every time, they still depend on the fact that one specific measurement
scheme is chosen beforehand. Classicality (or the absence thereof) of the observed statistics
could thus depend on the respective choice of measurement schemes. This holds true in
the Markovian case, where there is always a choice of measurement bases that renders the
observed statistics classical. However, as we show by explicit example (see Section 3.7),
there are processes with memory—dubbed genuinely quantum—that display non-classical
statistics independent of the employed measurement scheme.

The paper is structured as follows: In Section 3.3 we introduce the basic concepts
that will be employed throughout this article to examine classicality. In Section 3.4,
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we reiterate and slightly generalise the results of Ref. [170] linking non-classicality and
coherence for the Markovian case, and discuss their breakdown when memory effects
are present. This motivates our consideration of the non-Markovian case in Section 3.5,
where we fully characterise the set of general classical processes by means of the quantum
comb framework. This characterisation then enables us to formulate a quantifier of
non-classicality, that is both experimentally accessible and can be computed efficiently.
Based on these results, in Section 3.6, we subsequently establish the direct connection
between (basis dependent) quantum discord and the classicality of temporal processes.
Finally, in Section 3.7, we go beyond the paradigm of measurements in a fixed basis, and
provide an example for processes that appear quantum independent of the scheme that is
used to probe them. The paper concludes in Section 3.8 with a summary and an outlook
on further research directions and open problems.

3.3 General Framework

The overarching aim of this paper is to characterise when a general quantum mechanical
process can be considered classical in an operationally consistent manner and identify
the structural properties consequently implied on the underlying evolution. Importantly,
our investigation will be operational in the sense that it is based solely on experimentally
accessible quantities; as such, it applies to situations where the underlying theory is
classical mechanics, quantum mechanics, or some more general theory [270].

Ultimately, any physical theory provides predictions about possible observations—only
these can be tested by experiments. That is, any theory must (in principle) provide the
correct probabilities for measurement outcomes (or sequences thereof) to occur when a
system of interest is experimentally probed. The difference between predictions made
regarding such observable quantities by classical physics and quantum (or post-quantum)
theory can then be used to unambiguously demarcate between the theories on the
investigated spatial and temporal scales.

Following Ref. [170], we will thus define our notion of classicality by means of joint
probability distributions pertaining to sequences of measurement outcomes, as these are
precisely what is obtained when a temporal process is probed.

3.3.1 Kolmogorov Consistency Conditions and Classicality

In classical physics, a stochastic process on a set of K times is fully described by a
joint probability distribution

PK(xK , tK ; . . . ;x1, t1) (3.8)

which yields the probability to measure the realisations {xK , . . . , x1} of the random
variables {XK , . . . , X1} at times {tK , . . . , t1}. For example, P2(x2, t2;x1, t1) could describe
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the probability to obtain both outcomes {x2, x1} when measuring the position of a particle
undergoing Brownian motion at times t1 and t2 > t1. In what follows, we will often
omit the explicit time label, with the understanding that xj denotes an outcome of a
measurement at time tj.

Crucially, in classical physics, joint probability distributions describing a stochastic
process for different sets of times satisfy the so-called Kolmogorov consistency condi-
tions [145, 271–273]: Given a joint probability distribution PK for a set of times, the
probability distributions for all subsets of times can be obtained by marginalisation, that
is

Pn−1(xn, tn; . . . ;���xj, tj; . . . ;x1, t1)

=
∑
xj

Pn(xn, tn; . . . ;xj, tj; . . . ;x1, t1) ∀ n ≤ K, ∀ j . (3.9)

Just like the Leggett-Garg inequalities [147–149] for temporal correlations, the satisfaction
of these requirements is based on the assumptions of realism per se, i.e., the assumption
that xj has a definite value at any time tj, and the possibility to implement non-invasive
measurements [146].

Importantly, an experimenter obtaining a family of joint probability distributions that
satisfies the Kolmogorov conditions when probing a temporal process at different sets of
times would not be able to distinguish said process from a classical one, as every such finite
family can be obtained from a—potentially exotic—underlying classical stochastic process.
More generally, the Kolmogorov extension theorem states that if all joint probability
distributions for finite subsets of a time interval [0, t] satisfy the consistency conditions of
Eq. (3.9) amongst each other, then there exists an underlying classical stochastic process
on said time interval that leads to the observed probability distributions [145, 271–273].
In other words, if the Komogorov consistency conditions of Eq. (3.9) are satisfied (for all
considered choices of tj), then there is nothing inherently quantum mechanical about the
observed process. We therefore define:

Definition 3.1 (K-classical process [170]). Let X be a finite set. A process defined on a set
of times T , with |T | = K, that is described by the joint probabilities Pn (xn, tn; . . . ;x1, t1),
with tn ≥ · · · ≥ t1, ti ∈ T , n ≤ K and xi ∈ X , is said to be K-classical if the Kolmogorov
consistency conditions of Eq. (3.9) are satisfied up to n = K.

Throughout this article, we will call a family of joint probabilities on a set of K times
a K-process and denote it by {Pn(xn, . . . , x1)}n≤K . Here, the label n ≤ K is a short-hand
notation for all the subsets of T with n ordered times tn ≥ . . . ≥ t1, where ti ∈ T , for any
n ≤ K; moreover from here on we will not indicate explicitly the time arguments in the
probability distributions, implying that the outcome xj refers to time tj.

While the above definition of classicality seems intuitive, some comments are in order.
First, we choose to define classicality for a finite set of K times. While this is motivated
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on a practical ground, the general definition of a classical stochastic process involves
the joint probability distributions associated with any number of ordered time instants
tK ≥ . . . ≥ t1, with K ∈ N, and any choice of such instants. In particular, as said, the
Kolmogorov extension theorem infers the existence of a stochastic process from the validity
of the consistency conditions on all such joint distributions. Here, instead, we fix a finite
value of K and the sequence of time instants beforehand, so that, given the K-time joint
probability distribution of a K-classical process, the involved hierarchy of probability
distributions can be constructed by iteratively applying the consistency conditions, at any
intermediate time.

Second, the above definition of classicality is a priori device independent, as it only
relies on the inferred statistics without any assumptions on the underlying theory and/or
measurement devices; as a consequence, the classicality of a process according to the above
definition depends upon the manner in which the system of interest is probed. Although
often overlooked, this is also the case in classical physics: Given some underlying classical
stochastic process, not every set of measurements that an experimenter might be able to
perform will lead to a family of probability distributions that satisfies the above definition
of K-classicality. In fact, if performing such measurements might potentially disturb the
system (i.e., the measurement is invasive), the Kolmogorov condition fails in general, even
if the underlying evolution is classical [146].

For example, suppose that instead of merely measuring the position of a particle at
different times when probing a Brownian motion process, an experimenter chooses to
displace the particle at each time depending on where it was found. In this case, Eq. (3.9)
would generally fail to hold for the joint probability distributions observed. Consequently,
the Kolmogorov consistency conditions [Eq. (3.9)] are in fact a statement of the non-
invasiveness of the performed measurements: If they hold true, then not performing
a measurement at any given time cannot be distinguished (for the given experimental
situation) from averaging over their probabilities (i.e., forgetting the outcomes of the
measurements performed).

In classical physics one assumes that, in principle, one could measure the system without
disturbing it, and that therefore there exists a family of joint probability distributions
that can consistently explain all possible outcome probabilities. Such a non-invasive and
complete measurement is often referred to as an “ideal measurement” in the literature [274].
On the other hand, in quantum mechanics any measurement disturbs some system state
and therefore ideal measurements do not exist in general in the strong sense discussed above.
As a consequence, quantum mechanical processes generically do not satisfy Kolmogorov
conditions [108, 146], a fact that fundamentally distinguishes them from the classical
realm.

More generally, the violation of Bell, Kochen-Specker, or Leggett-Garg inequalities,
which can be observed in quantum mechanics, are different manifestations of the impossib-
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ility to obtain the measured data by non-invasive measurements. Particularly, in the
case of Leggett-Garg inequalities [147, 275], it is precisely the breakdown of Kolmogorov
conditions that is being probed [146, 170], and our above definition of classicality is hence
in line with the wider program of determining fundamentally quantum traits of nature.

3.3.2 Measurement Setup

As mentioned above, the structural properties of families of joint probability distribu-
tions depend on the way in which a system of interest is probed. Consequently, before
being able to analyse the set of quantum processes, it is crucial to fix the measurements
that are used to probe a process at hand. Although there are no ideal measurements in
quantum mechanics, projective measurements share some basic features with the classical
ideal measurements discussed above, and are thus a natural choice. In particular, they
guarantee repeatability, i.e., that two sequential measurements (without any evolution in
between) would give the same value with unit probability, as well as a weaker form of
ideality, namely that if an outcome occurs with certainty, then the state of the system
before the measurement is not disturbed by the latter [276]. It therefore suggests itself to
start our analysis on the classical reproducibility of quantum processes by focusing on
projective measurements; moreover, also following Ref. [170], we will further restrict to
the case of orthogonal rank-1 (sharp) projectors, like, e.g., projective measurements with
respect to the eigenbasis of any non-degenerate self-adjoint operator.

In many experimental situations of interest, there is a preferred basis to select. For
instance, if the dynamics is such that the system dephases to a given basis, the latter
provides a natural choice. This occurs, e.g., in the case of open quantum systems dynamics
that are subject to environmental fluctuations. In other cases it may make sense to choose
the basis more arbitrarily (in advance), for instance when analysing a specific protocol,
or attempting to optimise it (see Ref. [277] for more details). Finally, the experimental
setup might only allow for a measurement of one particular observable, in which case the
chosen basis would correspond to the eigenbasis of said observable.

In what follows, we will analyse the classicality of a process based on the joint
probability distributions obtained from sequential sharp measurements in a fixed basis
{|x〉}dx=1—henceforth also called the classical, standard, or computational basis—with the
action of a measurement with outcome x on a state ρ given by

ρ 7→ Px[ρ] := |x〉〈x|ρ|x〉〈x| . (3.10)

See Fig. 3.1 for a graphical depiction.
This freedom in the considered measurements makes the property of classicality

fundamentally contingent on the respective choice of measurement basis. However, this
basis dependence is unsurprising and mirrored by coherence theory [242]. There, the
existence of off-diagonal elements 〈m|ρ|n〉, i.e., coherences, depends on the choice of the
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Figure 3.1: Probing a Process with Projective Measurements. At each time tj , the process
(depicted in blue) is probed by a projective measurement (depicted in green) with outcomes xj , where
each xj belongs to the same finite set X . If the resulting family of probability distributions Pn (depicted
are the cases n ≤ 4) satisfies the Kolmogorov consistency conditions, then not performing a measurement
at a time tj cannot be distinguished from performing a measurement and averaging over the outcomes.
In this case, this experiment cannot be distinguished from a classical one, even though the underlying
evolution might be quantum mechanical.

basis a quantum state is represented in. As they are considered to be a fundamentally
quantum property, it is a natural question to ask how coherences (with respect to the
computational basis) and classicality of a process (with respect to the same basis) are
interrelated. Importantly, while the existence of coherences cannot be determined by
projective measurements in the computational basis alone, the prevalence of non-classical
effects can be. Thus, as we shall see below, providing an operationally accessible notion
of classicality allows one to link coherence (and, more generally, quantum correlations) in
a quantitative manner to experimentally observable deviations from classical physics.

3.3.3 Open (Quantum) System Dynamics and Memory Effects

The definition of classicality we use answers the question of whether or not there exists
a classical stochastic process that can explain the multi-time probabilities obtained by
measuring a quantum system at given times in the computational basis. To make our
analysis as general as possible, we will consider the possibility that the measured system
interacts with a surrounding environment, which can influence the resulting statistics.
Explicitly, assuming that the system and environment in state η are together closed and
described by quantum mechanics, their joint dynamics between measurements is given by
unitary evolution Utj+1,tj [η] = Utj+1,tjη U

†
tj+1,tj . The resulting joint probability distributions

read

Pn(xn, . . . , x1) = tr
{

(Psxn ⊗ I
e) ◦ Utn,tn−1 ◦ · · · ◦ Ut2,t1 ◦ (Psx1 ⊗ I

e)[ηset1 ]
}
, (3.11)

where ηset1 is the system-environment state at time t1, Ie signifies the identity channel on
the environment, Psxj corresponds to a measurement on the system in the computational
basis at time tj with outcome xj and ◦ denotes composition (see Fig. 3.2 for a graphical
representation). Whenever there is no risk of confusion, we will drop the additional
superscripts s and e throughout this paper. Naturally, the classicality of the family of
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Figure 3.2: General Open Quantum Process. The state of the system at time t1 is correlated with
the environment (depicted by the yellow triangle representing the joint state). Measurements on the
system (green boxes) are performed at times t1, t2, . . . . In between, the system and the environment
undergo a unitary evolution (blue boxes). The distinction between system and environment is given by
the degrees of freedom that the experimenter controls (system) and those that remain inaccessible to
experimental control (environment).

joint probability distributions obtained via Eq. (3.11) crucially depends on the properties
of the intermediate evolutions Utj+1,tj and the initial state ηset1 .

In general, such a multi-time statistics displays memory effects, i.e., it is non-Markovian:
At any point in time tj, the future statistics does not only depend on the measurement
outcome xj at time tj , but also on (potentially) all previous outcomes xj−1, . . . , x1. Indeed,
all information about future statistics at tj is contained in the joint state of system and
environment, which depends upon the previous measurement outcomes. As this total
state cannot be accessed by measurements on the system alone, this dependence on past
measurements manifests itself as memory effects on the system level (see Section 3.5 for a
detailed discussion).

However, under some specific circumstances, the influence of such memory effects on
the multi-time statistics can be neglected; this is essentially the case when the Quantum
Regression Formula (QRF) can be applied [272, 278–280]. Under this assumption, the
observed statistics can be understood in terms of dynamical propagators that act on the
system alone, which, in turn, enables one to directly link the classicality of a process
to the properties of said propagators in terms of coherence production and detection.
The corresponding result has been obtained in Ref. [170], and we will reiterate and
expand upon it in the coming section. Subsequently, employing quantum combs—a
powerful framework for the description of general, possibly non-Markovian open quantum
processes—we characterise the set of quantum processes that can be described classically.

3.4 Coherence and Classicality

In this section, we reiterate the main result of Ref. [170] on the connection between
coherence and classicality for the memoryless case, generalising it to the case of a divisible
(but not necessarily semigroup [272, 281, 282]) dynamics. As mentioned above, such a
direct connection may be established, because memoryless processes can be understood in
terms of propagators that are defined on the system alone, while this property fails to
hold in the general, non-Markovian, case.

After introducing an operational notion of Markovianity associated with the multi-time
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statistics due to sequential measurements of a (non-degenerate) observable, we present a
one-to-one connection between the non-classicality of such statistics and the capability of
the open system dynamics to generate and detect coherences with respect to the relevant
basis. We also clarify the relation between the notion of Markovianity used in this paper
and the QRF, which allows us to straightforwardly recover the main result of Ref. [170].
Finally, we lay out the subtleties that arise when generalising the framework to allow for
memory effects, motivating the main results of this work.

3.4.1 One-to-One Connection in the Markovian Case

Classically, a process is Markovian (i.e., memoryless), if, for any chosen time tj, the
future statistics only depend upon the outcome at time tj , but not on any prior outcomes
at tj−1, tj−2, · · · ; explicitly, a classical stochastic process is Markovian if its statistics
satisfy

P(xj|xj−1, . . . , x1) = P(xj|xj−1) ∀ j , (3.12)

where P(xj|xj−1, . . . , x1) is the conditional probability to obtain outcome xj at time tj
given that outcomes xj−1, xj−2, . . . were measured at earlier times tj−1, tj−2, . . . [272].
Extending this definition to general (i.e., not necessarily classical) statistics and taking
into account that, in practice, one only deals with systems probed at a finite number of
times, we obtain the following definition of K-Markovianity:

Definition 3.2. Let X be a finite set. A process defined on a set of times T , with
|T | = K is called K-Markovian if it satisfies:

P(xn|xn−1, . . . , x1) = P(xn|xn−1) ∀ n ≤ K , (3.13)

for all ordered tuples of times tn ≥ . . . ≥ t1, with ti ∈ T , and xi ∈ X .

Just like our earlier definition of classicality and coherence, the absence of memory
effects as defined in Definition 3.2 is basis dependent: A process that appears Markovian
in one basis may appear non-Markovian when probed in a different one. While there exist
basis independent notions of Markovianity in the quantum case [103, 104, 128, 129, 140],
the basis dependent one introduced here is best suited for the experimental situation we
envision; as such, in what follows, we predominantly understand Markovianity with respect
to measurements in the computational basis. We will briefly return to the relation between
this basis dependence and the basis independent notion of Markovianity in Section 3.5.

To establish a connection between non-classicality of a Markovian process and the
coherence properties of the underlying dynamics, we need to introduce the maps that
characterise the dynamical evolution of the open system. To this end, assume that
at an initial time t0 (with t0 ≤ t1) the system and the environment are in a product
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Figure 3.3: Markovian Process. For a Markovian process, the system dynamics in between inter-
mediate times (depicted as the blue boxes) can be modelled by maps Λtj+1,tj that do not depend on
previous outcomes (i.e., there is no memory). The measurement statistics are obtained by measuring in
the classical basis at times t1, t2, t3, . . . (depicted in green); before the first measurement the system is in
the state ρt1 (depicted in yellow).

state ηset0 = ρt0 ⊗ σt0 (for some fixed environment state σt0), so that we can define the
Completely Positive and Trace Preserving (CPTP) dynamical maps {Λtj ,t0} of the open
system evolution between the initial time and the measurement times tj [272, 283]

ρtj = Λtj ,t0 [ρt0 ] = tre
[
Utj ,t0 (ρt0 ⊗ σt0 )U †tj ,t0

]
, (3.14)

where tre denotes the trace over the environmental degrees of freedom. Additionally, let
us also assume that the dynamics is divisible [284], i.e, we can define the corresponding
propagators {Λtk,tj} between any two times via the composition rule

Λtk,t0 = Λtk,tj ◦ Λtj ,t0 ∀ tk ≥ tj ≥ t0 , (3.15)

and they satisfy the composition law Λt`,tj = Λt`,tk ◦Λtk,tj for all times t` ≥ tk ≥ tj . Under
these assumptions, it is natural to ask, what conditions the propagators {Λtk,tj} must
satisfy in order for the resulting statistics to be classical. However, Eq. (3.15) does not
yet tell us how to obtain multi-time statistics [151].

The relation we seek is provided by the QRF, which, for example, holds in the weak
coupling and the singular coupling limits [285], and constitutes a relation between the
definition of Markovian processes given by Definition 3.2 and the corresponding open
system dynamics (see also Ref. [140] for an extensive discussion of the QRF and its
generalisations). For the case of rank-1 projective measurements (in the computational
basis), the QRF states that the multi-time probability distributions in Eq. (3.11) can be
equivalently expressed by

Pn(xn, . . . , x1) = tr
[
Pxn ◦ Λtn,tn−1 ◦ · · · ◦ Λt2,t1 ◦ Px1 ◦ Λt1,t0 [ρt0 ]

]
. (3.16)

Importantly, this means that the full multi-time statistics can be obtained by means of
maps that are independent of the respective previous measurement outcomes and which
act on the system alone (see Fig. 3.3 for a graphical representation).

It is straightforward to see that satisfaction of the QRF [see Eq. (3.16)] implies
Markovian statistics in the sense of Eq. (3.13) and in particular we have the identities

〈xk|Λtk,tj [|xj〉〈xj|]|xk〉 = P(xk|xj) ∀ j ≥ 1 , (3.17)

and 〈x1|Λt1,t0 [ρt0 ]|x1〉 = P(x1). (3.18)
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In other words, the action of the propagators on the populations (i.e., the diagonal terms
of ρtj , the state of the system at tj) can be identified with the conditional probabilities
between any two times. Crucially, this is not generally the case, and breaks down in
situations where the QRF cannot be applied [155].

More generally, even if the QRF applies, the composition rule on the level of propagators
does not imply a composition rule on the level of the resulting measurement statistics,
i.e., for a divisible process that satisfies the QRF, we generally have

∑
xk

P(x`|xk)P(xk|xj) 6= P(x`|xj) , (3.19)

which captures the deviation of quantum Markovian processes from classical ones. As
mentioned previously, in order for the resulting process to be classical, not performing a
measurement must be indistinguishable from performing a measurement and averaging
over all possible outcomes. Put differently, for an observer that can only perform meas-
urements in a fixed basis, the process is classical if they cannot detect the invasiveness of
measurements in said basis.

A measurement at time tj in the fixed basis where the measurement outcomes are
averaged over can be represented by the completely dephasing map

∆[ρ] =
∑
xj

Pxj [ρ] =
∑
xj

〈xj|ρ|xj〉 |xj〉〈xj| . (3.20)

The natural property of the propagators to look at in relation to classicality is thus that
for all tj:

∆j+1 ◦ Λtj+1,tj ◦∆j ◦ Λtj ,tj−1 ◦∆j−1

= ∆j+1 ◦ Λtj+1,tj ◦ Ij ◦ Λtj ,tj−1 ◦∆j−1

= ∆j+1 ◦ Λtj+1,tj−1 ◦∆j−1 , (3.21)

where Ij and Λj are the identity map and the completely dephasing map at time tj,
respectively (see Fig. 3.4 for a graphical representation). In the last line of Eq. (3.21) we
used the composition law Λtj+1,tj−1 = Λtj+1,tj ◦ Λtj ,tj−1 . Eq. (3.21) is satisfied, e.g., if none
of the maps {Λtj+1,tj} create coherences. More generally, each of the maps in Eq. (3.21)
can in principle create coherences, as long as these coherences cannot be detected at the
next time by means of measurements in the classical basis. Therefore, such a collection
of maps satisfying Eq. (3.21) has been named Non-Coherence-Generating-and-Detecting
(NCGD) [170].
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Figure 3.4: NCGD Dynamics. If the process is NCGD, then for a classical observer, “doing nothing”
(i.e., performing the identity map I, bottom) cannot be distinguished from a measurement in the classical
basis and averaging over the outcomes (i.e., performing the map ∆, top) at any point in time.

The precise connection between NCGD and classicality is expressed by the following
theorem:

Theorem 3.1. Let {Pn(xn, . . . , x1)}n≤K be a K-Markovian process (Definition 3.2). Then,
the process is also K-classical (Definition 3.1) if and only if there exist a system state
ρt0 (at a time t0 ≤ t1) which is diagonal in the computational basis {|x〉}x∈X and a set of
propagators

{
Λtj ,tj−1

}
j=1,...,K

which are NCGD with respect to {|x〉}x∈X , such that ρt0 and{
Λtj ,tj−1

}
j=1,...,K

yield {Pn(xn, . . . , x1)}n≤K via Eq. (3.16).

Proof. We first show that if a Markovian process can be reproduced by means of NCGD
propagators {Λtj+1,tj} and an initial diagonal state (both properties with respect to the
computational basis), then it yields classical statistics. If the statistics is Markovian,
then it follows from Eq. (3.13) that the joint probability distribution on any set of times
tn ≥ . . . ≥ t1, with ti ∈ T , is given by

Pn(xn, . . . , x1) = P(xn|xn−1) · · ·P(x2|x1)P(x1) . (3.22)

As the process can, by assumption, be reproduced by the maps {Λtj ,tj−1} via Eq. (3.16),
then for any time tj we have∑

xj

P(xj+1|xj)P(xj|xj−1) =
∑
xj

tr{Pxj+1 ◦ Λtj+1,tj [Πxj ]}tr{Pxj ◦ Λtj ,tj−1 [Πxj−1 ]}

= tr{Pxj+1 ◦ Λtj+1,tj ◦∆j ◦ Λtj ,tj−1 [Πxj−1 ]}

= tr{Pxj+1 ◦ Λtj+1,tj−1 [Πxj−1 ]} , (3.23)

where we have set Πxj = |xj〉〈xj| and the NCGD property was used in the last line. This
equation implies ∑

xj

P(xj+1|xj)P(xj|xj−1) = P(xj+1|xj−1) . (3.24)

Moreover, the (initial) diagonal state ρt0 guarantees that we have∑
x1

P(x2, x1) = P(x2) . (3.25)
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As a consequence of these two previous relations, the family of joint probability distributions
computed via Eq. (3.22) satisfies Kolmogorov conditions, and is thus classical.

Conversely, if the process is classical and Markovian, Eq. (3.24) holds. We can then
define the maps

Λ̃tj+1,tj [|xj〉〈yj|] = δxjyj
∑
xj+1

P(xj+1|xj)Πxj+1 , (3.26)

and the initial diagonal state

ρ̃t0 =
∑
x1

P(x1)Πx1 , (3.27)

which also means that we identify the initial time as the time of the first measurement,
t1 = t0. The set of maps {Λ̃tj+1,tj} defined in this way, in conjunction with ρ̃t0 , reproduces
the correct statistics via Eq. (3.16). As they are diagonal in the computational basis for
any pair of times tj and tj+1, they form an NCGD set.

Crucially, the connection between classicality and NCGD dynamics is one-to-one: If
the obtained Markovian statistics cannot be reproduced by a set of maps that are NCGD,
then the process is non-classical. Before discussing classicality in the presence of memory
effects below, it is worth discussing the intuitive meaning of this theorem, and NCGD
dynamics in particular.

If the process at hand is Markovian and classical, the maps {Λ̃tj+1,tj} (as well as
the initial state ρ̃t0) introduced in the proof of Theorem 3.1 define an artificial reduced
dynamics of the system, whose propagators correctly reproduce all joint probability
distributions for measurements in the (fixed) classical basis via Eq. (3.16). Note that the
actual propagators of the dynamics [i.e., those fixed by the unitary evolution in Eq. (3.11)
via Eqs. (3.14) and (3.15)] might differ from the maps Λ̃tj+1,tj above (and ρ̃t0 might differ
from the actual initial state ρt0); indeed, the fact that they do not coincide is simply a
manifestation of the basis dependence of the (sequential) measurement scheme we are
focusing on here.

Crucially, a composition rule on the level of the actual propagators does not imply a
composition rule on the level of the propagators of the populations. This implication only
holds if the propagators of the dynamics are NCGD and the resulting statistics can be
computed via Eq. (3.16), in which case Eq. (3.21) results in

Λ̃tj+1,tj−1 = Λ̃tj+1,tj ◦ Λ̃tj ,tj−1 ∀ tj, (3.28)

with
Λ̃tk,tj [|xj〉〈yj|] = δxjyj 〈xk|Λtk,tj [|xj〉〈xj|]|xk〉Πxj (3.29)

[see Eqs. (3.17) and (3.26)]. These reduced propagators still produce the correct popula-
tions, which is the only relevant part for the considered statistics, and set all coherences
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to zero. This composition law is then—as already seen in Eq. (3.24)—equivalent to the
well-known classical Chapman-Kolmogorov equations

∑
xj

P(xj+1|xj)P(xj|xj−1) = P(xj+1|xj−1) , (3.30)

which hold for classical Markovian processes: If the measurement statistics of a Markovian
process can be reproduced by a set of NCGD maps {Λtj ,tj−1}, then it can also be
reproduced by the set of maps {Λ̃tj ,tj−1}, which act non-trivially on only the populations
of the computational basis and satisfies a composition law, thus the process is classical.

Conversely, if the classical composition rule of Eq. (3.30) holds for a Markovian process,
then there exists a set {Λ̃tj+1,tj} of propagators [e.g., those defined in Eq. (3.26)] that are
NCGD and correctly reproduce all joint probability distributions for measurements in the
(fixed) classical basis.

Theorem 3.1 is a generalisation of the main result of Ref. [170] in two ways. First, it
does not impose any restriction on the propagators of the underlying quantum evolution,
while in Ref. [170] these were required to form a semigroup, i.e., Λtj+1,tj = eL(tj+1−tj), for
some Lindbladian L [281, 282].

Second, the definition of Markovianity used here coincides with the standard definition
of classical stochastic processes, whereas in Ref. [170], a definition based on Eq. (3.16)
(for semigroups) was used. Consequently, while the maps {Λtj+1,tj} cannot be fully probed
by measurements in the computational basis alone, the requirement of Eq. (3.30) can be
tested for by simply performing sequences of measurements in the classical basis at the
relevant times, thus making our theorem fully operational. However, this comes at the
cost of dealing with propagators {Λ̃tj+1,tj} which possibly do not correspond to those of
the actual reduced dynamics.

On the other hand, as we show in Appendix C.1, a one-to-one correspondence between
the dynamical propagators Λtj+1,tj and the non-classicality of the multi-time statistics
can be established also in the general (non-semigroup) divisible case, when the QRF
applies, provided that one assumes a proper invertibility condition on the restriction of
the dynamical maps to the populations of the computational basis. Indeed, this also
allows one to recover in a straightforward way the main result of Ref. [170] as a corollary
by further imposing the semigroup composition law.

Importantly, Theorem 3.1 characterises the connection between coherences and the
classicality of a Markovian process. While it is not necessary that the underlying propag-
ators do not create coherences in order for a Markovian process to be classical, it is
necessary and sufficient that coherences—should they be created—cannot be detected at a
later point in time by means of measurements in the computational basis. Put differently,
the propagators must be such that a classical observer could not decide whether at any
point in time an identity map or a completely dephasing map was performed (which is
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depicted in Fig. 3.4). This requirement is exactly encapsulated in the NCGD property of
the propagators.

3.4.2 Coherence in the Non-Markovian Case: Preliminary Analysis

The above connection between quantum coherence and non-classicality fails to hold in
the non-Markovian case. On the one hand, in this case propagators between two times are
no longer sufficient to fully characterise the multi-time statistics.2 On the other hand, even
if the state of the system is diagonal in the computational basis at all times, dephasing
can still be invasive due to correlations with the environment, breaking the connection
between coherences and the classicality of statistics. We will discuss the former problem
in the subsequent sections. Using an open system model from Refs. [104, 288, 289], an
explicit ante litteram example of the latter case has already been provided in Ref. [170]
(note also a similar investigation in Ref. [290]), albeit not with an emphasis on the lack of
coherence in the system state at all times (even in between the measurements). Here, we
reiterate this example, focusing on the absence of coherences in the state of the system.
The details of this discussion can be found in Appendices C.2 and C.3. A simpler, although
non-continuous, example for a non-Markovian process that yields non-classical statistics
but never displays coherences in the system state is provided in Appendix C.4.

Example 3.1. Let the system of interest s consist of a qubit described by ρs(t) which is
coupled to a continuous degree of freedom p of the environment. The global dynamics of
system and environment is governed by the unitary evolution Utj ,ti , acting as

Utj ,ti |`, p〉 = eiφ`p(tj−ti)|`, p〉 , (3.31)

where {|`〉}`=0,1 is the eigenbasis of the system Pauli operator σ̂z and φ` = (−1)`. The initial
system-environment state is assumed to be of product form η(0) = ρs(0)⊗ |ϕe〉〈ϕe|, with
|ϕe〉 =

∫∞
−∞ dp f(p)|p〉, where f(p) satisfies the normalisation condition

∫∞
−∞ dp |f(p)|2 = 1.

By defining
k(t) :=

∫ ∞
−∞

dp |f(p)|2e2ipt , (3.32)

it is straightforward to show that, expressed in the eigenbasis of σ̂z, the free open evolution
of the state of the system (i.e., without intermediate measurements) is given by

ρs(t) =

 ρ00 k(t)ρ01

k∗(t)ρ10 ρ11

 , (3.33)

where ρmn := 〈m|ρs(0)|n〉.

2For a characterisation of non-Markovian processes in terms of collections of CPTP maps (or sequences
thereof), see Refs. [286, 287]. Notably, the characterisation employed in these references is equivalent to the one
provided here.
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If ρs(0) is initialised in a convex mixture of the eigenvectors {|±〉 = |0〉±|1〉√
2 } of the σ̂x

operator, i.e., ρs(0) = α|+〉〈+|+ (1− α)|−〉〈−|, then

ρs(t) = 1
2

 1 k(t)(2α− 1)

k∗(t)(2α− 1) 1


= 1

2

{
|+〉〈+| [1 + (2α− 1)Re (k(t))]− |+〉〈−| (2α− 1) Im (k(t))

+ |−〉〈+| (2α− 1) Im (k(t)) + |−〉〈−| [1− (2α− 1)Re (k(t))]
}
, (3.34)

i.e., no coherence w.r.t. σ̂x will be generated if k(t) is a real function of time (as noted in
Ref. [170]); this is, e.g., the case if f(p) corresponds to a Lorentzian distribution centred
around zero,

|f(p)|2 = Γ
π(Γ2 + p2) 7→ k(t) = e−2Γ|t| . (3.35)

A priori, the fact that there are no σ̂x-coherences created in the free evolution does not
mean that none are created if the system is probed at intermediate times. However, here,
no σ̂x-coherence is generated even when we take into account how the measurements
modify the system’s state. Specifically, immediately after a measurement in the σ̂x-basis
is performed at time t1 (yielding outcome ±), the total system-environment state is of
product form

η(±)(t1) = |±〉〈±| ⊗ ξ(±)(t1) , (3.36)

where ξ(±)(t1) is a state of the environment that depends on the measurement outcome.
As we show in Appendix C.2, any state of the system evolved from the post-measurement
state of Eq. (3.36) according to the described dynamics remains diagonal in the {|±〉} basis;
this also holds true for the state of the system after any sequence of such measurements.
Together with the fact that the statistics resulting from measurements in the {|±〉} basis
is non-classical (i.e., it does not satisfy Kolmogorov conditions, as has been shown in
Ref. [170]), this constitutes an example of a non-classical process without any coherence
with respect to the measured observable ever being generated. Evidently, this behaviour
is only possible since the chosen example is non-Markovian.

Unlike in the Markovian case, where the absence of coherences trivially leads to classical
statistics, when memory effects are present, it is the coherences of the system state as well
as the non-classical correlations between the system and its environment that can lead to
non-classical behaviour—in a way which will be specified in the following. Intuitively, while
the completely dephasing map leaves the system unchanged if no coherences are created,
it does not necessarily leave the overall system-environment state invariant. In detail, in
general we can have ∆[ρstj ] = I[ρstj ] ∀ tj , without it implying ∆⊗Ie[ηsetj ] = I[ηsetj ] ∀ tj . As
we will see, the latter property is sufficient, but not necessary, for the satisfaction of the
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Kolmogorov conditions. First, though, in order to be able to go beyond the investigation
of Markovian processes, and extend the existing connection between classicality and
coherences, it is important to introduce quantum combs—a suitable framework to describe
general quantum processes [126, 129].

3.5 Non-Markovian Classical Processes

The previous example illustrates the subtle relation between coherence and classicality
in the case of open quantum processes with memory. There, although no coherence is ever
generated on the level of the system with respect to the chosen measurement basis, the
system-environment correlations built up throughout the dynamics lead to non-classical
statistics. To develop a more in-depth understanding of the interplay between coherences
and classical phenomena, we require a suitable operational framework for approaching
such scenarios. We can then employ this framework to comprehensively characterise all
quantum processes that display classical statistics.

3.5.1 Classicality and Processes with Memory

The necessity of such a novel framework for the description of quantum processes
that display memory effects stems from the breakdown of their modelling in terms of
propagators that could be used in the Markovian case; this can already be seen for classical
stochastic processes. Here, a joint probability distribution PK(xK , . . . , x1) fully describes
a K-process. This probability distribution can equivalently be represented in terms of
multi-time conditional probabilities as

PK(xK , . . . , x1) = PK(xK |xK−1, . . . , x1) · · ·P2(x2|x1)P1(x1) . (3.37)

Importantly, all of the above conditional probabilities generally depend upon all preceding
measurement results, in contrast to the Markovian case where they only depend on
the most recent outcome. Consequently, two-point transition probabilities of the form
P(xj|xj−1) are not sufficient in general to build up all joint probability distributions and
thus do not completely describe the process. Similarly, two-time propagators {Λtj ,tj−1}
are generally not sufficient to compute multi-time joint probabilities in the quantum case
and therefore fail to fully characterise the process [107, 155].

For classical statistics, the joint probability distribution PK(xK , . . . , x1) contains all
information about the K-process, since all distributions for fewer times, as well as all
conditional probabilities, can be derived once PK is known. In exactly the same way,
a general quantum K-process is fully characterised by the joint probabilities for all
possible sequences of K measurements (at times t1, . . . , tK), including non-projective and
non-orthogonal ones.
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As discussed in the previous section, if the complete system-environment dynamics is
known, then all joint probability distributions (on times {tj}nj=1) obtained from sequential
measurements of the system can be computed via (recall Fig. 3.2)

Pn(xn, . . . , x1) = tr
[
(Pxn ⊗ Ie) ◦ Utn,tn−1 ◦ · · · ◦ (Px1 ⊗ Ie)[ηset1 ]

]
. (3.38)

Here, {Pxj} correspond to projective measurements in the computational basis, but
evidently the same relation can also be used to obtain the correct probabilities when
using different probing instruments, e.g., those that measure sharply in a different basis or
those that perform generalised measurements. More formally, an instrument Jk = {Mxk}
(at time tk) is a collection of CP maps that add up to a CPTP map [276]. For instance,
the instrument corresponding to a measurement in the computational basis is given by
Jk = {Pxk}, and all of its elements add up to the CPTP map ∑xk Pxk = ∆k. Intuitively,
each outcome of an instrument corresponds to one of its constituent CP maps, which,
in turn, describes how the state of the system changes upon the realisation of a specific
measurement outcome. With this, the probability to obtain the sequence of outcomes
x1, . . . , xK , given that the instruments J1, . . . ,JK were used to probe the system, is given
by

PK(xK , . . . , x1|JK , . . . ,J1)

= tr
[
(MxK ⊗ Ie) ◦ UtK ,tK−1 ◦ · · · ◦ (Mx1 ⊗ Ie)[ηset1 ]

]
=: CK [MxK , . . . ,Mx1 ] . (3.39)

Moreover, the joint probability distribution for any subset of ordered times tn ≥ . . . ≥ t1,
with n < K, can be obtained by replacing in the formula aboveMxj with the identity
operator, in correspondence with the times tj not contained in the subset.

In what follows, whenever we drop the explicit instrument labels, it is understood that
the probabilities were the result of a measurement in the computational basis at each
time. The multi-linear functional CK introduced above is a special case3 of a quantum
comb [125, 126] and provides a natural generalisation to the concept of quantum channels
that by construction allows for the inclusion of memory effects [128, 129, 291, 292] (see
Fig. 3.5 for a graphical representation).

It maps any sequence of possible experimental transformations enacted on the system
to the corresponding joint probability of their occurrence. In this sense, CK plays exactly
the same role that the joint probability distribution PK plays in the classical setting, and
thus allows one to decide on the classicality of the resulting statistics. For example, for the
completely memoryless case, i.e, the case of Markovianity with respect to measurements in

3In contrast to the combs discussed in Refs. [125, 126], the combs we consider do not start on an open input
line, and do not end on an open output line; or, equivalently, in our case, the Hilbert spaces of this initial input
and final output space are trivial. Such combs are also called testers in the literature.
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Figure 3.5: Comb of a General Open Quantum Evolution. The probabilities characterising a
quantum process can be understood as the action of a comb CK on the sequence of CP maps {Mxj} that
correspond to the respective measurement outcomes.

any basis, the evolution between any two points in time is described solely by a sequence
of independent CPTP maps that act on the system alone [128, 180], and we have

CMarkov
K [MxK , . . . ,Mx1 ] = tr

[
MxK ◦ ΛtK ,tK−1 ◦ · · · ◦Mx2 ◦ Λt2,t1 ◦Mx1 [ρt1 ]

]
. (3.40)

In general, however, the comb of a K-process does not split in the way above into
independent portions of evolution between times. Thus, when analysing the relation
between coherence and classicality in the presence of memory, instead of investigating the
properties of individual CPTP maps, one must consider those of the multi-time comb CK .

The comb CK is an operationally well-defined object that can—just like the joint
probability distribution PK—be obtained by means of probing measurements on the
system alone through a generalised tomographic scheme [129, 150]. Specifically, for its
reconstruction, it is not necessary to explicitly know the system-environment dynamics:
The comb does not contain direct information about the environment, but solely that of its
influence on the multi-time statistics observed from measurements on the system. As such,
it encapsulates all that is out of control of the experimenter and thereby clearly separates
the underlying process at hand from what can be controlled (i.e., the experimental
interventions). An explicit example of the comb formalism is provided in Appendix C.3,
where we rephrase Example 3.1 in terms of the comb description.

Crucially, the comb framework allows us to consider what it means for a stochastic
process with memory to be classical, thereby permitting an extension of the results of
Ref. [170] to the non-Markovian case: Given the comb CK of a process on times in T , all
combs correctly describing the process on fewer times T ′ ⊆ T can be deduced by letting
CK act on the identity map at the appropriate superfluous times [129, 146]. For example,
we have (see also Fig. 3.6)

CK−1[MxK , . . . ,Mxj+1 ,Mxj−1 , . . . ,Mx1 ]

= CK [MxK , . . . ,Mxj+1 , Ij,Mxj−1 , . . . ,Mx1 ] . (3.41)
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Figure 3.6: Consistency Condition for Combs. Letting a comb defined on times T act on identity
maps at a set of times T \ T ′ (i.e., the set of times in T but not in T ′) yields the correct comb on T ′.
Depicted is the situation for T = {t1, t2, t3} and T ′ = {t1, t3}.

As we have discussed in the previous sections, classicality of a process means that
the action of the completely dephasing map cannot be distinguished (by means of meas-
urements in the classical basis) from not performing an operation. With the method
of “generalised marginalisation” given by Eq. (3.41) at hand, we obtain the following
characterisation of classical combs:

Theorem 3.2 (K-classical quantum combs). A comb CK on times T , with |T | = K,
yields a K-classical process via Eq. (3.38) iff it satisfies

CK

 ⊗
tj∈T ′

Ij,
⊗

tk∈T \T ′
Pxk

 = CK

 ⊗
tj∈T ′

∆j,
⊗

tk∈T \T ′
Pxk

 , (3.42)

for all subsets T ′ ⊆ T and all possible sequences of outcomes on T \ T ′.

In slight abuse of notation, here, the argument ⊗tj∈T ′ aj,
⊗

tk∈T \T ′ bxk of the comb CK
signifies that it acts on the maps aj at times tj ∈ T ′ and on bxk at times tk ∈ T \ T ′.

Theorem 3.2 expresses in a concise way that a general process is K-classical iff
measurements in the computational basis cannot distinguish the action of completely
dephasing maps from the action of identity maps. Let us emphasis again that the
completely dephasing map does not only destroy coherences of the systems reduced state,
but also quantum correlations between the system and the environment. Therefore,
Theorem 3.2 does not directly link coherence and non-classicality as Theorem 3.1 did for
the case without memory.

Proof. The proof of Theorem 3.2 is thus straightforward: If a comb satisfies Eqs. (3.42),
then the resulting statistics satisfy Kolmogorov conditions. Conversely, any joint probabil-
ity distribution on a set of times T ′ ⊆ T can either be obtained by direct measurement, or
by marginalisation of the corresponding distribution on T . The former can be computed
via the first line of Eq. (3.42), the latter via the second one. If the statistics of the process
appear classical, then both resulting distributions have to coincide, and Eq. (3.42) must
hold.

In the (basis dependent) Markovian case that we discussed in the previous section,
Eq. (3.42) directly reduces to Eq. (3.28), the NCGD property at the level of propagators
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of populations. Theorem 3.2 therefore provides the proper generalisation of the results of
Ref. [170] to the non-Markovian case. Nonetheless, its consequences for the structural
properties of classical combs, and, in particular, the relation of classicality and coherence
remain somewhat opaque in the way Theorem 3.2 is phrased. In order to address these
questions, we now introduce a representation of quantum combs that is favourable for the
purposes of our work.

3.5.2 Choi-Jamiołkowski Representation of General Quantum Processes

Both the quantum comb describing the K-process at hand and the experimental
interventions applied at each time are linear maps (the former being a higher-order multi-
linear map). Any such map can be represented in a variety of ways, but the most natural
for our present purposes makes use of the Choi-Jamiołkowski isomorphism [293, 294]
between quantum maps and positive semi-definite Hermitian matrices.

A general quantum map—e.g., one that corresponds to a generalised measurement—at
time tk is a CP transformationMxk : B(Hi

k)→ B(Ho
k) that takes bounded linear operators

on the (input) Hilbert space Hi
k onto bounded linear operators on the (output) Hilbert

space Ho
k. Throughout this paper, we will consider the input and output spaces of such

maps to be isomorphic (and of finite dimension), and the labels i and o, as well as the
time label, are merely introduced for better accounting of the involved spaces. Any such
quantum mapMxk can be isomorphically mapped onto a positive semi-definite Hermitian
matrix that we will call its Choi state, Mxk ∈ B(Ho

k ⊗Hi
k), by letting it act on one half of

an unnormalised maximally-entangled state Φ+ = ∑
xk,yk |xkxk〉〈ykyk| ∈ B(Hi

k ⊗Hi
k), i.e.,

Mxk := (Mxk ⊗ I)[Φ+] ∈ B(Ho
k ⊗Hi

k). (3.43)

This isomorphism implies, e.g., the following identifications:

Identity Map : Ik ⇔ Φ+
k , (3.44)

Proj. Map : Pxk ⇔ |xk〉〈xk| ⊗ |xk〉〈xk| , (3.45)

C. Deph. Map : ∆k ⇔
∑
xk

|xkxk〉〈xkxk| := Dk. (3.46)

Here and throughout this article, we typically denote maps with calligraphic upper-case
letters (as we have already done above) and their Choi state with the corresponding
non-calligraphic variant—with the exception of the identity map [Eq. (3.44)] and the
completely dephasing map [Eq. (3.46)]. For better orientation, we will continue to denote
the respective time at which the maps act by an additional subscript.

Analogously, as a quantum comb CK is a multi-linear map it can—in a similar way to
Eq. (3.43)—be mapped onto a positive semi-definite Hermitian matrix CK [126, 129, 264].
The action of a quantum comb on a sequence of CP maps {MxK , . . . ,Mx1} is then
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equivalently given by [126]

CK [MxK , . . . ,Mx1 ] = tr
[
(MT

xK
⊗ · · · ⊗MT

x1)CK
]
, (3.47)

where rT denotes the transposition with respect to the computational basis. Eq. (3.47)
constitutes the Born rule for temporal processes [125, 295], where CK plays the role of a
quantum state over time and the Choi states MxK , . . . ,Mx1 play the role that Positive
Operator-Valued Measure (POVM) elements play in the standard Born rule.

Concretely, given an instrument sequence JK , . . . ,J1, by combining Eqs. (3.39)
and (3.47), the joint probability over the sequence of outcomes xK , . . . , x1 is given by

PK(xK , . . . , x1|JK , . . . ,J1) = tr
[
(MT

xK
⊗ · · · ⊗MT

x1)CK
]
. (3.48)

Through this isomorphism, memory effects of the temporal process correspond directly
to structural properties of its Choi state [106, 130–132, 264]; analogously, the classicality
of a process is reflected in the properties of CK .

Represented in this way, quantum combs and the channels that they generalise have
particularly nice properties. Complete positivity and trace preservation for a quantum
channelM correspond respectively toM ≥ 0 and satisfaction of tro [M ] = 1i. Analogously
the Choi state of a quantum comb has to satisfy CK ≥ 0 as well as a hierarchy of trace
conditions that fix the causal ordering of events [126], i.e., they ensure that later events
cannot influence the statistics of earlier ones.

It is important to note that all K-processes can be represented through the Choi-
Jamiołkowski isomorphism as (unnormalised) quantum states CK . In the converse direc-
tion, any operator satisfying the aforementioned properties admits an underlying open
quantum dynamics description [125, 126, 129]. Specifically, this means that for every
proper comb, there is a (possibly fictitious) environment and a set of system-environment
unitaries such that the action of the comb on any sequence of instruments can be written
as in Eq. (3.39). Quantum combs are hence the most general descriptors of open quantum
system processes (when the system of interest is probed at fixed times). We will call the
respective underlying unitary description that includes the environment the dilation of
the comb. As is the case for quantum channels, any such dilation is non-unique. On the
other hand, the comb CK resulting from some underlying evolution is unique, and—just
like the joint probability distribution PK in the classical case—constitutes the maximal
descriptor of the process on the respective set of times.

3.5.3 Structural Properties of Classical Combs

As a first step to a structural understanding of classical combs, we rephrase Theorem 3.2
in terms of Choi states:
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Theorem 3.2′ (K-classical quantum combs). A comb CK on times T , with |T | = K,
yields a K-classical process iff its Choi state satisfies

tr
⊗

tj∈T ′
Φ+
j

⊗
tk∈T \T ′

Pxk

CK
 = tr

 ⊗
tj∈T ′

Dj

⊗
tk∈T \T ′

Pxk

CK
 . (3.49)

for all subsets T ′ ⊆ T and all possible sequences of outcomes on T \ T ′.

Using the relations (3.44) – (3.46) as well as Eq. (3.48), it is straightforward to see that
this theorem is indeed equivalent to Theorem 3.2. Importantly, as it is stated in terms
of Choi states, Theorem 3.2′ allows one to derive a direct connection between general
correlations and the classicality of a K-process.

To see how the requirement in Eq. (3.49) translates to structural constraints on
classical combs, first note that any comb that yields the joint probability distribution
PK(xK , . . . , x1) when probed in the classical basis can be written as

CK = C̃Cl.
K + χ , (3.50)

where the term

C̃Cl.
K =

∑
xK ,...,x1

PK(xK , . . . , x1)PxK ⊗ · · · ⊗ Px1 , (3.51)

contains the joint probability distribution PK on its diagonal and tr[(PxK⊗· · ·⊗Px1)χ] = 0
for all xK , . . . , x1 [150]. Intuitively, C̃Cl.

K corresponds to the part of CK that can be probed
by measurements in the classical basis alone, while χ contains all the information about
the underlying process that such measurements are blind to. If χ = 0, then CK clearly
satisfies the conditions of Eq. (3.42), as tr[PxjΦ+

j ] = tr[PxjDj] for all xj.4 In words, for
χ = 0, the corresponding comb is classical, as it is diagonal in the classical product
basis. However, this is not necessary for Eq. (3.42) to hold; rather, it suffices if χ is such
that it does not allow one to distinguish between the action of the identity map and the
completely dephasing map. We thus arrive at the following lemma:

Lemma 3.1. Let CK be the comb of a K-process on T , with |T | = K, and let Aj :=
Φ+
j −Dj. CK yields a K-classical process iff it is of the form

CK = C̃Cl.
K + χ , (3.52)

where C̃Cl.
K is obtained from some joint probability distribution PK via Eq. (3.51) and χ

satisfies

tr
⊗

tj∈T ′
Aj

⊗
tk∈T \T ′

Pxk

χ
 = 0 (3.53)

for all subsets T ′ ⊆ T and T ′ = ∅.

4For χ = 0, CK is actually not a proper comb, as it does not satisfy the hierarchy of trace conditions
that ensure causal ordering. Nonetheless, this lack of causality could not be picked up by means of projective
measurements in the classical basis alone, and does thus not pose a problem for our discussion.
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diagonal in the
computational basis

classical
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all quantum 
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Figure 3.7: Nested Set of Processes. Processes that cannot produce coherence and destroy any
coherence that is fed in (i.e., their Choi states are diagonal in the computational basis) form a strict
subset of processes that appear classical when sequentially probed in the computational basis. Both of
these sets, as well as the set of all quantum processes, are convex.

Proof. It is straightforward to see that a comb of the form of Eq. (3.52) satisfies Eq. (3.49),
whenever χ fulfills Eq. (3.53), and thus yields K-classical statistics. Conversely, any comb
CK on K times can be written as CK = C̃Cl.

K + χ , where C̃Cl.
K is of the form of Eq. (3.51)

for some PK and tr[(PxK ⊗ · · · ⊗Px1)χ] = 0 [150]. When measuring (in the computational
basis) at K times, the resulting joint probability distribution is given by PK . As, by
assumption, the process is classical, summation over outcomes obtained at any time CK is
defined on must yield the same statistics as letting the comb act on the identity channel
at this time. As this has to hold for any collection of times in T , χ has to satisfy the
additional requirements given by Eq. (3.53).

Intuitively, Eq. (3.53) ensures that the action of ∆j cannot be detected at any point in
time by means of measurements in the classical basis. Therefore Lemma 3.1 is equivalent
to Theorem 3.2. However, the former provides an explicit constraint on the structure of
such combs that contain coherences that can be present in the process without making
the resulting statistics non-classical.

Indeed, if χ = 0, then the corresponding comb CK is diagonal in the classical product
basis and, as such, cannot create coherences and destroys any kind of coherences that
could be fed into the process (e.g., by performing coherence creating operations at some
time). On the other hand, if χ 6= 0 and the comb contains off-diagonal terms (with respect
to the classical basis), then coherences can be created over the course of the process.
However, if χ satisfies Eq. (3.53), then these coherences—or rather the invasiveness of the
completely dephasing map—cannot be detected at any later time by measurements in the
classical basis. This understanding of classical non-Markovian combs mirrors the intuition
we had built in the Markovian setting for the case of NCGD dynamics. Consequently,
Lemma 3.1 fully characterises the relation between coherences and the non-classicality of
a process (see Fig. 3.7 for a graphical representation of the different sets of processes we
consider).

Somewhat unsurprisingly, the above lemma implies that combs leading to classical
processes are of measure zero in the set of all combs: While any comb can be written in
the form of Eq. (3.52), Eq. (3.53) places further linear constraints on the χ term, which
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must be satisfied by combs leading to classical processes, but not by general combs. The
set of combs leading to classical processes is thus confined to a lower dimensional subset,
implying that it is of zero measure (with respect to any reasonable measure in the set
of all non-Markovian combs). This fact falls in line with the intuition built above; for a
randomly chosen comb, the action of a completely dephasing map in a given basis will
generally be detectable. Furthermore, the vanishing volume of classical combs within the
set of all combs mirrors the analogous property in the spatial setting: There, quantum
states that display no discord are of measure zero in the set of all bipartite quantum
states [296] (the relation between quantum discord and classicality of processes is discussed
in detail in Section 3.6).

In the non-Markovian case, the characterisation of classical processes comes at a price.
In order to decide on the K-classicality of a given process, it is no longer sufficient to
investigate propagators between pairs of times, but rather the full part of the comb CK that
is relevant for sequential projective measurements must be known, due to the importance
of multi-time effects. However, this behaviour is to be expected, as can already be seen in
the case of classical stochastic processes: The full characterisation of a non-Markovian
process only happens on the level of the full joint probability distribution PK , and not
by way of transition probabilities between adjacent times only. Despite the additional
complexity brought in by the presence of memory, as we will see in the following section,
measures for classicality that are both experimentally and computationally accessible can
be derived based on the characterisation of classical processes we have provided.

3.5.4 Quantifying Non-Classicality

As we have seen above, the set of combs leading to classical processes is of measure zero
in the set of all combs. Importantly though, this fact does not render our original definition
of classicality meaningless, but rather—in conjunction with Lemma 3.1—allows for the
derivation of a meaningful measure of non-classicality that is experimentally accessible
and can be formulated by means of a Linear Program (LP).

More specifically, we can exploit the characterisation of classical processes provided
by Eqs. (3.52) and (3.53) in order to define a measure of non-classicality with a clear
operational meaning. Such a measure not only classifies whether or not a comb is non-
classical, but also quantifies the degree to which it is. This is crucial when assessing
whether any potential non-classicality arises from inherently quantum features of the
experiment or from experimental errors. In order to clarify its operational interpretation,
we formulate our measure in the context of a game with two adversaries, Alice and Bob,
and one referee, Rudolph. The task of Alice is to construct a classical stochastic process
that is a good model for a comb she receives from Rudolph. The task of Bob is to design a
test that distinguishes this model from the original comb. Let C be the given comb in its
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Choi representation (i.e., a positive operator with some additional causality constraints).
The game then proceeds as follows:

0) Rudolph begins with a given comb C and sends its description to both Alice and
Bob.

A) Alice prepares a classical process CCl. and sends it to Rudolph.
R1) Rudolph sends the description of the classical process CCl. prepared by Alice to

Bob.
B1) Bob prepares a testing sequence {Ti(~x)}~x and sends it to Rudolph.
R2) Rudolph takes randomly either C or CCl. and applies the testing sequence chosen

by Bob. He yields an outcome ~x, which he announces.
B2) Bob announces whether the comb is C or CCl.

R3) Rudolph announces whether Bob is correct or not and hence who wins the game.

Let us recall at this point that our definition of classicality relies exclusively on
the statistics obtained by probing the process with projective measurements in fixed,
orthonormal bases. Therefore, to only probe what is relevant within our framework,
we restrict the testing sequences that Bob is allowed to prepare to only involve such
measurements, i.e., the testing sequence must be of the form Ti(~x) = ⊗

tj∈τi Φ+
j

⊗
tk∈τci Pxk .

The figure of merit that we are interested in is the probability for Bob to win if both
players play optimally. This is an operational quantity describing how well said comb
can be distinguished from its best classical approximation, given that one has only access
to the aforementioned restricted testing strategies that can be used to probe classicality.
Making use of the arguments of Lemma 3.1 to simplify the structure of the classical combs,
in Appendix C.5 we derive this quantity; here we simply present the main results.

The probability for Bob winning the game is given by:

PB(C) = 1
2 [1 +M(C)] , (3.54)

with M(C) being one half of the solution of

minimise: max
i

∑
~x

∣∣∣tr[(CCl. − C)Ti(~x)]
∣∣∣

subject to: CCl. =
∑

yK ,...,y1

PK(~y)PyK ⊗ · · · ⊗ Py1 ,

PK(~y) joint probability distribution. (3.55)

This can be transformed into the following linear program (and hence can be solved
efficiently numerically; the error can be estimated and one can compute the optimal CCl.
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and Ti(~x) [297]):

minimise: a

subject to:
∑
j

bij − a ≤ 0,

∑
k

pkαijk − βij − bij ≤ 0,

−
∑
k

pkαijk + βij − bij ≤ 0,
∑
k

pk − 1 = 0,

pk ≥ 0, a ≥ 0, bij ≥ 0, (3.56)

where we have defined αijk := tr
[
(PyK(k) ⊗ · · · ⊗ Py1(k))Ti(~xj)

]
, βij := tr [CTi (~xj)] and

pk := PK(~y(k)). For completeness we also give the dual program, which by definition
turns a minimisation into a maximisation. The dual problem is useful to give bounds on
the found solution, to solve the problem, and potentially to find different interpretations
of the quantity in question. The dual of the program above can be formulated as:

maximise: Z

subject to: Z ≤
∑
ij

(αijk − βij) (2Yij −Xi) ∀ k,

∑
i

Xi = 1,

Xi, Yij, Xi − Yij ≥ 0,

Z ∈ R. (3.57)

It follows directly from the interpretation as the solution of the game defined above that
the quantity M(C) is faithful, i.e., its value is zero if the statistics is classical, and that it
measures how difficult it is to simulate the given comb by a classical stochastic process. As
such, it provides us with a properly motivated quantifier of the degree of non-classicality
of quantum processes, which describes how well the obtained statistics can be simulated
by a classical process.

The full evaluation of M(C) would, in principle, require testing over every sequence of
projective measurements [to compute the maximisation in Eq. (3.55)] and the comparison
with every classical multi-time probability distribution [to compute the minimisation in
Eq. (3.55)]. Practically, it is then useful to consider bounds to this quantifier of non-
classicality, which can be accessed via a limited number of measurements. In particular,
lower bounds can be obtained by using a subset of measurement sequences Ti(~x) (in
a similar way as to how one can use entanglement witnesses to construct bounds on
meaningful entanglement measures [166, 298–300]). If such a lower bound is non-zero,
this is already sufficient to conclude that the comb is non-classical. On the other hand,
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upper bounds can be attained by restricting our consideration to some classical combs.
As a relevant example, for any given comb C one can focus on a single classical comb
C

Cl., realised by applying a dephasing map before and after each measurement. This
yields the statistics resulting from the marginals of the joint statistics one would obtain
by measuring at every time. Note that, while this specific choice of a classical comb only
provides us with an upper bound on our measure defined above, it is nonetheless faithful.
In the simplest case where only two times are involved, K = 2, one can easily see that by
replacing CCl. with CCl. in Eq. (3.55), we derive the following upper bound

M(C) ≤
∑
x2

∣∣∣∣∣P(x2)−
∑
x1

P(x2, x1)
∣∣∣∣∣ . (3.58)

Such a natural quantifier of non-classicality has already been used to investigate coherence
properties in transport phenomena [301] and, more recently, to control the departure from
any classical random walk via the manipulation of quantum coherence in a time-multiplexed
quantum walk experiment [269]. Let us note at this point that the experimental data that
was used in Ref. [269] to evaluate the right hand side of Eq. (3.58) allows one to calculate
M(C) too. Hence, M(C) can be evaluated without further acquisition of experimental
data, which demonstrates the applicability of our measure to current experiments. In
addition, our measure—or lower bounds thereof—can be employed to investigate more
complex experiments with K > 2.

3.6 Dynamical Properties of Classical Quantum Processes

Theorem 3.2 and Lemma 3.1 provide a full characterisation of processes that yield
classical statistics. Together, they allow for the derivation of classically testable quantifiers
of non-classicality. For further clarification, and in order to connect non-classical processes
to the respective underlying evolution, we now discuss some concrete cases of underlying
non-Markovian dynamics that lead to classical statistics. Moreover, we will connect the
classicality of temporal processes to vanishing quantum discord in the joint state of the
system and the environment.

3.6.1 Discord and Classicality

Recall that in the Markovian case, the classicality of a process can be decided solely in
terms of propagators between pairs of times that are defined on the system of interest
alone and it is linked to the ability of those maps to create and detect coherences. In
particular, the set of dynamics that does not create coherences on the level of the system
is contained in the set of maps that lead to classical statistics [170]. As we have seen
above, this fails to hold in the non-Markovian case, where, even if the state of the system
is diagonal in the computational basis at all times, i.e., no coherence on the system level
is ever generated, the statistics might not satisfy the Kolmogorov conditions.
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As soon as memory effects play a non-negligible role, it is both the coherences of the
system state and the correlations between the system and its environment that can lead
to non-classical behaviour. It is thus desirable to derive a more explicit relation between
coherence, correlations and classicality.

To do so, first recall that while the completely dephasing map leaves the system
unchanged if the state of the system is classical at all times, it does not necessarily leave
the overall system-environment state, which, at every time tj contains all relevant memory,
invariant. Specifically, in this case we have ∆j[ρstj ] = I[ρstj ] ∀ tj but not necessarily
∆j ⊗ Iej [ηsetj ] = Ise[ηsetj ] = ∀ tj. While the latter is not necessary for the satisfaction of the
Kolmogorov conditions, it is sufficient:

Lemma 3.2. Let {pmti } be sets of probabilities that sum to unity, {Πm
j } orthogonal pro-

jectors (not necessarily rank-1) on the system that are diagonal in the computational
basis, and {ξmj } states on the environment. If at all times tj ∈ T , with |T | = K, the
system-environment state is of the form

ηsetj =
∑
m

pmtj Πm
j ⊗ ξmj , (3.59)

then the underlying process is K-classical, i.e., it satisfies the Kolmogorov conditions of
Eq. (3.9).

Note that we assume the computational basis to be the same at every time, so that the
additional subscript of Πm

j is somewhat superfluous and merely added to clearly signify
the respective time at which the state is defined. In principle, one could define classicality
with respect to projective measurements in different bases at each time tj, in which case
the additional subscript of Πm

j would denote projectors in different bases, and the above
lemma would still hold. Analogously, all other results of this paper can straighforwardly
be adapted to such more general probing schemes, but for simplicity, we understand
classicality with respect to a fixed basis that does not change in time (the only exception
being Section 3.7, where we will extend the setting to allow for arbitrary measurement
schemes in order to examine the nature of genuinely quantum processes.). Naturally,
the environment states ξmj in Eq. (3.59) can be diagonal in arbitrary bases, as it is only
invasiveness with respect to measurements on the system that we are concerned with.

Before we prove Lemma 3.2, it is insightful to discuss the relation between the concept
of classical temporal processes and the classical spatial system-environment correlations it
introduces. Firstly, recall the full system-environment state at each time encapsulate all
memory effects. Concretely, in contrast to the state of the system alone, they contain all
information that is relevant to predict the future statistics. In particular, for states of
the form given in Eq. (3.59), at each time tj, this memory is stored in the probabilities
{pmtj } and the environment states {ξmj }. States of said form have vanishing quantum
discord [265–268, 302], i.e., they do not display any genuinely quantum correlations

104



Chapter 3

between the system and the environment. For a general zero-discord state, the set {Πm
j }

in Eq. (3.59) could be any set of mutually orthogonal projectors, and the correlations
between the system and the environment are considered to be classical, since there exists
a measurement on the system with perfectly distinguishable outcomes that overall leaves
the total state undisturbed [267, 268] (see also the proof below).

As we only consider measurements on the system in a fixed basis in our setting, here,
vanishing discord at all times does not yet force the resulting statistics to be classical;
rather, the discord must vanish in the correct basis, i.e., the one in which the experimenter’s
measurements act. While discord is often considered as a basis independent quantity—
obtained by a minimisation procedure over all possible measurement scenarios [268]—here,
and throughout the remainder of this article, we will always consider its basis dependent
formulation [265–268, 277, 303] and call states of the form in Eq. (3.59) discord-zero with
respect to the classical basis That is, whenever we consider a state to be of zero discord,
we will always implicitly mean that it can be represented as per Eq. (3.59) with the
projectors being diagonal in the classical basis of the measurements. Importantly, this
basis dependence mirrors the basis dependence of coherence, which is also always defined
with respect to a fixed classical basis.

Proof. For states of the form in Eq. (3.59), the completely dephasing map ∆ on the system
has the same effect as the “do-nothing” identity channel I, i.e.,

∆j ⊗ Iej

[∑
m

pmtjΠ
m
j ⊗ ηmj

]
= Isj ⊗ Iej

[∑
m

pmtjΠ
m
j ⊗ ηmj

]
. (3.60)

Consequently, if the system-environment state is of this form at all times, the resulting
statistics satisfy the Kolmogorov conditions.

It is insightful to re-examine Example 3.1 in light of Lemma 3.2; there, we provided
an example of a process for which the state of the system never displayed coherence, but
nonetheless led to non-classical statistics. Consequently, the system-environment state
must have non-zero (basis dependent) discord over the course of the dynamics:

Theorem 3.3. (3.1′) As we discuss in Appendix C.2, in Example 3.1, the system-
environment state before the first measurement (t < t1) is given by

ρse(t) = 1
4

∑
i,j∈{−,+}

|i〉〈j| ⊗
{
i · j|ϕ−(t)〉〈ϕ−(t)|+ i(2α− 1)|ϕ−(t)〉〈ϕ+(t)|

+j(2α− 1)|ϕ+(t)〉〈ϕ−(t)|+ |ϕ+(t)〉〈ϕ+(t)|
}
, (3.61)

where both

|ϕ+(t)〉 =
∫ ∞
−∞

dp f(p)eipt|p〉 (3.62)
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and

|ϕ−(t)〉 =
∫ ∞
−∞

dp f(p)e−ipt|p〉 (3.63)

are valid quantum states. This state has zero discord with respect to the eigenbasis of σ̂x iff

|ϕ+(t)〉〈ϕ+(t)| − |ϕ−(t)〉〈ϕ−(t)| = 0 (3.64)

and either α = 1
2 or

|ϕ+(t)〉〈ϕ−(t)| − |ϕ−(t)〉〈ϕ+(t)| = 0. (3.65)

In the case of the Lorentzian distribution, it follows from

〈ϕ−(t)|ϕ+(t)〉 = k(t) = e−2Γ|t| (3.66)

that Eq. (3.64) cannot be satisfied for t > 0, i.e., basis dependent discord is created during
the evolution (and subsequently destroyed by the measurement at t1). Since the state of the
system itself is not altered by the measurement, but the probabilities to obtain ± at a later
time are (as has been discussed in Ref. [170]), the discord necessarily must be converted into
populations by the following portion of evolution. Below, we will examine this connection
between the creation and detection of basis dependent discord and non-classicality in a
rigorous manner.

If a state is of zero discord, it displays neither coherences on the level of the system nor
non-classical correlations between the system and the environment, which is, to reiterate,
sufficient for the classicality of the resulting process, but not necessary. In this sense,
Lemma 3.2 is a direct extension of the analogous statement in the Markovian case; there,
the absence of coherence in the system state at all times is also sufficient but not necessary
for the process to be classical. Put differently, if all of the individual maps making up a
Markovian dynamics are Maximally Incoherent Operations (MIO) [233, 242], i.e., they
map all incoherent states onto incoherent states, then the resulting dynamics satisfies
Kolmogorov conditions. However, MIOs are a strict subset of NCGD maps [170].

While somewhat intuitive, the above lemma sheds light on the properties that a
general non-Markovian dynamics has to satisfy in order to appear classical. For system-
environment states that are discord-zero in the computational basis (with respect to the
system), a measurement on the system in the computational basis is non-invasive, i.e., it
leaves the full state unchanged (and not just the system state, as it would be the case if
the system state is incoherent at all times). For comprehensiveness, in Appendix C.6 we
provide a characterisation of non-discord creating processes in terms of their dynamical
building blocks.

In general, the absence of discord at all times is not necessary for a process to appear
classical. However, what is necessary is that at no time can there be coherences or non-
classical system-environment correlations that can be detected by means of measurements
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in the computational basis at a later time. This mirrors the requirement for classical
processes in the Markovian case, where the individual propagators have to be NCGD,
i.e., the propagators must be such that they cannot create coherences whose existence
can be picked up at a later time by means of measurements in the classical basis; yet, it
is still possible that the individual maps create coherences [170]. NCGD maps are the
fundamental building blocks that constitute classical Markovian combs. In what follows,
utilising the connection of classicality and discord discussed above, we will provide a
characterisation of the building blocks that make up classical non-Markovian processes.

3.6.2 Non-Discord-Generating-and-Detecting (NDGD) Dynamics and
Classical Processes

In the Markovian case, classicality of a process can be decided on the level of CPTP
maps, since in the absence of memory all higher order probability distributions can be
obtained from the system state ρt1 and the two-time propagators {Λtj ,tj−1}. It suggests
itself to employ this intuition in the non-Markovian case, as every non-Markovian process
corresponds to a Markovian one if enough additional degrees of freedom are taken into
account.

In detail, as we discussed, every non-Markovian process can be dilated to a concat-
enation of a (potentially correlated) system-environment state and unitary total dynam-
ics [126, 129], interspersed by the operations of the experimenter on the system alone that
are performed at times {tj} (see Fig. 3.5 for reference). If the experimenter had access to
all the degrees of freedom necessary for the dilation, then the underlying process would ap-
pear Markovian, and the results of Ref. [170] could be applied on the system-environment
level for the characterisation of a classical process. Here, using the Markovian case as a
guideline, we aim for a similar characterisation of classical processes when only the system
degrees of freedom can be accessed.

To compactify notation and simplify later discussions, we can equivalently consider
a general open process as a concatenation of CPTP maps that act on both the system
and the environment, interspersed by the operations on the system alone. This way of
describing general open system dynamics is simply a notational compression of the general
case with global unitaries that allows for an easier connection to the Markovian case, but
does not lead to a different set of possible combs. In what follows, we will denote these
CPTP maps by Γtj ,tj−1 to clearly distinguish them from the memoryless scenario (where
the respective maps Λtj ,tj−1 act only on the system), so that Eq. (3.11) generalises to

Pn(xn, . . . , x1) = tr
[
(Pxn ⊗ Ie) ◦ Γtn,tn−1 ◦ · · · ◦ (Px1 ⊗ Ie)[ηset1 ]

]
. (3.67)

Moreover, for the sake of generality and to ease the comparison with the Markovian case,
we allow for the state before the first measurement to be evolved from some other state at
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Figure 3.8: NDGD System-Environment Dynamics. From the perspective of a classical observer
performing projective measurements in a fixed basis, the identity map at any time tj cannot be distinguished
from the completely dephasing map. Any discord (with respect to the classical basis) that is present
in the system-environment state, and/or created by the system-environment CPTP maps, cannot be
detected by such a classical observer.

an initial reference time t0 ≤ t1, i.e.,

ηset1 = Γt1,t0ηset0 ; (3.68)

of course, if the first measurement occurs at the initial time, then t1 = t0.
On this dilated level, the dynamics is Markovian—there are no additional external wires

that can carry memory forward—and all higher order joint probability distributions could
be built up when the individual CPTP maps {Γtj ,tj−1} (and the initial system-environment
state) are known. With this, we can define NDGD dynamics (we provide a graphical
representation in Fig. 3.8):

Definition 3.3 (NDGD dynamics). A global system-environment dynamics with CPTP
maps {Γtj ,tj−1}j=1 is called Non-Discord-Generating-and-Detecting (NDGD) if it satisfies

∆j+1 ◦ Γtj+1,tj ◦∆j ◦ Γtj ,tj−1 ◦∆j−1 = ∆j+1 ◦ Γtj+1,tj ◦ Ij ◦ Γtj ,tj−1 ◦∆j−1 (3.69)

for all {tj−1, tj, tj+1}, where the maps Γtk,tk−1 act on the system and the environment,
while ∆k act on the system alone.

Formally, Definition 3.3 is equivalent to the definition of NCGD dynamics, with
the difference that the involved intermediary maps between times are now the system-
environment maps, instead of the maps {Λtj ,tj−1} acting on the system alone in the
Markovian case.

Analogously to the case of NCGD, a NDGD dynamics cannot create discord (with
respect to the classical basis) that can be detected at the next time (and, as such, at
any later time) by means of classical measurements. Or, equivalently, an experimenter
who can only perform measurements in the classical basis cannot distinguish between a
completely dephasing map and an identity map implemented at any time in T . As such,
it provides the natural extension of NCGD to the non-Markovian case. We then have the
following theorem:
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Theorem 3.4 (NDGD dynamics and classicality). Consider a general, possibly non-
Markovian, process on T , with |T | = K, obtained from a system-environment dynamics as
in Eqs. (3.67) and (3.68); then the process is K-classical if the initial system-environment
state ηset0 and the set {Γtj ,tj−1} of maps that corresponds to it are zero discord and NDGD,
respectively.

The proof of this theorem is provided in Appendix C.7. It relies on the fact that
measurements in the classical basis commute with the completely dephasing map and
proceeds along the same lines as the analogous proof for NCGD dynamics in the Markovian
setting provided in Ref. [170]. Importantly, though, it is not a necessity for classical
statistics that the corresponding maps are NDGD, as we will discuss below.

In order to further elucidate the relation of discord and classicality for general quantum
stochastic processes, it is insightful to discuss the proximity of Theorem 3.4 to the
corresponding results in Ref. [170] for the Markovian case. Theorem 3.4 establishes the
importance of the role of quantum discord for the classicality of non-Markovian processes.
In the memoryless case, it is coherence—or the impossibility of detection thereof—that
makes a process classical. Here, this role is played by discord, with the only difference
being that instead of describing the process in terms of maps that are solely defined on
the system of interest, we are forced to dilate the process to the system-environment
space, where it is rendered Markovian. Consequently, the classicality of a process cannot
be decided based on the master equation or dynamical maps that describe the evolution
of the system alone (as has already been pointed out in Ref. [170]). However, given, e.g.,
a Hamiltonian that generates the corresponding system-environment dynamics, whether
or not the resulting process can be simulated classically can be decided by checking the
validity of Eq. (3.69).

It would be desirable if NDGD dynamics were a sufficient and necessary criterion for
the classicality of non-Markovian processes; however, this is not the case. We provide
an example of dynamics that is not NDGD, but nevertheless leads to classical dynamics,
in Appendix C.8. NDGD dynamics as defined in Eq. (3.69) is a statement about the
entire system-environment dynamics, and holds for any possible initial state on the
environment. However, by means of projective measurements on the system alone, one
only has access to the system part, and the system-environment dynamics cannot be fully
probed. Consequently, the criterion of Eq. (3.69) will, in general, be too strong for a given
experimental scenario. Crucially, though, Theorem 3.4 allows us to understand the role of
the discord generated by the system-environment interaction and subsequently detected
via projective measurements on the system in establishing non-classical statistics.

Nonetheless, even though it is not necessary for the underlying dynamics to be NDGD
in order for a non-Markovian process to display classical statistics, for any K-classical
process, there always exists a dilation that is NDGD. That is, there exists a set {Γ̃tj ,tj−1}
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of system-environment CPTP maps that are NDGD and a zero-discord initial system-
environment state η̃set0 that yield the correct classical family of joint probability distributions
when probed in the classical basis. Specifically, we have the following theorem:

Theorem 3.5. Let {Pn(xn, . . . , x1)}n≤K define a process on T , with |T | = K, coming
from an underlying evolution, fixed by the system-environment maps {Γtj ,tj−1} and the state
ηset0 , according to Eqs. (3.67) and (3.68). The resulting statistics {Pn(xn, . . . , x1)}n≤K is
K-classical iff there exists a NDGD evolution given by system-environment maps {Γ̃tj ,tj−1}
defined on times in T and a zero-discord state η̃set0 that yield Pn(xn, . . . , x1) when probed
in the classical basis.

Before we prove this statement, it is important to contrast it with Theorem 3.1, the ana-
logous result for Markovian processes. There, NCGD propagators of the system dynamics
guarantee that the process associated with sequential projective measurements is classical,
and classical Markovian processes can be reproduced by a set of NCGD maps (which do
not necessarily identify with the actual dynamical propagators). Analogously, here, the
NDGD property of the actual system-environment evolution ensures the classicality of
the process; while the converse holds for particular dilations, there can be non-NDGD
dilations that nonetheless yield classical statistics.

In both cases the projective measurements in a fixed basis only provide a limited
amount of information about the overall evolution underlying the probed statistics. While
in the Markovian case the statistics can be traced back to dynamical maps acting on
the open system alone, in the more general non-Markovian case it is the whole system-
environment evolution that enters into play. As a consequence, only the former case allows
one to establish a one-to-one correspondence between classicality and the properties of
the actual evolution by enforcing a proper condition on the dynamics, as discussed at the
end of Section 3.4.1.

Proof. As we have already seen in the discussion of Theorem 3.4, the joint probability
distributions obtained from an NDGD dynamics are always classical. We thus only need
to prove the opposite direction. Let the underlying system-environment dynamics of the
process between times be given by the maps {Γtj ,tj−1}. As the process is classical, the set of
maps {Γ̃tj ,tj−1 = ∆j ◦Γtj ,tj−1 ◦∆j−1} together with a state η̃set1 = ∆1[ηset1 ], where, again, ∆k

only acts on the system degrees of freedom, yields the same joint probability distributions
when probed in the classical basis (see Fig. 3.9 for reference). The process given by this set
{Γ̃tj ,tj−1} is NDGD by construction and η̃set1 has vanishing discord, which means that for
every K-classical process there is an NDGD dilation that reproduces it correctly, where
we identify the initial time as the time of the first measurement, t0 = t1.
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Figure 3.9: Transformation to NDGD Dilation. Any dilation of an open dynamics can be mapped
onto an NDGD one by inserting completely dephasing maps on the level of the system. If the process is
classical, then the transformed dilation yields the same statistics as the original one when probed in the
classical basis.

Theorems 3.4 and 3.5 complete our results for the non-Markovian setting and provide an
intuitive connection between non-classical spatial correlations (i.e., discord) and classical
processes.

3.7 Genuinely Quantum Processes

As we have alluded to throughout this article, the classicality of a process depends on
the measurement scheme that is employed to probe it; a process that appears classical
in one basis—and is thus NDGD with respect to said basis—might display non-classical
correlations when probed differently. This raises the question if non-classicality is merely
a matter of perspective. In principle, for any process, there could exist a probing scheme
that yields classical statistics. More concretely, for an experimenter that can perform
arbitrary measurements, it might always be possible to “hide” the quantum nature of
a process by choosing their respective measurements at the times {tj} such that the
resulting statistics are classical.

Naturally, such schemes with (potentially non-projective) measurements go beyond the
discussion of classicality that we have conducted so far. As we will not limit the employed
instruments of such schemes to be the same at every time, we will call them unrestricted
in what follows. However, we still assume that the instrument at each time is fixed in
advance and is independent of previous measurements—if the choice of instruments could
depend on previous outcomes, then the employed probing scheme would be temporally
correlated and marginalisation at a given time would not be well-defined.

In this case, our previous results allow us to show that there exist genuinely quantum
processes, i.e., processes that display non-classical statistics with respect to every unres-
tricted measurement scheme (in the sense described above) which reveals something about
the probed process.

To reiterate, up to this point, our discussion of Markovianity focused on situations,
where an experimenter measures in the computational basis only, thus employing the
same instrument J = {Pxj} at each time, where all of the (projective) CP maps Pxj
comprising the instrument added up to the completely dephasing map ∆j . More generally,
an experimenter could use instruments J1 = {Mx1},J2 = {Mx2}, . . . , each adding up to
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the CPTP mapsM1,M2, . . . , respectively, to sequentially probe the system of interest.
With this, for a process defined on times T , they could collect the joint probability for all
subsets T ′ ⊆ T and check if Kolmogorov consistency holds. For example, in the simplest
case of two times, with T = {t1, t2} and a given comb C2 on T , an experimenter would
consider the process classical, if P(x2|J2) = ∑

x1 P(x2, x1|J2,J1) holds for all x2, i.e., if

C2[Mx2 , I1] = C2[Mx2 ,M1] ∀ Mx2 ∈ J2 . (3.70)

Note that, due to causality, the second condition, i.e., C2[I2,Mx1 ] = C2[M2,Mx1 ] ∀Mx1 ∈
J1 holds automatically, independent of whether the process is classical or not.

In principle, there could always exist a set of instruments {JK , . . . ,J1} for a given
process CK on T , such that the resulting statistics appear classical. Naturally, for this
question to make sense, the respective instruments actually have to extract information
from the process at hand. In principle, an instrument could consist of a random number
generator and a set of CPTP maps that the experimenter implements depending on
the respective output of the random number generator. Considering these outputs as
outcomes of the instruments, the experimenter could then collect statistics that are
independent of the process at hand (they only depend on the statistics of the random
number generators), and satisfy Kolmogorov consistency conditions (if the respective
random number generators at different times are independent of each other). However,
this apparent classicality would not be a statement about the properties of the underlying
process, and we thus exclude such pathological instruments. We can do so by demanding
that at any time tj, none of the elementsMxj of the instrument Jj is proportional to a
CPTP map. Under this reasonable assumption, we now show that there are processes
that are genuinely quantum, i.e., they violate Kolmogorov conditions for arbitrary choices
of instruments.

To this end, in the first step, we argue that genuinely quantum processes only exist in
the non-Markovian setting, while in the memoryless case there always exists a measurement
scheme that yields classical statistics. This conclusion follows from the fact that all features
of a Markovian process are governed by the dynamical maps acting on the space of the
system alone. Suppose then that a Markovian process is deemed to be non-classical with
respect to some basis of measurements: This means that the dynamical maps constituting
the process generate and detect coherence with respect to said basis. However, at each
point in time throughout the process, the system to be measured is diagonal in some basis
(namely, its eigenbasis); thus, in principle, if the experimenter were able to choose an
unrestricted measurement scheme that is always diagonal in the same basis as the system,
no coherence with respect to this basis will ever be generated and detected, implying that
the statistics measured will appear classical. Consequently, in our proposed framework,
genuinely quantum processes can only exist in the presence of (quantum) memory.
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Figure 3.10: First Two Times of a Genuinely Quantum Process. The system-environment begin
in a Bell state ϕ+

se. Between times t1 and t2, the map Γz is implemented, which biases the system in
the z-basis if any CPTP mapM1 6= I1 is performed [see Eq. (3.71)]. The label ηse2 refers to the joint
system-environment state immediately prior to t2 [see Eqs. (3.72) and (3.73)]. Classicality implies that
the POVM Π2 must be chosen such that it is unable to detect biases in the z-basis. Although this
is always possible when only two times are considered, in general, classicality requires satisfaction of
a growing number of constraints on the choices of later measurements, which can eventually lead to
contradiction, implying the existence of genuinely quantum processes.

A similar argument as in the Markovian case holds for the special case of non-Markovian
dynamics where the system-environment state at each time is of zero discord in a basis
independent sense, i.e., when there exists a basis with respect to which the joint state at
each time is discord-zero. Recall that if the system-environment dynamics is NDGD (with
respect to a fixed basis), then the statistics observed are classical. Now, if at each time the
system-environment state has zero discord, then an experimenter can (in principle) choose
the measurement basis at each time to be the one with respect to which the performed
measurement is non-invasive. For such a sequence of measurements, the experimenter
would not be able to distinguish between having implemented the identity map or the
dephasing map (with respect to the chosen basis) at any time, since the measurement is
non-invasive on the joint system-environment state (due to the lack of discord). Thus, in
such a scenario, there always exists some choice of bases in which such a process looks
classical. It follows then that no non-Markovian process with zero basis independent
discord between system and environment at every time is genuinely quantum.

However, the above logic fails in the general setting, which we now show by explicit
example. To provide intuition, we first outline the logical implication that is a consequence
of the classicality demand for a chosen (two-step) process (depicted in Fig. 3.10 and
described below). While for two times it is always possible to find a measurement scheme
such that the statistics appear classical (even in the non-Markovian case), when a non-
Markovian process extends over multiple times, finding such a measurement scheme is not
possible in general. We show this in detail in Appendix C.9 by considering a multi-time
variant of the process shown in Fig. 3.10 that is extended over four times, proving the
existence of genuinely quantum processes.

The explicit example process we consider begins with a two-qubit system-environment
state in the Bell state ϕ+

se = 1
2
∑
ij |ii〉〈jj|. The experimenter can choose to measure the

system (in whichever basis, or, more generally, employing any non-pathological instrument
they like) at time t1. Following this, the dynamics consists of a system-environment CPTP
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map Γz : B(Hsi ⊗Hei)→ B(Hso ⊗Heo) whose action is to measure its joint inputs in the
Bell basis, and output ϕ+ if the measurement outcome indeed corresponds to ϕ+, or else
output a system-environment state whose system part is a pure state in the z-basis. The
action of Γz on a system-environment state ηse is thus given by

Γz[ηse] =tr(ηseϕ+
se)ϕ+

se + tr[(1se − ϕ+
se) ηse]|0〉〈0|s ⊗ τe, (3.71)

where τe is some quantum state on the environment. It is straightforward to check that
such a map is indeed CPTP. Following this part of the dynamics, the experimenter has
access to measure the system at time t2.

For a genuinely quantum process, we demand that the statistics are non-classical with
respect to any possible measurement choices at times t1 and t2; if this is not the case,
then there exists a POVM at t2 that cannot distinguish between the experimenter having
implemented the identity map I1 or an arbitrary CPTP mapM1 at time t1, such that
the statistics look classical with respect to said measurement scheme. By tracking the
joint system-environment state for either choice of operation at t1, we first show that such
a POVM always exists. This implies that there is no genuinely quantum process defined
on just two times, even in the non-Markovian setting. However, the POVM that does
the trick is constrained by the demand of classicality, as we now detail. Extending the
considered process to more times then imposes a number of constraints on the employed
measurement devices which must be concurrently satisfied, such that finally there is no
unrestricted measurement scheme that can yield classical statistics.

Suppose that the experimenter implements I1 at time t1; then, the system-environment
state at t2 is given by

ηse2 (I1) := Γz[(Is1 ⊗ Ie)(ϕ+
se)] = ϕ+

se, (3.72)

where the notation ηse2 (I1) refers to the joint state immediately prior to t2 given that the
experimenter implemented the identity map at t1. On the other hand, if the experimenter
overall implements some CPTP mapM1 6= I1 (corresponding to their instrument J1 at
t1), then the initial Bell pair will be perturbed (as it is only locally invariant under the
identity map) and therefore the system-environment state prior to t2 is

ηse2 (M1) := Γz[(Ms
1 ⊗ Ie)(ϕ+

se)] = pϕ+
se + (1− p)|0〉〈0|s ⊗ τe, (3.73)

where p := tr[ϕ+
se(M1 ⊗ Ie)[ϕ+

se]] < 1. The statistics observed are gathered by making
measurements on only the system, so we are now interested in the reduced system state at
t2 in either case: From Eq. (3.72), we have the maximally mixed state ηs2(I1) = 1

2 , whereas
from Eq. (3.73) we yield a state that is biased in the z-basis, ηs2(M1) = p

21+ (1− p)|0〉〈0|.
As previously mentioned, classicality dictates that the POVM implemented at t2 must not
be able to distinguish between these two states, which leads to the fact that the chosen

114



Chapter 3

measurement must be blind to any bias in the z-basis. Mathematically, we demand

P2(x2|I1) != P2(x2|M1), (3.74)

which can only be satisfied if the experimenter chooses a POVM Π2 = {Π(x2)
2 } such that

tr
[
Π(x2)

2 ηs2(I1)
]

= tr
[
Π(x2)

2 ηs2(M1)
]
∀ x2. (3.75)

A POVM that satisfies the above equation can be readily constructed: The elements
{Π(a)

2 ,1−Π(a)
2 } can always be described by Π(a)

2 = r
(0)
2 1+~r2 ·~σ, where ~r2 = (r(x)

2 , r
(y)
2 , r

(z)
2 )

and ~σ = (σ(x), σ(y), σ(z)) is the vector of Pauli matrices (note that we have changed
notation and use the letter “a” to label the measurement outcome in order to avoid
potential confusion with the x-basis direction). Demanding classicality, i.e., Eq. (3.74),
then implies that r(z)

2 = 0. In other words, any POVM that is not able to detect biases
in the z-basis satisfies Eq. (3.75) and thus the statistics measured by such a POVM will
appear classical. Importantly, here, and in what follows, we can restrict our analysis to
the case of POVMs/instruments with only two elements, as any other POVM/instrument
(except for the trivial case of single element ones) can always be coarse-grained to a two-
element one. If such a coarse-grained instrument can detect non-classicality of statistics,
then so too will the original one be able to, since it necessarily reveals more information
about the process upon implementation.

However, although it might always be possible to find a basis/POVM such that the
two-time statistics for a non-Markovian process look classical, this is not the case in general.
Intuitively, demanding that the experimenter cannot distinguish between implementing
the identity map and an arbitrary CPTP map at different times leads to a number of
constraints (e.g., above we have the constraint r(z)

2 = 0) on the later measurement basis.
In Appendix C.9, we consider a process defined across four times that is a logical extension
of the two-time process considered here: In each of the first three times, depending on
whether or not the system has previously been biased in either the x-, y- or z-basis, the
process either performs an identity map (in the affirmative case) or else acts to bias the
system in one of the bases. In the end, for an arbitrary CPTP map being implemented
at each one of the first three times (with identity map being enacted at the others), the
system state at the fourth time is biased in one of the three basis directions, and it is
completely unbiased (i.e., maximally mixed) only if three consecutive identity maps are
implemented. The only possible POVM at the final time that yields classical statistics
must not be able to detect biases in any of the basis vector directions; the only POVM
that achieves this is the one with elements proportional to the identity matrix, which
corresponds to one of the measurements that we excluded because they reveal nothing
about the process. Thus, the process is non-classical with respect to every possible
non-pathological measurement scheme and is therefore genuinely quantum.
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A relevant side-note seems in order here. Suppose that someone claims that a given
process is genuinely quantum. To falsify such a statement it is enough to probe the
process by whatever (non-trivial) devices one chooses; if the statistics one gets is classical,
the statement is wrong. The processes that are not genuinely quantum can therefore
be device-independently verified [304–307].5 In turn, this makes the genuinely quantum
processes quite peculiar, as it is impossible to hide their quantumness, and it might come
as a surprise that the set of these processes is non-empty; in fact we even conjecture that
almost all many-time processes are genuinely quantum.

3.8 Conclusions and Outlook

3.8.1 Conclusions

In this paper, we have provided an operationally motivated definition of general
classical stochastic processes and discussed its structural consequences and relation to
quantum coherence in a system’s evolution as well as to the generation and activation of
non-classical correlations between the system and the surrounding environment. While
we phrased our results predominantly in the language of quantum mechanics, there is—a
priori—nothing particularly quantum mechanical about the notion of non-classicality
we introduced. Rather, any process for which the potential invasiveness of performed
measurements can be detected by means of said measurements is non-classical, independent
of the underlying theory; as such an invasiveness is experimentally detectable, this is a
fully operational notion. The question of whether or not a process is classical can thus be
answered on experimentally accessible grounds and is a priori independent of concepts
that the experimenter might not be able to check for, like, e.g., coherences in the system
of interest.

Nonetheless, our definition allows for the derivation of a direct connection between the
classicality of a process and coherences/non-classical correlations that might be present.
While this connection can be formulated in terms of a necessary and sufficient condition
for memoryless processes, there are additional subtleties to be considered in the non-
Markovian case. In general, it is not sufficient for the state of the system to be diagonal in
the classical basis at all times for the resulting multi-time statistics to be classical. Rather,
it is the interplay of coherences, non-classical system-environment correlations, and the
underlying dynamics that is of importance, as we have highlighted through a number
of examples presented throughout. Using the comb framework—which can encapsulate
this complex interplay—for the description of general quantum processes with memory,

5Note, that the term device independent does not imply that one needs no assumptions on the devices, but
just that the assumptions are trivial from the setting. In the case of device independent quantum key distribution,
for instance, the assumption that the devices have some kind of independence needs to be assumed. In our case,
we need to assume that the measurements are not trivial, because otherwise there is nothing one can say from
their statistics at all.
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we have provided a characterisation of quantum processes that yield classical statistics,
and derived the structural properties of such processes. In principle, analogous structural
properties could be derived for processes that display classical statistics when probed
by means of different measurements, e.g., non-projective and/or non-orthogonal ones.
However, while still enabling the derivation of structural properties, the clear connection
between classicality and quantum discord would be lost as soon as sharp measurements
in the computational basis are not the probing mechanism of choice anymore. In this
paper, orthogonal projections were chosen as the kind of measurements that come closest
to the ideal non-invasiveness displayed by classical measurements. More generally, our
results could in principle also be extended to post-quantum theories. As the definition of
classicality we provided is fully operational, the structure of classical processes in such
theories could be derived in the same vein as we presented in this paper, with coherence
and discord being replaced by the analogous properties of the respective theory.

Unsurprisingly, the set of classical processes turns out to be of measure zero within
the set of all quantum processes. The full characterisation we have provided equips the
set of classical processes with an experimentally accessible measure of non-classicality
that can be formulated as an linear program, thereby providing an operationally clear-cut
quantification of the degree of non-classicality of a given quantum process and a general
theoretical framework to define practically useful measures of non-classicality. As an
example, we showed how within our approach one can recover and motivate a quantifier of
non-classicality which is exploited in different contexts [301] and has been used to analyse
the properly quantum features of a given experimental setup [269].

Furthermore, we investigated the relation between the non-classicality of the statistics
observed throughout a process and the quantumness of the prevalent spatial system-
environment correlations in the underlying dynamics. While the absence of coherence
in the state of the system of interest is no longer sufficient in the non-Markovian case
to guarantee classicality, the absence of (basis dependent) discord is. This latter fact is
somewhat intuitive, as the absence of discord at all times means that there are neither
non-classical system-environment correlations nor coherences in the system that could
influence the multi-time statistics deduced. Specifically, we have shown that the non-
Markovian case to some extent mirrors the memoryless one: If the underlying dynamics is
NDGD, i.e., any discord that is created at some point in time cannot be detected at a
later time, then the process appears classical. While the converse of this statement does
not hold, we have further shown that any classical process admits an NDGD dilation.

Finally, we demonstrated that, even if we extend our notion of classicality to the case
of unrestricted measurement schemes, there exist processes that display non-classical
statistics independent of how they are probed. This can happen only for non-Markovian
processes, thus showing that genuine non-classicality can be seen as a further degree of
complexity introduced by the presence of memory effects in the multi-time statistics of
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quantum systems.
As our definition of classicality is tantamount to the assumptions of realism and

non-invasiveness that underlie the derivation of Leggett-Garg inequalities, our results
furnish experiments that test for the aforementioned properties with a clear interpretation:
If the observed statistics satisfy a Leggett-Garg inequality, then the underlying process
can be assumed to be NDGD. It does not have to be composed of fully classical resources,
though. On the other hand, violation of a Leggett-Garg inequality implies that quantum
discord must have been created (and later detected) over the course of the experiment.

3.8.2 Outlook

While we have provided a comprehensive picture of the interplay between the non-
classical resources that are present in the underlying process and the non-classicality of the
resulting non-Markovian multi-time statistics, the mechanisms that lead to the emergence
of classical behaviour on macroscopic scales remain unclear. Naïvely, the fact that classical
processes only constitute a vanishing fraction of the set of all processes, renders it puzzling
that classical processes can be observed at all. This apparent “puzzle” is reminiscent
of the superposition principle which restricts the set of states that are diagonal in a
fixed basis to be of measure zero in the set of all pure states, yet superpositions are
generally not observed in the macroscopic domain, where one fixed basis seems to be
singled out.6 While for the latter case, decoherence has been identified as the mechanism
that fixes a preferred basis—and as such leads to the emergence of classicality in the
spatial setting [311, 312]—an analogous investigation for temporal processes remains
outstanding. Our results pave the way towards the analysis of the onset of classicality in
general quantum processes when system and/or environment size increases.

Beyond this foundational perspective, the characterisation of the set of classical
processes, as well as the measure of non-classicality we have provided, lend themselves
naturally to the development of a resource theory of non-classicality in which processes
defined by Eqs. (3.52) and (3.53) are free. Additionally, our approach yields a definite
theoretical background which allows one to deal with different quantifiers of the degree
of non-classicality, related to practical situations where different sets of operations are
available to investigate the quantumness of physical processes.

On the structural side, we have fully characterised the set of classical processes and
have shown that there exist processes that are genuinely quantum. However, the explicit
partitioning of the set of quantum processes into classical, non-classical, and genuinely
quantum processes remains opaque and requires further investigation. It suggests itself
to assume that the set of genuinely quantum processes is of full measure: As the set of
discordant states is of full measure in the set of all states [296], for a randomly chosen

6For experiments that detect somewhat macroscopic superpositions, see, e.g., Refs. [308–310].
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process, at any time tj there will generally not exist a measurement that leaves the
respective system-environment state invariant, and the subsequent dynamics would have
to be highly fine-tuned in order to disguise this invasiveness. More specifically, based on
the arguments employed in the explicit construction example of a genuinely quantum
process we provided, where four measurement times were necessary to prove the genuine
quantumness, we conjecture that almost all processes associated with a d-dimensional
system are genuinely quantum, if the system is probed d2 or more times. A rigorous
proof of this statement is subject of future research. Moreover, since genuinely non-
classical processes lead to non-classical statistics in a device-independent manner, their
quantumness cannot be disguised. It then seems natural to explore if these processes can
be used for technological applications.

Finally, the full characterisation of general, non-Markovian quantum processes pos-
sessing an equivalent classical description, will likely be useful to better understand the
different facets of memory effects in the classical and quantum realm. Although the opera-
tional framework of quantum combs does not a priori concern any inherent timescales, as
the choice of the discrete set of times is arbitrary, from a physical perspective one expects
a connection between some relevant timescales of an underlying system-environment
Hamiltonian generating a dynamics and the properties of the corresponding comb that
arises upon specification of a set of times. Analogously, the timescales—and number of
measurements—over which the non-classicality of a process can be deduced experimentally
will be related to the pertinent timescales of the dynamics. However, determining the
properties of an underlying system-environment Hamiltonian that leads to classicality and
how the different timescales relate is an interesting, yet multi-layered and far from trivial,
open problem.

The complexity arises due to the various temporal effects that play a significant role
in determining the classicality (or absence thereof) of a given process and the relevant
timescales over which it can be detected. For instance, we have already seen that the
presence of multi-time memory effects is one such property; however, the connection
between memory and classicality is a subtle one. One of the key differences between
classical and quantum memory effects arises from the generically invasive nature of
measurements in quantum mechanics, which leads to an inherent dependence of memory
effects on the probing instruments employed [106]. The very notion of relevant memory
timescales associated with the evolution of a quantum system therefore crucially depends
on whether one wants to infer such timescales via sequential measurements over the
course of the evolution or only at some final (possibly varying) time, as is done, e.g., in
master equation approaches. In the latter case, the memory of the final statistics on the
previous states of the system is dictated by the interplay of different timescales, related
with the system of interest, its environment and their mutual interaction [272]. Such a
memory ultimately determines the complexity of the description of the system evolution,
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as provided, e.g., by memory kernels [171, 172], Green functions [313] or path integrals
[314].

In the case where the temporal correlations of the environment rapidly decay, the
process can often be approximated as a Markovian one. When the process is indeed
Markovian, i.e., described by a sequence of individual channels between times, as we
have shown, it is the NCGD property of the evolution that is necessary and sufficient
for classicality; however, this is not easy to relate to the relevant timescales. A property
that would be sufficient for classicality, and more straightforwardly related to the inherent
timescales of a Hamiltonian generating the evolution is forgetfulness of any initial system
state.

For instance, suppose one has a Markovian process generated by some Hamiltonian,
which has a natural timescale of system forgetfulness, e.g., one that leads to an exponential
decay of correlations between any preparations and final measurements. Then, if one probes
such a process at sufficiently spaced time instants, one should expect to see classicality:
The Markovianity property means that all relevant information can be determined solely
on the system level, and forgetfulness ensures that any temporal correlations—in particular
the ability to detect a distinction between a complete dephasing and an identity map—
between adjacent times vanish. Strictly speaking, in the standard setting of testing for
classicality, where a choice of measurement basis is fixed, one only requires forgetfulness
with respect to projective measurements in said basis, rather than complete forgetfulness,
for this argument to hold; however, besides being too strict a requirement, connecting
such an instrument-specific forgetfulness to the relevant timescales is—like in the NCGD
case—a difficult task.

In the presence of memory, the connection between classicality and the relevant
timescales of the evolution is more involved yet. Here we have a subtle interplay between
the question concerning the forgetfulness of the system of any initial non-classicality, as
well as how much any non-classical effects can be transmitted through the environment
via the memory mechanism. The fact that forgetfulness of the system alone here is
insufficient to imply classicality is related to the crucial point that all multi-time effects
must be captured in order to properly describe processes with memory. Thus, in the
non-Markovian setting, the relevant timescales must typically be determined via sequential
measurements over the course of the evolution.

However, different interrogation procedures will lead to the exhibition of different
multi-time memory effects. For instance, when the system is left unperturbed, the memory
can be solely attributed to properties of the underlying Hamiltonian (e.g., those leading
to the decay of environmental correlations), whereas when the system is measured, the
effect of conditioning the environment state also plays a role. Similarly to the Markovian
setting discussed above, the question of classicality of a non-Markovian process does not
necessarily concern all such temporal correlations in the process (both those transmitted
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on the level of the system itself and the genuine memory effects due to the environment),
but rather only those that can distinguish between the completely-dephasing instrument
and the identity map applied to the system. These memory effects are, in turn, a special
case of instrument-specific quantum Markov order, which has been recently introduced
using the quantum comb formalism [130, 131]. Connecting such memory effects of the
process, and their subsequent impact on the classicality of observed statistics, with the
timescales associated to the corresponding Hamiltonian that generates a given process
poses a promising avenue for future research.

While we anticipate the above open questions to generate much theoretical interest, we
also expect our results to find immediate application in a broad range of situations where
it is relevant to assess whether experimental outcomes are not amenable to a classical
description in order to certify some type of quantum advantage or benchmark some
genuinely quantum behaviour. The former include metrological schemes operating beyond
the standard quantum limit [191, 315–317] while the latter can refer to the simulation of
many body quantum systems [318–322]. Also, the role that the emergence of classicality
plays in system thermalisation and homogenisation can be investigated in a systematic
and quantitatively tractable manner within our proposed approach.
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CHAPTER 4
Connecting Commutativity and

Classicality for Multi-Time
Quantum Processes

Fattah Sakuldee, Philip Taranto, and Simon Milz

Abstract. Understanding the demarcation line between classical and quantum is an
important issue in modern physics. The development of such an understanding requires a
clear picture of the various concurrent notions of “classicality” in quantum theory presently
in use. Here, we focus on the relationship between Kolmogorov consistency of measurement
statistics—the foundational footing of classical stochastic processes in standard probability
theory—and the commutativity (or absence thereof) of measurement operators—a concept at
the core of quantum theory. Kolmogorov consistency implies that the statistics of sequential
measurements on a (possibly quantum) system could be explained entirely by means of
a classical stochastic process, thereby providing an operational notion of classicality. On
the other hand, commutativity of measurement operators is a structural property that
holds in classical physics and its breakdown is the origin of the uncertainty principle, a
fundamentally quantum phenomenon. Here, we formalise the connection between these two
a priori independent notions of classicality, demonstrate that they are distinct in general
and detail their implications for memoryless multi-time quantum processes.
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4.1 Introduction

Since the inception of quantum theory, various notions of “classicality” for the states of
physical systems and measurements thereof have been put forth, including those based on
the commutativity of observables [168, 323–327] (the breakdown of which being the origin
of Heisenberg’s uncertainty principle [174–176]), the absence of coherence [242, 243, 249–
251, 253] or quantum discord [265, 267, 268], the non-negativity of the Wigner function [328–
332], the broadcastability of states [333, 334], or the objectivism that emerges through
Darwinist arguments [335–339]. Most of these concepts of classicality are static in
the sense that they focus on properties of quantum states and/or the compatibility of
measurements in situations where there is no dynamics taking place between them. When
extending such considerations to processes, i.e., physical systems that display non-trivial
evolution and are measured at several points in time, classicality is often linked to the
inability of a process to generate and/or detect states displaying such aforementioned
properties, as well as certain properties of the resulting multi-time statistics (see, e.g.,
Refs. [170, 269, 340, 341]). Additionally for the case of sequential measurements, non-
commutativity is the key ingredient in the generalisation of stochastic processes to the
quantum realm [104]. However, besides partial results, the links between such—a priori
inequivalent—notions of classicality (or non-classicality) remain poorly understood and
subject to debate [257–261], both in static and dynamic scenarios.

Broadly speaking, existing notions of classicality fall into one of two categories: Struc-
tural ones, i.e., criteria for classicality based on mathematical properties like the commut-
ativity (of observables) or the coherence of quantum states; and operational ones, i.e.,
those based only upon experimentally accessible entities, such as the multi-time statistics
obtained from probing an evolving quantum state at different points in time. While both
types of considerations are well-motivated in their own right, the connection between
such—generally inequivalent—structural and operational notions of classicality has not yet
been fully established; in the static case, it is only known for special cases [168, 177–179]
and in the dynamic scenarios that we will focus on such links are only known when
restricting to projective measurements of a fixed observable [170, 269, 340, 341]. Here,
we establish more general connections between structural and operational notions of
classicality for the case of a quantum system that undergoes non-trivial dynamics and is
probed at multiple points in time with general instruments. Specifically, we analyse the
connection between the satisfaction of so-called Kolmogorov consistency conditions—an
operational notion of classicality—and commutativity of the operators that “naturally”
assume the role of observables in multi-time processes (we motivate and identify these
operators in Section 4.3).

Satisfaction of the former criterion implies the existence of a classical (i.e., described
by standard probability theory) stochastic process that leads to the same statistics as
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the one observed when the underlying quantum process is measured [145, 146]; in other
words, although such a process might actually be quantum in nature, one cannot conclude
this from the collected statistical data alone. Importantly, checking the Kolmogorov
consistency conditions amounts to a clear operational notion of classicality that can be
tested without any additional knowledge of the underlying dynamics or physical theory.
For the case of quantum theory restricted to sequential measurements in a fixed basis,
this criterion has been connected to the ability of the dynamics to generate and detect
coherences, both in the Markovian (memoryless) [170, 269] as well as non-Markovian
setting [340, 341]. Extensions to more general measurements have remained elusive.

On the other hand, (non-)commutativity of observables—the structural property that
we consider in this article—lies at the core of quantum theory. Intuitively, commut-
ativity of two observables A and B implies that they are jointly measurable; that is,
given an arbitrary quantum state ρ, the probability of obtaining an outcome pertaining
to observable B is independent of whether A was measured before it or not (and vice
versa). This connection between measurement non-invasiveness—an operational notion of
classicality—and commutativity of observables—a structural notion of classicality—was
first considered by Lüders [168] for the case of projective measurements and later extended
to more general scenarios [177–179] (see also Section 4.2), where it was shown that com-
mutativity and measurement non-invasiveness coincide in many cases. Importantly, such
a direct connection between these two a priori distinct concepts can only be meaningfully
established under the assumption that there are only two sequential measurements being
considered.

In the multi-time setting with non-trivial dynamics between measurements, it is a priori
unclear how Lüders’ results carry over and what “observables” are the appropriate ones
to consider when checking commutativity. In particular, both the underlying dynamics
in between measurements and the effects of general measurement instruments must be
accounted for in the temporal setting. While this can be done by combining the chosen
measurements with the dynamics, it is then not necessarily the commutativity of the
bare measurements (i.e., pertaining to the measurement device itself) per se, but rather
the effective measurements (i.e., those with the dynamics accounted for) that render the
observed statistics “classical” or “non-classical” accordingly.

Here, we identify the operators that determine the non-invasiveness of measurements
for the case of multiple sequential measurements with non-trivial intermediate dynamics
and analyse the conditions for which the commutativity—or weaker versions thereof—of
these operators corresponds to the satisfaction of the Kolmogorov consistency conditions
(and vice versa). Our analysis thus connects structural with operational notions of
classicality for multi-time dynamics and general measurement settings. For the special
case of two sequential measurements without intermediate dynamics, our results coincide
with those of Lüders. However, in general, the situation presents itself considerably more
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layered, and a “straightforward” extension of Lüders’ results is not possible. We show
that commutativity (of the relevant operators) is a stronger condition than Kolmogorov
consistency in general; while the former implies the latter, the converse does not hold.
Additionally, we derive the conditions under which Kolmogorov consistency implies the
vanishing of pertinent commutators in a restricted—but still multi-time—setting and
highlight the ensuing physical implications in order to develop intuition concerning the
interplay of these two notions of classicality. Finally, we relate our considerations to the
well-known case of projective measurements in a fixed basis—where structural properties
that are equivalent to Kolmogorov consistency have been identified [170]—and show
that, while said structural considerations follow directly from those we provide for more
general measurement scenarios, even in this special case, it is difficult to identify generally
applicable commutator relations.

Together, our results offer a comprehensive analysis regarding the connection of
structural—yet mostly not directly observable—properties of quantum dynamics and
operational—i.e., experimentally accessible—notions of classicality, and underline the
complicated interplay between dynamics and measurements that arises in the multi-time
scenario.

This article is organised as follows. We begin by outlining some preliminary concepts,
including the considerations of Lüders [168] that motivate the examination of commut-
ativity, and similarly the Kolmogorov consistency conditions, in Section 4.2. We then
explore the link between these two concepts within the setting of multi-time Markovian
quantum dynamics throughout Section 4.3, where we first derive a commutator expression
whose vanishing is sufficient to imply classical statistics, before deriving a necessary
condition for classicality to imply vanishing commutators of the pertinent operators. We
subsequently connect our work with the special case of dynamics that do not generate
and detect coherences, which constitutes perhaps the most physically relevant special
case [170, 269, 340, 341] that our results apply to. Finally, we conclude with a discussion
and outlook in Section 4.4.

4.2 Preliminaries

We begin by introducing the relevant concepts for both a structural and an operational
definition of classicality in multi-time processes. To this end, first, we recall the connection
between commutativity of observables and non-invasiveness in the two-time case, in
particular the considerations of Lüders [168].

4.2.1 Lüders’ Theorem: Commutativity and Non-Invasiveness

As a preliminary example concerning the connection between structural and operational
notions of classicality, we consider the simplest case: The sequential measurement of two
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observables A and B on a state ρ without intermediate evolution. Let {Π(a)} and {Ω(b)}
be projectors onto the eigenspaces of A and B, respectively, with eigenvalues {a} and {b}.
The probability to first measure outcome a and then b is given by

P(b, a) = tr(Ω(b)Π(a)ρΠ(a)) = tr(ρΠ(a)Ω(n)Π(a)) . (4.1)

In classical1 physics, future statistics are unaffected by whether or not a previous meas-
urement was conducted (when that previous measurement outcome is not recorded, i.e.,
averaged over). Consequently, if the above situation were classical, then∑

a

P(b, a) = P(b,�a) (4.2)

would hold, where P(b,�a) denotes the probability to obtain outcome b if the first measure-
ment was not performed. In quantum mechanics, Eq. (4.2) (or generalisations thereof,
see Section 4.2.2) fails to hold in general, since quantum measurements are invasive. As
a consequence, not performing a measurement is distinguishable from measuring and
averaging over outcomes.

One example where Eq. (4.2) can be satisfied in the quantum setting, independently
of ρ, is when [Π(a),Ω(b)] = 0 for all a, b (which is equivalent to [A,B] = 0), since then∑
a Π(a)Ω(b)Π(a) = Ω(b) (where we have used Π(a)Π(a) = Π(a) and ∑a Π(a) = 1), and thus∑

a

P(b, a) =
∑
a

tr(Π(a)Ω(b)Π(a)ρ) = tr(Ω(b)ρ) = P(b,�a) . (4.3)

If the above is satisfied, then, just like in classical physics, all information is contained in the
two-point probability distribution P(b, a) in the sense that both single-time distributions
P(a) and P(b) can be obtained from it by marginalisation and the process is thereby fully
characterised. Consequently, throughout this article, we call classical those experimental
situations that satisfy this property, i.e., that yield probabilities which can all be obtained
from one single multi-time probability distribution by means of marginalisation (see
Section 4.2.2 for a rigorous discussion). In this case, we also say that said probability
distributions for different subsets of times are compatible or consistent. Importantly,
this notion of classicality amounts to measurement non-invasiveness: Whether or not
a measurement has been performed at a given time has no bearing on the outcome
probabilities at different times if the statistics are classical. In this sense, commutativity
of observables A and B in a two-point measurement scenario implies classicality of the
observed statistics (the converse is also true, but not obvious, see below), establishing a
direct connection between a structural notion (commutativity of operators) of classicality
and an operational definition (measurement non-invasiveness) thereof.

More generally, instead of performing sharp measurements of an observable, an ex-
perimenter could first probe the state ρ with a general instrument, described by a set of

1Here, we employ “classical” in a somewhat colloquial sense, as pertaining to the macroscopic world. Below,
we properly define what we mean exactly by “classical” throughout this article.
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Kraus operators {K(a)}, where each K(a) corresponds to a measurement outcome a, and
subsequently a POVM {Q(b)}, each element of which corresponds to an outcome b. The
two-point statistics are then given by

P(b, a) = tr(Q(b)K(a)ρK(a)†) = tr(ρK(a)†Q(b)K(a)) =: tr(ρK(a)†[Q(b)]) . (4.4)

Here, K(a) and Q(b) respectively play analogous roles to Π(a) and Ω(b) in the previous
example. Now, setting K†[•] := ∑

aK(a)†[•], we see that non-invasiveness of the first
measurement amounts to the satisfaction of

tr(ρK†[Q(b)]) = tr(ρQ(b)) ∀ b . (4.5)

If the above must hold for all states ρ, then non-invasiveness is equivalent to

K†[Q(b)] = Q(b) ∀ b . (4.6)

This criterion has been connected to commutation relations by Lüders, yielding the
following theorem:

Theorem 4.1 (Lüders [168, 177]). Let K† be defined as above and let Q be a positive
semi-definite operator. If all Kraus operators K(a) are Hermitian, then K†[Q] = Q is
equivalent to [K(a), Q] = 0 ∀ a.

Since some of our proofs below follow a similar line of reasoning, we recall from the
literature, see e.g. Ref. [177], for the proof of this theorem.

Proof. First, it is easy to see that [K(a), Q] = 0 ∀ a implies K†[Q] = Q. To see the converse,
let |ϕ〉 be an arbitrary vector in the Hilbert space H that Q is defined on. Suppose that
K†[Q] = Q, and decompose Q = ∑

µ λµPµ with λ1 > λ2 > . . . with {Pµ} being mutually
orthogonal projection operators. It follows that

λ1‖P1|ϕ〉‖2 = 〈P1ϕ|QP1ϕ〉

= 〈P1ϕ|K†[Q]P1ϕ〉

=
∑
a

〈K(a)P1ϕ|Q|K(a)P1ϕ〉

6 λ1
∑
a

〈K(a)P1ϕ|K(a)P1ϕ〉

= λ1
∑
a

〈K(a)†K(a)P1ϕ|P1ϕ〉

= λ1‖P1|ϕ〉‖2 , (4.7)

where we have used λ11−Q > 0 for the first inequality and ∑aK
(a)†K(a) = 1 for the last

equality. From the above, we see that

〈K(a)P1ϕ|(λ11−Q)|K(a)P1ϕ〉 = ‖ (λ11−Q)1/2K(a)P1|ϕ〉‖2 = 0 (4.8)
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holds, and we thus have
QK(a)P1|ϕ〉 = λ1K

(a)P1|ϕ〉, (4.9)

implying that K(a) leaves the λ1−eigensubspace invariant. This means that K(a)P1 =
P1K

(a)P1, and since K(a) is assumed to be Hermitian, it follows that [K(a), P1] = 0 for all
a. Now, we set Qµ = Qµ−1 − λµ−1Pµ−1 and Q0 = Q, and repeat the same steps as above
with Q2 and P2 and so on. This iteration then leads to the fact that [K(a), Pµ] = 0 for all
a and µ. Hence [K(a), Q] = 0 as claimed.

Since K†[Q(b)] = Q(b) is equivalent to non-invasiveness of the first measurement,
Theorem 4.1 says that non-invasiveness for arbitrary initial states ρ is equivalent to
commutativity of the Kraus operators of the first measurement and the POVM elements of
the second one, if all Kraus operators are Hermitian (which is, e.g., the case for projective
measurements of two observables).

We emphasise that Hermiticity of the Kraus operators is crucial for the derivation of
Theorem 4.1, and without this assumption, it no longer holds in general. This can be seen
by considering a counterexample provided in Ref. [179]:

Example 4.1. Let the POVM elements {Q(1), Q(2)} be given by

Q(1) = 1
2


2 0 0

0 0 0

0 0 1

, Q(2) = 1
2


0 0 0

0 2 0

0 0 1

 , (4.10)

and the Kraus operators by

K(1) = 1
2


√

2 0 −1

0 0 0

0 0 0

, K(2) = 1
10


0 0 0

0 −
√

10 2
√

10

0 0 0

,

K(3) = 1
2


0 0 0

0
√

2 0

0 0 0

, K(4) = 1
20


0 0 0

0 4
√

10 2
√

10

0 0 0

,

K(5) = 1
2


√

2 0 1

0 0 0

0 0 0

 . (4.11)

For this setup, it is straightforward to see that both Q(1) and Q(2) are invariant un-
der ∑5

a=1K
(a)† • K(a), i.e., the measurement is non-invasive overall and therefore the
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resulting statistics are classical, but, for example, [K(5), Q(1)] 6= 0. Consequently, classic-
ality of statistics and commutativity of the Kraus operators are generally inequivalent
notions. Nonetheless, the direct connection between commutativity and measurement
non-invasiveness in quantum mechanics, i.e., that provided by Lüders’ theorem, has sub-
sequently been extended to more general (e.g., non-Hermitian) Kraus operators [177–179].
�

Importantly for our purposes, Theorem 4.1 identifies the relevant operators whose
commutation relations are related to non-invasiveness. As a first step, in what follows we
will investigate which operators play the roles of K(a) and Q(b) in the multi-time—i.e.,
more than two consecutive measurements—case.

Before doing so, we first note that Theorem 4.1 (and its extensions) are restricted in their
realm of application. Firstly, they are limited to only two sequential measurements with no
intermediate evolution.2 Additionally, the (potential) equivalence between K†[Q(b)] = Q(b)

and classicality requires non-invasiveness for all states ρ. As we will discuss, in the
multi-time scenario, one is not always guaranteed to have access to a full basis of quantum
states at each time of interest. Consequently, in the multi-time case, the relation between
compatible statistics and the commutativity of some appropriate operators presents itself
as a more layered issue than in the static or two-time cases, even when the Kraus operators
of performed measurements are limited in a similar way to the assumptions of Theorem 4.1.

We now move to consider the operational notion of non-invasiveness in the multi-
time case, namely the Kolmogorov consistency conditions, which are naturally suited to
analysing the classicality (or not) of general quantum processes. We will see that Lüders’
considerations amount to a special case of Kolmogorov consistency, before moving on to
develop multi-time “Lüders-type” theorems, in the sense that they connect non-invasiveness
of measurements to the vanishing of a set of pertinent commutator expressions.

4.2.2 Kolmogorov Consistency and Non-Invasiveness

In Eq. (4.2), we provided an experimentally accessible notion of non-invasiveness—and
thus classicality—for two sequential measurements. The natural way to extend this defini-
tion to the multi-time case is as follows. Suppose that an agent probes a physical system
at n discrete points in time, recording the corresponding joint probability distribution
P(mn, . . . ,m1) over possible outcomes {mn, . . . ,m1} observed at the respective times
{tn, . . . , t1} [see Fig. 4.1(a)]. Importantly, analogous to the two-time case discussed above,
for any classical stochastic process, the recorded probability distribution is guaranteed to
satisfy the Kolmogorov consistency conditions [145], illustrated in Figs. 4.1(b) and 4.1(c):

P(mn, . . . ,��mi, . . . ,m1) =
∑
mi

P(mn, . . . ,mi, . . . ,m1) ∀ i . (4.12)

2This is, technically, not a strong restriction, since any intermediate dynamics could be absorbed into the
Kraus operators/POVM elements.
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(a) Overall joint probability distribution
P(m4,m3,m2,m1) for measurements at each
time t1, . . . , t4.

(b) Marginalised probability distribution∑
x2
P(x4, x3, x2, x1) for times t1, t3, and t4.

(c) Overall joint probability distribution
P(m4,m3,��m2,m1) for measurements at each
of the times t1, t3, t4.

Figure 4.1: Multi-Time Experiments & Kolmogorov Consistency: (a) An unknown process
(depicted by the “trajectories”) is probed at different times, here {t1, t2, t3, t4}, and the resulting joint
probability distribution P(m4,m3,m2,m1) is recorded. (b) From the four-time distribution obtained
in (a), one can compute a three-time joint distribution by marginalising over the outcomes at a given
time (here, t2). (c) The three-time joint probability P(m4,m3,��m2,m1) is obtained by not performing
a measurement at t2. In general, this is a different experiment than the one of (b). If the process is
classical—and the employed measurements are non-invasive—then the joint probabilities of (b) and (c)
coincide [see Eq. (4.12)].

Evidently, Eq. (4.12) is a multi-time generalisation of the two-time scenario considered in
Eq. (4.2). The distribution on the l.h.s. corresponds to what an experimenter observes if
they do not perform any interrogation at time ti, whereas on the r.h.s. the full statistics
is recorded and then marginalised over at time ti. As in the two-time case, Kolmogorov
consistency states that there is no difference between not having performed a measurement
and measuring but averaging over all possible outcomes at any time, corresponding to
a sensible notion of classicality in terms of measurement non-invasiveness: For classical
stochastic processes, measurements simply reveal a pre-existing property of the system, in
line with the assumptions of macroscopic realism used, e.g., in the derivation of Leggett-
Garg inequalities [147]. This property fails to hold for quantum processes, since quantum
measurements generically alter the state of the system being measured [274].

We emphasise that a breakdown of Kolmogorov consistency does not necessarily imply
that the probed process at hand is non-classical per se. For instance, in the theory of
classical causal modelling [342], where invasive interrogations can be implemented (e.g.,
by first measuring the value of some property and then setting it to some other value) in
order to potentially infer causal influence, the recorded statistics generally do not satisfy
the Kolmogorov consistency conditions [145, 146]. Nonetheless, testing the validity of
Eq. (4.12) provides a theory-independent, operational procedure to decide on the non-
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invasiveness of interrogations. In particular, satisfaction of the Kolmogorov consistency
conditions implies that there exists a—potentially exotic—classical stochastic process
that can reproduce the observed statistics. To do so, said classical stochastic process
merely needs to correctly recreate the full joint probability distribution P(mn, . . . ,m1),
and, due to satisfaction of the Kolmogorov conditions, it then also correctly recreates all
joint probability distributions for any subset of times, thereby fully characterising the
process from an operational standpoint. Thus, we will interchangeably use the terms
“Kolmogorov consistency”, “measurement non-invasiveness” and “classicality”.

Recently, in Refs. [170, 269, 340, 341], the implications of the satisfaction of the
Kolmogorov consistency conditions for general multi-time processes (including those with
memory) that are probed by means of pure projective measurements have been character-
ised, thus connecting the operational, experimentally accessible notion of classicality with
certain properties of the underlying quantum dynamics, namely their ability to generate
and detect coherence or discord with respect to the chosen measurement basis (we discuss
the relationship of these results with our present work in Section 4.3.4). Here, we allow
for general measurements and phrase our results in terms of commutation relations (i.e.,
in the spirit of Lüders’ theorem), rather than in terms of the coherence- or discord-related
properties of the underlying quantum maps that engender the observed statistics.

4.2.3 Multi-Time Statistics from (Markovian) Quantum Processes

To make the relation between commutation relations and non-invasiveness in quantum
theory more concrete and identify the relevant operators, we now examine how observed
statistics are related to the underlying dynamics of a quantum process. In order to
collect joint statistics at times t1, . . . , tn, at each time ti an experimenter probes the
system of interest with an instrument, Ji = {K(mi)

i }, which is a collection of Completely
Positive (CP) maps that sum up to a Completely Positive and Trace Preserving (CPTP)
map, i.e., Ki := ∑

mi K
(mi)
i is a CPTP map [103]. Each CP map K(mi)

i corresponds to
a possible outcome mi and captures the state change of the system upon measurement.
For simplicity, we assume that every element K(mi)

i can be represented by a single Kraus
operator, i.e., K(mi)

i [ρ] = K
(mi)
i ρK

(mi)†
i . In between these measurements (e.g., between ti

and ti+1), the system of interest undergoes non-trivial dynamics, possibly interacting with
an environment, described by CPTP maps Λi+1:i. Assuming the dynamics to be Markovian
(i.e., memoryless), as we do throughout, then these maps are mutually independent and
act on the system alone (see Fig. 4.2). Any statistics observed by probing a Markovian
process can be computed via the quantum regression formula [272, 278, 279]:

P(mn, . . . ,m1|Jn, . . . ,J1) = tr
(
K(mn)
n ◦ Λn:n−1 ◦ · · · ◦ Λ2:1 ◦ K(m1)

1 [ρ]
)
, (4.13)

where all maps act on the system alone. It is important to note that the statistics observed
depend on both the CP maps K(mi)

i implemented by the experimenter and the generally
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Figure 4.2: Multi-Time Probing of a Markovian Quantum Process. A quantum process without
memory on a discrete set of times t1, . . . , tn can be described by an initial state ρ of the system and a
collection of independent CPTP maps {Λi:i−1} that act on the system alone between neighbouring times
(blue). At each time ti, we envisage an agent probing the process and observing a measurement outcome
mi, with the post-measurement state feeding forward (yellow). Such a probing is represented by a CP
map K(mi)

i at each time.

uncontrollable dynamics of the process given by the CPTP maps {Λi:i−1}. Whether or not
the measured statistics satisfies the Kolmogorov consistency conditions thus depends on
the complex interplay between measurements and intermediate dynamics. With Eq. (4.13)
at hand, we can now identify the relevant operators and commutation relations concerning
the satisfaction of Kolmogorov conditions.

4.3 Multi-Time Dynamics: Kolmogorov Consistency and
Commutativity

To identify the relevant commutation relations, let us rewrite Eq. (4.13) entirely in
terms of Kraus operators:

P(mn, . . . ,m1|Jn, . . . ,J1)

=
∑
`2...`n

tr
[
K(mn)
n L

(`n)
n:n−1 · · ·L

(`2)
2:1 K

(m1)
1 ρK

(m1)†
1 L

(`2)†
2:1 · · ·L

(`n)†
n:n−1K(mn)†

n

]
, (4.14)

where we have set Λi:i−1[•] = ∑
`i L

(`i)
i:i−1 • L

(`i)†
i:i−1.

In order to connect this equation to non-invasiveness of a measurement at a time
ti, we split the above expression into three parts (using the cyclicity of the trace): One
that corresponds to the state immediately prior to the measurement, one corresponding
to the measurement itself, and one corresponding to everything that happens after the
measurement at said time of interest. Specifically, setting R`i,mi−1

i:i−1 := L
(`i)
i:i−1K

(mi−1)
i−1 , we

see that the pre-measurement (subnormalised) state at time ti is given by

ρ̃i(mi−1:1) :=
∑
`2...`i

R
(`i,mi−1)
i:i−1 · · ·R(`2,m1)

2:1 ρR
(`2,m1)†
2:1 · · ·R(`i,mi−1)†

i:i−1 (4.15)

for i > 2 (with ρ̃1 := ρ). Note that ρ̃i(mi−1:1) depends upon all measurement outcomes
mi−1:1 := (mi−1, . . . ,m1) up to ti, and its trace corresponds to the probability to observe
said sequence of outcomes, i.e.,

P(mi−1, . . . ,m1|Jm−1, . . . ,J1) = tr[ρ̃i(mi−1:1)] . (4.16)
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On the other hand, grouping all post-measurement operators together, we can define the
positive semi-definite operator

Qi(mn:i+1) :=∑
`i+1...`n

L
(`i+1)†
i+1:i R

(`i+2,mi+1)†
i+2:i+1 · · ·R(`n,mn−1)†

n:n−1 K(mn)†
n K(mn)

n R
(`n,mn−1)
n:n−1 · · ·R(`i+2,mi+1)

i+2:i+1 L
(`i+1)
i+1:i .

(4.17)

With this, the multi-time statistics of Eq. (4.14) can be expressed succinctly as

P(mn, . . . ,m1|Jn, . . . ,J1) = tr
[
ρ̃i(mi−1:1)K(mi)†

i Qi(mn:i+1)K(mi)
i

]
=: tr

[
ρ̃i(mi−1:1)K(mi)†

i [Qi(mn:i+1)]
]
. (4.18)

Intuitively, ρ̃i is the time-evolved (subnormalised) state that is to be measured at time ti,
while Qi corresponds to the effect of each measurement outcome after ti (all the way up
until some fixed final time tn), with the dynamics of the process in between accounted for,
“rolled back” in time to ti, when the measurement described by K(mi)†

i occurs. With this,
setting K†i [•] := ∑

mi K
(mi)†
i [•], Kolmogorov consistency is equivalent to

tr
[
ρ̃i(mi−1:1)K†i [Qi(mn:i+1)]

]
tr [ρ̃i(mi−1:1)Qi(mn:i+1)] , (4.19)

which can be expressed as a commutator expression via
∑
mi

tr
[
ρ̃i(mi−1:1)K(mi)†

i [K(mi)
i , Qi(mn:i+1)]

]
= 0 (4.20)

for all ti and all outcomes {m1, . . . ,mi−1,mi+1, . . . ,mn}. Formally, apart from the de-
pendence on past and future outcomes, the above equation coincides with Eq. (4.5), which
states the Kolmogorov consistency conditions for two sequential measurements without
intermediate dynamics. This seemingly implies that there should be a direct relation
between commutation relations of the involved operators in Eq. (4.20) and classicality
of the observed statistics. However, we now discuss some important differences between
classicality for two-time vis-a-vis multi-time processes and subsequently demonstrate that
there is no “straightforward” extension of Lüders’ theorem to the multi-time setting,
except under rather restrictive assumptions.

4.3.1 Two-Time vs. Multi-Time Classicality

There are various major differences between the two- and multi-time scenario. Firstly,
in the two-time case, assuming that measurement non-invasiveness holds for arbitrary
initial states ρ, one can conclude that satisfaction of the Kolmogorov consistency conditions
is equivalent to K†[Q(b)] = Q(b). On the other hand, in the multi-time case, even when
assuming that the Kolmogorov consistency conditions hold for arbitrary initial states (i.e.,
those at time t1), one is no longer guaranteed that the system states span a full basis at
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every later time ti. To see this, consider the natural case of measurements performed in
the computational basis, i.e., K(mi−1)

i−1 [ρ] = 〈mi−1|ρ|mi−1〉 |mi−1〉〈mi−1|. Then, the state ρ̃i
immediately prior to the measurement at time ti—independent of that at the beginning
of the experiment—is proportional to Λi:i−1[|mi−1〉〈mi−1|] and so the set of states {ρ̃i}
can at most span a d dimensional space, which cannot coincide with the d2 dimensional
space spanned by all quantum states. Consequently, in the multi-time case, Kolmogorov
consistency is—in contrast to the two-time scenario—manifestly not equivalent to

K†i [Qi(mn:i+1)] = Qi(mn:i+1) . (4.21)

In particular, satisfaction of the above equation for all i is sufficient for satisfaction
of Kolmogorov conditions—as can be seen by direct insertion into Eq. (4.19)—but not
necessary (see below). Nonetheless, the formulation of Eq. (4.20) informs us that the
commutation relations [K(mi)

i , Qi(mn:i+1)], or variants thereof, are the relevant ones to
investigate with respect to satisfaction of Kolmogorov consistency conditions.

Note that if all CP maps {K(mi)
i } and all intermediate dynamics {Λi:i−1} are invertible

(the former is a choice, while the latter is generally true for Markovian dynamics [343]),
then one is guaranteed a full basis of states at each time ti provided that the very
initial state is arbitrary; this implies that the Kolmogorov consistency conditions are
then indeed equivalent to satisfaction of Eq. (4.21), even in the multi-time scenario. In
this case, one can, in the spirit of Theorem 4.1, establish a direct connection between
measurement non-invasiveness for all input states and the vanishing of the commutator
[K(mi)

i , Qi(mn:i+1)] (provided some additional assumptions are met, e.g., Hermiticity of the
Kraus operators K(mi)

i —we will revisit these assumptions and the issue of requiring a full
basis in Section 4.3.3). However, with respect to the choice of instruments in particular,
this restriction is rather strong and would (as mentioned above) fail to cover the most
natural scenario of measurements in a fixed basis.

Additionally, independent of the fact that at ti one does not have access to a full
basis of states, when considering general quantum measurements in multi-time processes,
information can be transmitted through the system alone, and thus measurement statistics
can be correlated over multiple points in time, even for Markovian processes. Thus, in
the multi-time scenario, one must deal with entire sequences of outcomes—for example,
Qi(mn:i+1) is an operator that pertains to the entire sequence of future outcomes—instead
of just outcomes at single or neighbouring times. As we discuss in detail in Section 4.3.4,
this added complexity cannot be circumvented as soon as general measurements are
considered, and consequently all of our results will be phrased with respect to operators
that generally correspond to measurement outcomes at multiple different points in time.

We now detail how Eq. (4.21) has to be modified in order to yield a direct relation
between commutativity of pertinent operators and the classicality of the observed statistics
in a multi-time experiment.
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4.3.2 No “Straightforward” Extension of Lüders’ Theorem

In Eq. (4.19), we have expressed satisfaction of Kolmogorov conditions at an arbitrary
time ti in terms of the measurement map K†i , the post-measurement operators Qi(mn:i+1)
and the pre-measurement subnormalised states ρ̃(mi−1:1). The close formal relation of
said equation to those that appear in the two-time scenario, and thus in Lüders’ theorem,
informs us that the commutators [K(mi)

i , Qi(mn:i+1)] play a pivotal role for the classicality
of the observed statistics. As mentioned, it is easy to see that [K(mi)

i , Qi(mn:i+1)] = 0
implies satisfaction of Kolmogorov conditions, but the converse is not true (see Example 4.3
for a concrete counterexample). Indeed, such a commutation relation is, at the outset, far
too strict a condition to be necessary for Kolmogorov consistency: It would, for instance,
imply that the measurements are non-invasive for arbitrary system states at each time,
which is not a necessary requirement for classicality, since for many relevant scenarios, the
possible states ρ̃i before a measurement at time ti do not span the full space of quantum
states. As a result, our aim is to find weaker commutation relations that still guarantee
the satisfaction of Kolmogorov conditions, and, conversely, to work out the consequences
of Kolmogorov conditions on the commutation relations of the relevant operators. Here,
we begin with the former direction.

Recall that satisfaction of Kolmogorov consistency conditions is given by Eq. (4.19).
As we have emphasised, this does not necessarily imply that K†i [Qi] = Qi and is thus not
equivalent to [K(mi)

i , Qi] = 0. Following the logic of Theorem 4.1, one might then suspect
that

tr
[
ρ̃i(mi−1:1) [K(mi)

i , Qi(mn:i+1)]
]

= 0 , (4.22)

i.e., commutativity of the measurement operators with respect to ρ̃i(mi−1:1) is equivalent
to the satisfaction of Kolmogorov conditions at time ti—at least for the case of Hermitian
Kraus operators K(mi)

i . However, this is not the case, as the following example shows:

Example 4.2. Let the pre-measurement state (for some history of outcomes, which
we renormalise and suppress for the sake of conciseness) be given by ρ̃i = 1

2(1 + σz)
followed by a measurement described by Kraus operators K(±)

i = 1
2(1± σx) and let the

post-measurement part (for some sequence of future outcomes) be encoded in the operator
Qi(±) = 1

2(1±σz). This situation can, e.g., arise in a two-step process without intermediate
evolution, where the measurement with Kraus operators {K(±)

1 } is made at t1, the pre-
measurement state is prepared as ρ̃1 = 1

2(1+ σz) and at t2 the observable σz is measured
with outcomes ±, corresponding to the post-measurement operators Q1(±) = 1

2(1± σz).
We observe that (for future outcome +) we have tr

[
ρ̃1[K(±)

1 , Q1(+)]
]

= 0 but

tr
[
ρ̃1

( ∑
m1=±

K
(m1)†
1 Q1(+)K(m1)

1 −Q1(+)
)]

= tr
[
ρ̃1

(
K†1[Q1(+)]−Q1(+)

)]
= 1

2 6= 0 , (4.23)
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implying that the Kolmogorov consistency conditions are not satisfied even though
commutativity with respect to ρ̃1 [i.e., Eq. (4.22)] holds and all involved Kraus operators
are Hermitian. �

We emphasise that even though we only explicitly consider two measurements here,
the considered scenario is indeed a multi-time one; in contrast to the scenario envisioned
by Lüders, we do not assume the states before the first measurement at t1 to span a
full basis, which is an implicit assumption of the two-time setting with arbitrary initial
preparations. This, in turn, can be understood as the pre-measurement state ρ̃1 being the
result of a previous measurement with a fixed outcome (or sequence thereof), making the
scenario of the example a genuine multi-time one of which we only explicitly investigated
the two times t1 and t2. The fact that Kolmogorov conditions are not satisfied despite the
weak commutativity of Eq. (4.22) holding then signifies that in the multi-time scenario,
one requires a stricter commutation relation for the involved operators in order to obtain
classical statistics.

Although the weak commutation relation with respect to ρ̃i(mi−1:1) is not restrictive
enough, the following theorem informs us that absolute commutativity with respect to
ρ̃i(mi−1:1) is indeed sufficient to guarantee the satisfaction of Kolmogorov conditions:

Theorem 4.2. Let P(mn, . . . ,m1|Jn, . . . ,J1) be a joint probability obtained from Eq. (4.13),
i.e., by probing a Markovian process. If absolute commutativity

tr
[
ρ̃i(mi−1:1)

∣∣∣ [K(mi)
i , Qi(mn:i+1)]

∣∣∣] = 0 (4.24)

holds at all times ti and for all possible mi−1:1, mi and mn:i+1, where |X| :=
√
X†X, then

P(mn, . . . ,m1|Jn, . . . ,J1) satisfies the Kolmogorov consistency conditions [given explicitly
in Eq. (4.20)].

Proof. For simplicity, we will omit the explicit arguments of the involved operators
throughout the proof. We first show that Eq. (4.24) implies tr

[
ρ̃i K

(mi)†
i [K(mi)

i , Qi]
]

= 0.
To this end, we note that Eq. (4.24) implies∣∣∣ [K(mi)

i , Qi]
∣∣∣ ρ̃i = 0 , (4.25)

since both ρ̃i and
∣∣∣ [K(mi)

i , Qi]
∣∣∣ are positive semidefinite. Now, let us employ the polar de-

composition [K(mi)
i , Qi] = V (mi)M (mi), where V (mi) is unitary andM (mi) =

∣∣∣ [K(mi)
i , Qi]

∣∣∣ ≥
0, i.e., M (mi)ρ̃i = 0. With this, we obtain

tr
[
ρ̃i K

(mi)†
i [K(mi)

i , Qi]
]

= tr
[
K

(mi)†
i V (mi)M (mi)ρ̃i

]
= 0 . (4.26)

By summing this expression over mi, Eq. (4.20)—and thus satisfaction of the Kolmogorov
consistency conditions—is recovered.
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Theorem 4.2 informs us that absolute commutativity with respect to the state of the
system at each time is sufficient for classicality of the observed statistics. However, in
contrast to the two-time scenario, this requirement is not necessary for classicality—even
in the case where the involved Kraus operators are Hermitian. To see this, consider the
following example:

Example 4.3. We employ Example 4.2 with a change in the (renormalised) pre-measurement
part to ρ̃1 = 1

2(1 + σy) but still followed by a measurement K(±)
1 = 1

2(1 ± σx) and the
post-measurement parts are encoded in the operators Q1(±) = 1

2(1 ± σz). We observe
that—for these choices—Kolmogorov consistency holds, i.e.,

tr
{
ρ̃1

[ ∑
m1=±

K
(m1)†
1 Q1(±)K(m1)

1 −Q1(±)
]}

= 0 , (4.27)

since∑m1=±K
(m1)†
1 Q1(±)K(m1)

1 −Q1(±) = ±σz2 , which is trace orthogonal to ρ̃1. However

we find that
∣∣∣[K(±)

1 , Q1(±)]
∣∣∣ = 1

4 leading to

tr
[
ρ̃1

∣∣∣[K(±)
1 , Q1(±)]

∣∣∣] = 1
4 6= 0 . (4.28)

Consequently, this example shows that classical statistics in a multi-time experiment do
not imply absolute commutativity with respect to the state of the interrogated system
over time, even when all Kraus operators are Hermitian (which is the case here). In
turn, since absolute commutation with respect to ρ̃i is weaker than commutativity itself,
this makes the considered case also an example of a situation where satisfaction of
Kolmogorov consistency conditions does not imply [K(mi)

i , Qi(mn:i+1)] = 0, as mentioned
at the beginning of this section. �

While not being equivalent to satisfaction of the Kolmogorov consistency conditions,
absolute commutativity with respect to the state ρ̃i guarantees classical statistics and, in
contrast to the much stronger standard commutativity condition, does not necessarily
imply Kolmogorov consistency independent of the sequentially measured system states,
making it a more relevant consideration for the envisaged scenario.

Regarding this connection between commutativity and classicality, two remarks are in
order. On the one hand, if ρ̃i is full rank, then it is easy to see that

tr
[
ρ̃i(mi−1:1)

∣∣∣[K(mi)
i , Qi(mn:i+1)]

∣∣∣] = 0 (4.29)

implies [K(mi)
i , Qi(mn:i+1)] = 0, thus equating the assumption of absolute commutativity

with respect to ρ̃i to the (rather strong) assumption of standard commutativity. However
the states ρ̃i do not necessarily have to be full rank. This holds true, for example, for
the case of pure projective measurements in a fixed basis on a qutrit and intermediate
dynamics that only map to the (lower dimensional) space that is spanned by {|0〉, |1〉}. In
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turn, this makes the assumption of Theorem 4.2 strictly weaker than full commutativity,
while still being strictly stronger than commutativity with respect to ρ̃i [i.e., satisfaction
of Eq. (4.22)], which, as we have seen, is not sufficient to guarantee classical statistics.

On the other hand, the states ρ̃i at time ti are the result of a state preparation at
the initial time, followed by a sequence of measurements and intermediate dynamics.
Assuming that a full basis of initial states can be prepared (as is assumed in the two-
time scenario envisioned by Lüders), then it is—in principle—possible that, for each
sequence of outcomes, the corresponding states ρ̃i also span a basis at each time ti.
In this case, satisfaction of Kolmogorov conditions at ti would exactly coincide with
K†i [Qi(mn:i+1)] = Qi(mn:i+1) [see Eq. (4.19)] and, following the same reasoning that led
to Lüders’ Theorem 4.1, we would be able to recover the equivalence between classical
statistics and the vanishing of the commutators [K(mi)

i , Qi(mn:i+1)] = 0. In this sense, it
might seem artificial to investigate the case where states at each time do not span a full
basis, which, as we will see, leads to a more layered relationship between commutativity and
classicality. However, this latter case exactly mirrors many physically relevant scenarios
(like, e.g., the case of sequential projective measurements).

This inequivalence between commutation relations and classicality naturally raises
the question: What further assumptions, in addition to classicality of statistics, must be
satisfied in order to ensure commutation relations of the relevant operators?

4.3.3 Commutativity as a Notion of Classicality: When is Kolmogorov
Consistency Sufficient for Lüders-Type Theorems?

In this section we investigate under which conditions satisfaction of Kolmogorov
consistency implies the vanishing of pertinent commutator expressions. Unlike the previous
sections, here—just like in the scenario considered by Lüders—we have to restrict the
Kraus operators of the probing instruments to be Hermitian in order to establish a clear
connection between Kolmogorov consistency and vanishing commutators.

As mentioned previously, a key element that makes the multi-time setting substantially
different to the two-time one is that one is no longer guaranteed a full basis of quantum
states at each time. Nonetheless, below we outline a condition that ensures that the set
of possible states at each time (conditioned on previous outcome sequences) essentially
forms a basis with respect to any subsequent measurements (additionally accounting for
the intermediate dynamics). Analogously to the case considered by Lüders, our argument
requires Hermiticity of the measurement Kraus operators; we leave the analysis of sufficient
conditions regarding more general measurements in this setting for future work. The
conditions that we detail below consequently ensures a connection between Kolmogorov
consistency and commutativity in the multi-time setting (for Hermitian Kraus operators).
Importantly, just like in the case of Lüders, under the additional assumptions we make,
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commutativity and classicality are equivalent.
To establish the connection between Kolmogorov consistency and commutation rela-

tions, consider the set of possible pre-measurement states at some time (say, ti) of interest.
As mentioned, we can follow a Lüders type argument, if these states form a basis with
respect to the post-measurement operators Qi. Formally, we can express this by letting S
be a set of initial states ρ and Hi be the span of the union of the images of all possible
pre-measurement sequences up until time ti:

Hi := span
⋃

mi−1:1

∑
`2...`i

R
(`i,mi−1)
i:i−1 · · ·R(`2,m1)

2:1 SR
(`2,m1)†
2:1 · · ·R(`i,mi−1)†

i:i−1 , (4.30)

for i > 2, i.e., Hi is the span of all attainable states ρ̃i(mi−1:1) at time ti. Furthermore,
we take the union of all possible projections for the post-measurement operators to define:

Fi := span
⋃

mn:i−1

{
Pµ : Qi(mn:i−1) =

∑
µ

λµPµ

}
, (4.31)

where, for technical reasons, we will assume non-degeneracy of Qi (see the proof of
Theorem 4.3). Demanding that the pre-measurement states form a basis with respect to
the post-measurement operators now amounts to the requirement Fi ⊆ Hi. As it turns out,
together with the satisfaction of Kolmogorov consistency, this implies that tr[PµK†i [Qi]] =
tr[PµQi]∀µ, which suffices to prove that the pertinent commutation relations hold (under
the assumption that all Kraus operators pertaining to the measurement map K† are
Hermitian):

Theorem 4.3. Let P(mn, . . . ,m1|Jn, . . . ,J1) be a joint probability obtained from Eq. (4.13),
i.e., by probing a Markovian process. Assume that P(mn, . . . ,m1|Jn, . . . ,J1) satisfies the
Kolmogorov consistency conditions [given explicitly in Eq. (4.20)] for all initial state ρ in
S and for every measurement time ti and that Qi(mn:i+1) is non-degenerate for all mn:i+1.
If all Kraus operators K(mi)

i are Hermitian for all mi and

Fi ⊆ Hi , (4.32)

then the commutation relations hold, i.e.,

[K(mi)
i , Qi(mn:i+1)] = 0 (4.33)

for all post-measurement sequences mn:i+1 and all mi.

Before providing the proof of Theorem 4.3, we emphasise that the converse trivially
holds (even without any assumptions), since commutativity [i.e., Eq. (4.33)] directly
implies the satisfaction of Kolmogorov consistency.

Proof. From the assumption Eq. (4.32), one can see that for a given post-measurement
sequence mn:i+1 and for any pre-measurement sequence mi−1:1, there exists an initial
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state ρ in S leading to ρ̃i(mi−1:1) = Pµ for any Pµ defined via Qi(mn:i−1) = ∑
µ λµPµ. In

other words, Kolmogorov consistency in the form of Eq. (4.19) leads to tr[PµK†i [Qi]] =
tr[PµQi]∀µ.

Now, using the same arguments as those of the proof of Theorem 4.1, one sees that
tr[PµK†i [Qi]] = tr[PµQi] for µ = 1 leads to∑

m

〈
K

(mi)
i ϕ1 (λ11−Qi)K(mi)

i ϕ1
〉

=
∑
m

‖ (λ11−Qi)1/2K
(mi)
i |ϕ1〉‖2 = 0 , (4.34)

where we set P1 =: |ϕ1〉〈ϕ1| and made use of the fact that λ11−Qi > 0. In other words,
(λ11−Qi)1/2K

(mi)
i P1 = 0 or

QiK
(mi)
i P1|ϕ〉 = λ1K

(mi)P1|ϕ〉 (4.35)

for arbitrary states |ϕ〉, i.e., K(mi)
i leaves the λ1−eigensubspace invariant. Thus, due to

non-degeneracy of Qi, we have K(mi)
i P1 = P1K

(mi)
i P1 and assuming that the K(mi)

i are
Hermitian, we observe that [K(mi)

i , P1] = 0. Again, we set Q(µ)
i = Q

(µ−1)
i − λµ−1Pµ−1 and

Q
(0)
i = Qi. Since [K(mi)

i , P1] = 0, the expression tr[P2K†i [Qi]] = tr[P2Qi] can be reduced to
tr[P2K†i [Q

(2)
i ]] = tr[P2Q

(2)
i ] and then it follows that [K(mi)

i , P2] = 0 (by invoking the same
previous argument but replacing Qi and P1 with Q(2)

i and P2, respectively). Iterating this
argument—as in the proof of Theorem 4.1—we obtain that K(mi)

i Pµ = PµK
(mi)
i Pµ for all

m and µ, i.e., K(mi)
i leaves all eigensubspaces of Q invariant. Then [K(mi)

i , Qi(mn:i+1)] = 0
for all post-measurement sequences mn:i+1 and all mi as claimed.

We emphasise that—as in the case of Lüders’ theorem—this logic can fail to hold if the
K

(mi)
i are not Hermitian (as can already be explicitly seen by considering Example 4.1).
For illustration of the above theorem, let us consider the following example.

Example 4.4. Recall the scenario of Example 4.2. We modify it to be a three step process
with measurements in the σz-basis at the first and third time, while at the second time, a
measurement in the σx-bais is carried out. In addition, let the dynamics between the first
and the second measurement, as well as between the second and the third measurement
be given by a Hadamard gate H, with H|0/1〉 = |±〉 and |±〉 = 1√

2(|0〉 ± |1〉).
We focus on time t2 as the measurement time of interest (i.e., the time for which

we analyse Kolmogorov consistency). For an arbitrary initial state ρ, the measurement
at t1 leads to the set of possible post-measurement states ρ̃1 ∈ {|0〉〈0|, |1〉〈1|}, where
we omit potential subnormalisation. These states will then evolve to H[ρ̃1]H = ρ̃2 ∈
{|+〉〈+|, |−〉〈−|}. Thus, at time t2, we have H2 = span{|+〉〈+|, |−〉〈−|}.

Since a measurement in the σz-basis is performed at t3, the post-measurement part
at t2 amounts to the corresponding projectors, “rolled back” by means of the evolution
Λ†3:2[•] = H[•]H, i.e., we have Q2(0/1) ∈ {|+〉〈+|, |−〉〈−|}. With this, we observe that

F2 = H2 (4.36)
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and thus the condition of Eq. (4.32) holds. Likewise, for the measurement K(±)
2 , the

Kolmogorov consistency condition reads

tr
[
ρ̃2

(∑
m

K
(m)†
2 [K(m)

2 , Q2(0/1)]
)]

= 0. (4.37)

where m ∈ {+,−}. We can calculate the commutativity expression of Eq. (4.33) explicitly:

[K(±)
2 , Q2(0/1)] = [|±〉〈±|, |±〉〈±|] = 0. (4.38)

�

The inclusion property of Eq. (4.32) is a rather strong requirement, which—as we have
seen in Example 4.4—can be checked for and satisfied in particular cases. However, it
can fail to hold for many experimentally relevant situations that yield classical statistics
(like, e.g., measurements in a fixed basis, see Example 4.6 below). Additionally, one would
ideally like to deduce similar conditions that apply to arbitrary (e.g., non-Hermitian)
measurements at the expense of potentially weakening the vanishing commutator expres-
sion; so far, such results have proved elusive. As a consequence, in the multi-time setting,
the relation between observed classicality and the commutation of pertinent operators
presents itself much more layered than in the two-time case considered by Lüders, and
must seemingly be decided on a case-by-case basis.

We now finish our discussion of Markovian classical multi-time processes by discussing
why, even though the underlying process is memoryless, it is, in general, indeed necessary
to consider the full history (future) of outcomes mi−1:1 (mn:i+1) at each time ti, and
not just the preceding (subsequent) ones mi−1 (mi+1). The latter (i.e., only considering
outcomes at ti−1 and ti+1 for each time ti) can be done for the special case of projective
pure measurements in a fixed basis, which leads to an equivalent formulation of classicality
in terms of non-coherence-generating-and-detecting maps. However, as we will see in the
following section, a direct connection between such dynamics to pertinent commutation
relations is generally not direct.

4.3.4 Markovian Processes & Non-Coherence-Generating-and-Detecting
(NCGD) Dynamics

Up to this point, we have investigated the conditions under which Kolmogorov consist-
ency of observed statistics and the vanishing of pertinent commutator expressions—i.e.,
structural properties pertaining to the dynamics and measurement scheme—are related in
the multi-time setting. Crucially, we see that Kolmogorov consistency concerns a deep
interplay between the choice (and assumptions) of measurements and the underlying
dynamics that depends on entire sequences of measurement outcomes.

On the other hand, for the Markovian case we consider, recent work has demonstrated
a one-to-one connection between Kolmogorov consistency and the (in)ability for pairs of
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neighbouring dynamical maps Λi:i−1 (describing the open evolution of Markovian process) to
generate and detect coherence with respect to a fixed basis determined by the measurement
scheme [170, 269, 340, 341]. Specifically, these works showed equivalence between classical
statistics and the set of so-called Non-Coherence-Generating-and-Detecting (NCGD)
dynamics, i.e., maps that can create coherences, but those coherences cannot be “detected”
by the subsequent dynamics [see below Eq. (4.42) for a proper definition]. While this
criterion can be phrased entirely in terms of dynamical maps pertaining to neighbouring
times, our work has required the consideration of entire measurement sequences of past
mi−1:1 and future mn:i+1 outcomes in general, instead of simply adjacent ones.

At the outset, this necessity seems to be overkill, since, intuitively, the statistics
measured at each time of a Markovian process should only depend upon the most recent
outcome, and not on the entire history. We now return to elucidate why, even though the
underlying dynamics that we study are assumed to be Markovian, one must indeed consider
commutator expressions of the relevant operators corresponding to entire sequences. The
important subtlety to note here is that general quantum measurements do not break
the flow of information through the measured system, and thus even though there is no
non-Markovian memory (travelling through an environment), the observed statistics can
still be correlated over multiple times. Put differently, after a general measurement, the
state of the measured system is unknown, and might depend on earlier measurements,
even though the underlying process itself does not exhibit any non-Markovian memory.

Importantly, this point is not critically related to any inherently “quantum” notion
regarding the measurement (such as being a POVM comprising non-projective, non-
Hermitian, or non-orthogonal elements), but can occur for any measurement for which
an outcome does not fully determine the post-measurement state of the system. This
can happen in classical physics for “fuzzy” measurements that coarse grain over different
levels [131], and is generally the case for measurements in quantum mechanics described by
CP maps that do not necessarily break the information flow through the system. For such
measurements, the far past can still have an influence on the future [106, 128–132]. As a
result, measurement invasiveness might not be detected at the next step, but possibly only
further in the future, and any conditions pertaining to neighbouring dynamical maps alone
are insufficient to characterise classicality. To see this explicitly, consider the following
example, which concerns noisy (i.e., not rank 1) orthogonal measurements:

Example 4.5. Let ρ be the state of a four level system that is measured at times
{t1, t2, t3} by means of projective—but not rank-1—measurements, i.e., Ji = {K(1)

i =
Π(12), K

(2)
i = Π(34)}, where Π(xy) is the projector on the space spanned by {|x〉, |y〉}, with

x, y ∈ {1, 2, 3, 4}. Now, let the dynamics in between measurements be given by the Kraus
operators {L(1)

2:1 = |1〉〈1|+ |2〉〈4|, L(2)
2:1 = |2〉〈2|+ |4〉〈3|} and {L(1)

3:2 = 1√
2(|3〉〈1|+ |3〉〈2|), L(2)

3:2 =
1
2(|1〉〈1| − |1〉〈2| − |2〉〈1| + |2〉〈2|) + |3〉〈3| + |4〉〈4|}, respectively. These choices of Kraus
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operators correspond to CPTP maps, since ∑`i+1 L
(`i+1)†
i+1:i L

(`i+1)
i+1:i = 1 for i ∈ {1, 2}. It is

easy to see that in this case, the statistics of the measurement at t2 is independent of
whether or not the measurement at t1 was performed. Overall, the measurement at t1
reduces the initial state ρ to a block diagonal structure; however, the statistics at t2 only
depend on the diagonal terms of ρ, such that the invasiveness of the first measurement is
not detected. Specifically, we have

P(m2 = 1, ∅) = ρ11 + ρ22 + ρ44 =
∑
m1

P(m2 = 1,m1) ,

P(m2 = 2, ∅) = ρ33 =
∑
m1

P(m2 = 2,m1) . (4.39)

As a result, the two-time statistics do not reveal the non-classicality of the observed
statistics, despite the dynamics being Markovian. However, the invasiveness of the first
measurement can be observed via the measurement at time t3. Concretely, the dynamics
between t2 and t3 is such that it maps off-diagonal terms to diagonal ones, and thus the
joint probability to measure m2 = 1 and m3 = 1 at times t2 and t3 (with no measurement
at t1), respectively, is given by

P(m3 = 1,m2 = 1, ∅) = 1
2 (ρ11 − 2Re(ρ14) + ρ22 + ρ44) . (4.40)

Since the above probability depends on the entry ρ14 of the initial state ρ, it cannot coincide
with the corresponding probability for the case where a measurement was performed at
t1. As mentioned, the overall action of the measurement at t1 is to force ρ into a block-
diagonal structure, implying in particular ρ14 7→ 0 if a measurement at t1 is performed.
Consequently, we have∑

m1

P(m3 = 1,m2 = 1,m1) = 1
2(ρ11 + ρ22 + ρ44) 6= P(m3 = 1,m2 = 1, ∅) . (4.41)

Accordingly, for the case of general instruments, one indeed must consider the full past
and full future statistics for the relevant commutation relations in order to characterise
classicality. �

In the example above, we see that the invasiveness of the first measurement “skips”
a time, i.e., it is not detected at time t2 but rather only by the measurement at time
t3. Such “skipping” of detectability is not limited to measurement invasiveness and has
recently been analysed with respect to the activation of hidden quantum memory [344].

Such behaviour highlights the intricacies involved when considering quantum processes
probed sequentially at multiple times by general instruments. However, for particular
types of measurements, the flow of information through the system is broken, and one
can therefore connect classicality to structural properties of the underlying dynamical
maps between only adjacent times. This is, for example, the case if all measurements are
rank-1 projective measurements in a fixed basis. Then, it is easy to see that ρ̃i(mi−1:1) ∝
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Λi:i−1[|mi−1〉〈mi−1|] and Qi(mn:i+1) ∝ Λ†i+1:i[|mi+1〉〈mi+1|], where Λ†i+1:i[•] = ∑
`i+1 L

(`i+1)†
i+1:i •

L
(`i+1)
i+1:i . With this, Eq. (4.19) reduces to

〈mi+1|Λi+1:i ◦∆i ◦ Λi:i−1[|mi−1〉〈mi−1|]|mi+1〉

= 〈mi+1|Λi+1:i ◦ Λi:i−1[|mi−1〉〈mi−1|]|mi+1〉 (4.42)

for all ti and all {mi−1,mi+1}, where ∆i[ρ] := ∑
mi 〈mi|ρ|mi〉 |mi〉〈mi| is the completely

dephasing map at time ti. Notably, Eq. (4.42) rephrases satisfaction of the Kolmogorov
consistency conditions in terms of the properties of adjacent dynamical maps {Λi+1:i,Λi:i−1}
only, thus allowing for a full characterisation of Markovian dynamics that yield classical
statistics when probed in a fixed basis, as is provided in Ref. [170]. However, this is
only possible since for rank-1 projective measurements, the state of the system after
measurement is known (up to normalisation). Any measurement with this property
breaks the information flow through the system, in the sense that, upon observing a given
outcome, the future outcome statistics of a Markovian process cannot depend on any
previous outcomes, since the state of the system has been completely reset [128, 129, 344].
This, in turn, is what allows one to characterise the classicality of Markovian processes in
terms of neighbouring dynamical maps only, as per Eq. (4.42). The above example shows
why, in the case of general measurements, one must consider operators corresponding to
the entire future and history when discussing classicality, even for Markovian processes,
as we have done throughout this article.

Finally, given that for the special case of (rank-1) projective measurements, NCGD
dynamics provides a necessary and sufficient condition for the classicality of the observed
statistics, and all Kraus operators of the measurements are Hermitian, one might expect
that Lüders-type assertions can be made with respect to commutation relations of pertinent
operators (like those of Theorems 4.2 and 4.3). However, this is not the case, as the
following example demonstrates:

Example 4.6. Consider a three step qubit process on times {t1, t2, t3} with measurements
in the computational basis and intermediate dynamics given by the CPTP maps

Λ2:1[ • ] = 1
2

 1 1

i −i

 •
 1 −i

1 i



and Λ3:2[ • ] = 1
2

 1 1

1 −1

 •
 1 1

1 −1

 , (4.43)

i.e., a rotation from the computational basis to the eigenbasis of σy between t1 and t2,
followed by a Hadamard gate between t2 and t3. It is easy to see that, for measurements
in the computational basis

〈m3|Λ3:2 ◦∆2 ◦ Λ2:1[|m1〉〈m1|]|m3〉 = 〈m3|Λ3:2 ◦ Λ2:1[|m1〉〈m1|]|m3〉 = 1
2

(4.44)
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for all m1,m3 ∈ {0, 1}, and thus the dynamics is NCGD [since it satisfies Eq. (4.42)].
However, it neither satisfies the inclusion property (4.32) of Theorem 4.3, nor any of the
commutation relations we have discussed throughout this article. With respect to the
former, it is easy to see thatH2 = span{|+i〉〈+i|, |−i〉〈−i|} and F2 = span{|+〉〈+|, |−〉〈−|}
holds, where |±i〉 = 1/

√
2(|0〉±i|1〉). Since these are the spaces spanned by the eigenvectors

of σy and σx, respectively, neither of them is included within the other.
With respect to commutation relations, as mentioned above, we have ρ̃2(m1) ∝

Λ2:1[|m1〉〈m1|] and Q2(m3) = Λ†3:2[|m3〉〈m3|], which implies (up to normalisation)

ρ̃2(0/1) = 1
2(|0〉 ± i|1〉)(〈0| ∓ i〈1|) =: |i±〉〈i± | ,

Q2(0/1) = 1
2(|0〉 ± |1〉)(|0〉 ± |1〉) =: |±〉〈±| . (4.45)

Together with K(m2)
2 = |m2〉〈m2|, we then obtain, for example,

[K(0)
2 , Q2(0)] = 1

2(|0〉〈+| − |+〉〈0|) 6= 0 , (4.46)

i.e., commutativity à la Lüders (and Theorem 4.3) does not hold. Furthermore, as a
consequence of Eq. (4.46), we have |[K(m2)

2 , Q2(m3)]| ∝ 1, such that

tr
[
ρ̃2(m1)|[K(m2)

2 , Q2(m3)]|
]

= tr[ρ̃2(m1)] 6= 0 . (4.47)

Thus, for this example, neither commutativity nor absolute commutativity with respect
to ρ̃2 hold, and no inclusion property of the relevant spaces is satisfied. �

Overall, we thus see that, even for the simple case of Markovian dynamics and projective
measurements—where necessary and sufficient conditions for classicality are known in
terms of NCGD dynamics—no commutation relations between the relevant operators are
implied, at least none of the ones discussed in this paper.

4.4 Discussion and Conclusion

Throughout this article, we have analysed the connection between classicality and
commutativity for Markovian processes probed at multiple points in time. In the two-time
setting, it is straight forward to identify the pertinent operators whose commutativity
should be assessed. Using the the availability of a full basis of input states, one can
then proof an equivalence between commutativity and non-invasiveness, providing a
connection between operational and structural notions of classicality. In the multi-time
setting, Kolmogorov consistency conditions provide an operationally meaningful notion of
classicality; however, it is, a priori, unclear what the relevant operators are to check for
commutativity. Here, we have identified the relevant operators, and our work can be seen
as a multi-time extension of Lüders’ theorem. As discussed, many crucial assumptions of
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Lüders’ theorem immediately break down (or become too restrictive) in the multi-time
setting, e.g., the guarantee of a full basis of system states at each time. Nonetheless, we
have detailed the relevant operators and commutator expressions that imply a connection
between operational and structural notions of classicality, putting these distinct notions
on a comparable mathematical footing. We have thus overcome a number of complications
that arise naturally in physically meaningful scenarios, including probing open system
dynamics over multiple times with general quantum measurements.

In particular, in Section 4.3.2, we first exemplified how Kolmogorov consistency does
not guarantee the vanishing of the analogous commutator expression to the one Lüders
originally considered, and subsequently derived a novel relevant “absolute” commutator
expression that indeed implies that satisfaction of Kolmogorov consistency conditions (see
Theorem 4.2). Following this, in Section 4.3.3, we derived additional assumptions such that
Kolmogorov consistency implies commutativity (see Theorem 4.3). Lastly, in Section 4.3.4,
we connected our results with existing literature to demonstrate the connection between
commutativity, classicality, and the ability of the dynamics to generate and detect
coherence with respect to sharp measurements in a fixed (but otherwise arbitrary) basis.

Our results provide a connection between commutation relations and the classicality
of the observed statistics. However, the absence of necessary and sufficient conditions,
highlighted via the examples of processes that satisfy none, or just some, of the commutator
relations we identified demonstrate that in the multi-time case, a direct connection between
mathematical and operational notions of classicality is far more elusive than in the two-
time case (even in the simplest case of projective measurements in a fixed basis). Looking
forward, our work opens the door to a number of interesting avenues for exploration.
Following our general exposition regarding the structural implications of operational
classicality, it would firstly be interesting to identify necessary and sufficient conditions
for the classicality of observed statistics. While this is a daunting task in general,
starting from our considerations, such results might be readily derivable for dynamics
that are particularly relevant to certain physical situations: Just as NCGD dynamics
equates structural properties to Kolmogorov consistency, we expect it to be possible
to derive similarly strong correspondences between particular types of dynamics (e.g.,
dephasing, depolarising, thermalising, etc.) and the classicality of statistics observed for
certain types of instruments (e.g., measure-and-prepare, unital instruments, etc.). Since
Kolmogorov consistency ensures the existence of an underlying classical stochastic process
that reproduces the statistics correctly, this would in turn shed light on the types of
noise that can be effectively replaced by classical environments [345], which would have
profound impact on the fields of optimal quantum control, reservoir engineering, and the
simulation of complex open dynamics.
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CHAPTER 5
Hidden Quantum Memory:

Is Memory There When
Somebody Looks?

Philip Taranto and Simon Milz

Abstract. In classical physics, memoryless processes and Markovian statistics are one and
the same. This is not true for quantum processes, first and foremost due to the fact that
quantum measurements are invasive. Independently of measurement invasiveness, here we
derive a novel distinction between classical and quantum processes, namely the possibility
of hidden quantum memory. While Markovian statistics of classical processes can always
be reproduced by a memoryless dynamics, our main result establishes that this is not the
case in quantum mechanics: We first provide an example of quantum non-Markovianity
that depends on whether or not a previous measurement is performed—a phenomenon that
is impossible for memoryless processes; we then strengthen this result by demonstrating
statistics that are Markovian independent of how they are probed, but are are nonetheless
still incompatible with memoryless quantum dynamics. Thus, we establish the existence of
Markovian statistics that fundamentally require quantum memory for their creation.
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arXiv:2204.08298
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5.1 Introduction

Our ability to understand and control memory effects in the evolution of open quantum
systems is becoming increasingly important as technology allows us to manipulate inter-
actions with increasing levels of speed, precision and complexity [50, 51]. Control over
memory can be advantageous in various tasks, such as the creation, manipulation and pre-
servation of coherences and correlations [69, 110], reservoir engineering to simulate complex
dynamics [74, 77, 79, 111, 112, 114–119, 346], sophisticated randomised benchmarking
and quantum error correction [120–122], optimal dynamical decoupling [68, 123, 347],
designing quantum circuit architectures [125–127, 133–136], and improving the efficiency
of thermodynamic machines [73, 75, 207].

One has no choice but to account for complex noise and memory effects when modelling
realistic dynamical systems, as no system is truly isolated; in general, the environment
stores information about the past and perpetuates it in time, leading to memory effects
that manifest themselves as complex multi-time correlations [106–109, 140]. A special
case of open dynamics are memoryless processes, for which the environment retains no
memory of previous interactions with the system.

Memoryless dynamics have been studied extensively due to their accuracy in many
practically relevant situations and their exponentially reduced complexity from the general
scenario. Both in the classical and quantum setting, such efficient descriptions arise by
way of (time-local) master equations that efficiently simulate the system dynamics [281,
282, 348]; in practice, the assumption of memorylessness is often made for simplicity and
describes many “real-world” scenarios with high accuracy [65, 66, 272, 279].

However, experimentally determining that a quantum process is indeed memoryless re-
quires full process tomography, which necessitates a myriad of complex sequential measure-
ments and has consequently only been done for low-dimensional cases [133, 134, 136, 349].
A more experimentally tractable situation is the sequential probing of a fixed observable
via sharp, projective measurements. In this case, memoryless quantum processes—just
like their classical counterparts—lead to Markovian statistics, i.e., statistics where the
future is conditionally independent of the past. Thus, at first glance, memorylessness
seems to manifest on the experimental level in the same way for both classical and
quantum processes. However, this is not the case; for one, quantum measurements are
generally invasive, leading to inconsistent statistics [146] and the violation of Leggett-Garg
type inequalities [147–149]. Moreover—independent of measurement invasiveness—as
we demonstrate in this Letter, quantum processes can yield Markovian statistics that
fundamentally require memory for their creation.

More concretely, in classical physics, any Markovian statistics can be described by
a memoryless dynamical model (i.e., as emerging from a set of independent stochastic
matrices). In the quantum case, measurements in a fixed basis are not tomographically
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complete; consequently, the existence of processes with memory that nonetheless lead
to Markovian statistics when probed in said basis is not surprising per se and has been
demonstrated [130–132]. This phenomenon notwithstanding, for any experiment that
yields Markovian statistics, it is reasonable to believe that there always exists some
memoryless quantum process that faithfully reproduces the observed statistics. Such a
description is known as the Quantum Regression Formula (QRF) [272, 279, 350] and is a
widely used assumption that links operational quantities—namely, recorded statistics—to
dynamical ones—namely, a model of the underlying process.

Here, we ask the question: Can Markovian statistics always be faithfully reproduced
by a memoryless dynamical model? In other words, can the QRF always be employed
to describe Markovian statistics? Our main result, perhaps surprisingly, answers this in
the negative. Since this is not possible in classical physics, we thus uncover a new type
of genuinely quantum phenomenon: Hidden quantum memory. This observation makes
quantum memory an emergent phenomenon: Observing Markovianity with respect to
a fixed measurement basis is not sufficient to guarantee the existence of a memoryless
dynamical descriptor. Such hidden quantum memory is similar in spirit to other quantum
traits that require precisely the resource in their implementation that they ultimately hide,
such as quantum channels that preserve all separable states but cannot be implemented
via local operations and classical communication [167, 181, 182], non-signalling maps that
require signalling [183], and maximally incoherent operations that necessitate coherent
resources [184–186], to name but a few. We begin by outlining the envisaged setup before
detailing key properties of memoryless processes (both classical and quantum).

5.2 Framework

In any experimental scheme concerning temporal processes, an experimenter probes
a system of interest at (any subset of) times Tn := {t1, . . . , tn} (with tn > · · · > t1)
and records the corresponding probability distributions {P(xΓ)}, where Γ ⊆ T and
xΓ := {xj|tj ∈ Γ} (see Fig. 5.1). These capture, for instance, the probability that x1 is
observed at time t1 and x2 at t2, and so on, with all possible combinations of measurement
times. Note that the experimenter can also not make a measurement at any intermediate
time, e.g., P(x3, x1).

Independent of the physical scenario—it could be classical, quantum, or even post-
quantum—one can define the concept of Markovianity based on the observed statistics
alone, as conditional independence of any current outcome from all but the most recent.
Concretely, we have the following working definition:
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Figure 5.1: Probing a Process. By probing a process—for example Brownian motion, or the evolution
of a spin degree of freedom—sequentially (here, at times T4 = {t1, t2, t3, t4}, an experimenter can deduce
the probability distribution P(x4, x3, x2, x1). In the classical case, this also includes all “contained”
distributions, for example P(x4, x2, x1) via marginalisation [see Eq. (5.4)]. In the quantum case, due
to invasiveness, deducing said distributions would require a new experiment where no measurement is
performed at t3 (depicted by the shaded box).

Definition 5.1. A Markovian statistics on a set of times Tn is a collection of conditional
probability distributions {P(xj|xj−1, . . . , x1)}tj∈Tn for which

P(xj|xj−1, . . . , x1) = P(xj|xj−1) (5.1)

for all tj ∈ Tn.

Defined as such, the question of Markovianity is, a priori, theory-independent and
concerns only the observed statistics. As we shall see, though, the concept of conditional
probabilities is a subtle issue that depends on the envisaged scenario. Throughout this
Letter, we distinguish Markovianity from the notion of memoryless processes which
corresponds to the memory properties of the underlying dynamics that engenders the
observed statistics, making the latter a theory-dependent concept.

Specifically, the question of memorylessness concerns whether, in the evolution of a
system that is coupled to some inaccessible environment, said environment perpetuates
past information about the system forward in time or irretrievably dissipates it. The
description of such open evolution differs across physical theories: In the classical setting,
the most general state transformations are stochastic matrices, whereas in the quantum
realm, these are quantum channels. Probability distributions arising from interrogating
either classical or quantum processes therefore have different properties since they are
calculated via different rules. Our main result shows that this distinction holds for
the relationship between Markovianity and memorylessness: Although equivalent in the
classical case, in the quantum realm the observation of Markovian statistics does not
guarantee even the existence of a memoryless dynamics that engenders them.
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5.3 Classical Processes

We begin with a discussion of memoryless classical processes:

Definition 5.2. A memoryless classical process on Tn is a set of mutually independent
stochastic matrices {Sj:j−1}j=2,...,n and an initial state (i.e., probability vector) p1 such
that the probability distribution over any sequence of outcomes x1, . . . , xn is given by

P(xn, . . . , x1) = 〈xn|Sn:n−1|xn−1〉〈xn−1| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1, (5.2)

where |xj〉〈xj| are projectors corresponding to measurement outcomes xj.

Although in classical physics the environment plays a role in dictating the state
transitions between any times tj−1 and tj—namely via the stochastic matrices Sj:j−1,
which are matrices with non-negative elements whose columns sum to unity—inmemoryless
processes, the environment does not perpetuate information, i.e., the stochastic matrices in
Eq. (5.2) are mutually independent. On the other hand, Markovianity (see Definition 5.1)
concerns only the observed statistics [l.h.s. of Eq. (5.2)]. In classical physics, we can make
the following simple observation (see Appendix D.1):

Observation 1. In the classical setting, memoryless processes are equivalent to Markovian
statistics.

Specifically, this equivalence is given by setting 〈xj|Sj:j−1|xj−1〉 = P(xj|xj−1), and it
follows from Eq. (5.2) that for any Markovian statistics/memoryless classical process we
have

P(xn, . . . , x1) = P(xn|xn−1)P(xn−1|xn−2) . . . P(x2|x1)P(x1). (5.3)

In one direction, Observation 1 states that for any memoryless process, the observed
statistics are Markovian—this is also true in the quantum setting (see below). Conversely,
if one records Markovian statistics, then one can always construct a unique, memoryless
process that faithfully reproduces them—as we will see, this is not true for statistics
gathered from quantum processes.

A major distinction between classical and quantum processes (memoryless or not)
is that in the classical realm, the single n-time probability distribution P(xn, . . . , x1)
contains the entire set of statistics on all subsets of times Γ ⊆ Tn. That is, the probability
P(xΓ, IΓ) to observe a sequence of outcomes xΓ when probing the process at times Γ
and not measuring (denoted by the “do-nothing instrument” IΓ) at the remaining times
Γ := Tn \ Γ can be deduced via marginalisation

P(xΓ, IΓ) =
∑
xΓ

P(xn, . . . , x1), (5.4)

154



Chapter 5

This non-invasiveness of measurements in classical physics underlies Observation 1 and
similarly fails to hold in quantum mechanics. As a direct consequence of measurement
non-invasiveness, the properties of a memoryless classical process on Tn translate to all
“sub-processes” that are probed only at times Γ ⊆ Tn (see Appendix D.1):

Corollary 5.1. All sub-statistics of a memoryless classical process are Markovian and
the corresponding conditional probabilities are mutually compatible.

By compatible, we mean that all conditional probabilities are independent of how they
are obtained, i.e.,

P(xj,xΓ(i))
P(xΓ(i))

= P(xj,xΓ(i)′)
P(xΓ(i)′)

=: P(xj|xi), (5.5)

for all tj, ti ∈ Tn (with tj > ti) and all subsets Γ(i),Γ(i)′ ⊆ Tn that contain ti as their
largest time; for a classical memoryless process, knowledge of any outcome xi suffices
to erase all historic information (including whether or not a previous measurement was
made) and is therefore the only relevant parameter for predicting future outcomes. Such
compatibility between Markovian sub-statistics of a memoryless quantum process also
holds, although it is less obvious, and we will later employ the breakdown of compatibility
as a witness for memory.

5.4 Quantum Processes

In contrast to classical physics, in quantum mechanics, measurements are generally
invasive such that there is a difference between averaging over outcomes and not performing
a measurement. This makes (conditional) probabilities protocol-dependent entities that
require specification; in what follows, whenever we consider a probability distribution
P(xΓ) (or corresponding conditional probabilities), we always mean the statistics obtained
from only performing measurements at times in the set Γ ⊆ Tn, and doing nothing (denoted
by IΓ at the remaining times Γ = Tn \Γ. Importantly, in quantum mechanics—in contrast
to Eq. (5.4)—generally P(xΓ) := P(xΓ, IΓ) 6= ∑

xΓ
P(xn, . . . , x1). Such measurement

invasiveness is well-studied and has recently been used as a witness for the non-classicality
of an underlying process [146, 170, 340, 341]. Despite these added subtleties in the
definition of (conditional) probabilities, memoryless quantum processes lead—just like in
the classical case—to well-defined, compatible Markovian statistics and sub-statistics. To
see this, let us first provide the generalisation of Definition 5.2 to the quantum case:

Definition 5.3. A memoryless quantum process on Tn is a set of mutually independent
Completely Positive and Trace Preserving (CPTP) maps {Λj:j−1}j=2,...,n and an initial
state (density operator) ρ1 such that the probability distribution over any sequence of
outcomes x1, . . . , xn is given by

P(xn, . . . , x1) = tr
[
P(xn)
n Λn:n−1 . . .Λ2:1P(x1)

1 [ρ1]
]
, (5.6)
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where P(xj)
j [ • ] := |xj〉〈xj|•|xj〉〈xj| are maps corresponding to sharp (i.e., rank-1) projective

measurements.

Analogous to the classical case, CPTP maps are the most general state transformations
in the presence of noise, and the absence of memory corresponds to the mutual independ-
ence of the maps Λj:j−1 in the definition. The above equation to compute probabilities is
commonly known as the Quantum Regression Formula (QRF) [272, 279, 350]. Importantly,
it allows for the computation of sub-statistics on any Γ ⊆ Tn, not via marginalisation, but
by replacing the projection operators corresponding to times in Γ in Eq. (5.6) by identity
maps. Of course, one need not perform projective measurements, and the above formula
can be used to calculate the probability distribution over any sequence of outcomes for
arbitrary instruments. In contrast to classical measurements, such general quantum meas-
urements do not necessarily reset the state of the system, which means that memoryless
quantum processes can lead to non-Markovian statistics for general instruments [128–131].
However, when restricted to sharp, projective measurements, then—just as in the classical
setting—memorylessness in the quantum realm manifests itself on the observational level
as Markovianity (see Appendix D.2):

Lemma 5.1. Any memoryless quantum process leads to Markovian statistics (for sharp,
projective measurements).

We saw that memoryless classical processes also lead to (compatible) Markovian
sub-statistics (see Corollary 5.1), where compatibility is given by Eq. (5.5). This is also
true for memoryless quantum processes, with the important difference that sub-statistics
are not obtained by marginalisation, but by “doing nothing” at the excessive times, i.e.,
performing the experiment in a different way. Probing sub-statistics in this way then
yields meaningful conditional probabilities and we have the following (see Appendix D.2):

Lemma 5.2. Any memoryless quantum process leads to Markovian sub-statistics (for
sharp, projective measurements) that are mutually compatible.

In both quantum mechanics and classical physics, memoryless processes—when probed
in a fixed basis—always lead to Markovian statistics and Markovian, compatible sub-
statistics. In the classical setting, the converse is also true. From the observation of
Markovian statistics one can construct a memoryless process describing the situation at
hand. As discussed, measuring a quantum process in a fixed basis cannot provide enough
information to fully determine the underlying process. Nonetheless, it is reasonable
to assume that whenever one observes Markovian statistics, there should exist some
memoryless description that correctly reproduces them (indeed, this is the assumption of
employing the QRF to describe Markovian statistics). Thus, we now ask the question:
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Given Markovian statistics (deduced via sharp, projective measurements), does there always
exist a memoryless quantum process that faithfully reproduces them?

5.5 Hidden Quantum Memory and Incompatibility

We answer the above question in the negative, first by showing the existence of
Markovian statistics with non-Markovian sub-statistics, and then by constructing a
process with Markovian statistics and sub-statistics that are however incompatible.

Observation 2. Given Markovian statistics on Tn (deduced via sharp, projective meas-
urements), there does not always exist a memoryless quantum process that faithfully
reproduces them.

Proof. Our proof is by way of constructing an explicit example, depicted in Fig. 5.2. The
process is over four times and the experimenter always measures in the computational
σz-basis. An initial state ρ1 = 1

2 is sent to the experimenter, who measures it. The
process between times t1 and t2 is a Hadamard gate. Following the measurement at
t2, the system is swapped with a fiducial environment state τ = |0〉, which is what the
experimenter measures at time t3. Meanwhile, the dynamics of the environment consists
of a measurement in the σx-basis, followed by a preparation of |0〉(|1〉) whenever +(−)
is recorded. Between times t3 and t4, the process comprises a Controlled-NOT (CNOT)
gate, controlled on the environment. Due to the gates that act on the system and
environment, this circuit can, in principle, display memory effects for the system dynamics.
In Appendix D.3, we calculate the full statistics P(x4, x3, x2, x1) and show them to be
Markovian, i.e., P(x4|x3, x2, x1) = P(x4|x3) and P(x3|x2, x1) = P(x3|x2). This is because
the measurement in the σz-basis at t2 yields an output state that is unbiased with respect
to the σx-basis measurement in the environment and therefore all memory of x1 is lost.
However, by calculating the sub-statistics where the experimenter does not measure at
time t2, i.e., P(x4, x3, I2, x1), we see that they are non-Markovian since information about
x1 is now not fully scrambled by the “intervention” (or rather lack thereof) at t2, and we
have P(x4|x3, I2, x1) 6= P(x4|x3) with dependence on x1. As we proved in Lemma 5.2, this
cannot happen for any memoryless quantum process. Thus, even though the statistics on
Tn is Markovian, there is no memoryless quantum process that faithfully reproduces the
statistics on all four times, since the sub-statistics fail to be Markovian.

Here, we have uncovered a new type of genuinely quantum phenomenon: Hidden
quantum memory. The fact that full statistics can be Markovian but sub-statistics can
be non-Markovian is impossible in the classical realm. Moreover, this property cannot
occur for memoryless quantum processes either. Thus, we have shown the existence of
Markovian statistics that, not only potentially come from a quantum process with memory
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Figure 5.2: Markovian Statistics that Require Memory. When probed by projective measurements
in the σz-basis at all times, the circuit yields Markovian statistics. Without the Exclusive-OR (XOR) gate,
memory becomes apparent when no measurement is performed at t2 (Observation 2). With the XOR gate,
all sub-statistics are Markovian, but mutually incompatible (Observation 3). Both situations are only
possible in the presence of memory.

(which can happen, as is well known, when measured in a fixed basis), but fundamentally
require memory to reproduce them.

Another way of viewing this result is that non-Markovian sub-statistics serves as a
witness for the necessity of memory in the underlying quantum process. This naturally
begs the question: If the full statistics and all sub-statistics are Markovian, does there
always exist a memoryless quantum process that faithfully reproduces them? In other
words, is the ability to detect non-Markovian sub-statistics a requirement for ruling out a
memoryless description of the quantum process? Here, we also answer this in the negative,
providing a stronger result than above:

Observation 3. Given Markovian statistics and sub-statistics on Tn and all subsets thereof
(deduced via sharp, projective measurements), there does not always exist a memoryless
quantum process that faithfully reproduces them.

Proof. The proof is again by constructing an explicit example. The process is similar
to above, with the only modification being that after the final CNOT gate, there is an
additional Exclusive-OR (XOR) gate performed on both system and environment (see
Fig. 5.2). In Appendix D.3, we explicitly calculate the full statistics P(x4, x3, x2, x1) and
all sub-statistics [e.g., P(x4, x3, I2, x1), etc.] and show them to be Markovian. However,
crucially, the conditional probabilities P(x4|x3, x2, x1) and P(x4|x3, I2, x1) differ, i.e.,
we have P(x4|x3, x2, x1) =: P(x4|x3) 6= P̃(x4|x3) := P(x4|x3, I2, x1). As stated in the
second part of Lemma 5.2, such an incompatibility cannot occur for memoryless quantum
processes, and so we again come to a contradiction with the existence of a memoryless
process that engenders the observed statistics.
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Chapter 5

5.6 Conclusions

In this Letter, we have presented the concept of hidden quantum memory, i.e., the
existence of processes that yield Markovian statistics that cannot be explained without
underlying memory effects. In a similar vein to the violation of Leggett-Garg type
inequalities, this phenomenon can only occur when the performed measurements are
invasive, since otherwise the observed statistics are fully classical and Markovianity and
memorylessness coincide. However, hidden quantum memory is not merely a different
manifestation of measurement invasiveness, but a distinct and fundamental quantum
memory effect; while memoryless quantum processes can violate Leggett-Garg type
inequalities, they cannot lead to hidden quantum memory.

Importantly, our results differ from the (known) fact that probing a quantum processes
with memory in a fixed basis can yield Markovian statistics. For the Markovian statistics
that we reported, there exists no memoryless model that reproduces them, either because
they become non-Markovian when measurements are not performed at some times, or
because all observed statistics and sub-statistics are Markovian but mutually incompatible.
In turn, this implies that even if one observes Markovian statistics in a given basis, one
cannot confidently employ a QRF to compute the statistics in said basis. As a consequence,
even detecting the possibility of a memoryless description of a process is an experimentally
complex undertaking that not only requires one to deduce joint probabilities on Tn, but
also on all subsets thereof. Naturally, one might expect that simultaneously demanding
Markovianity and compatibility of all observed sub-statistics should suffice to guarantee a
memoryless description. However, even under such strong requirements, the existence of
a memoryless model is a priori not clear, and investigations into this question are subject
to future work.

Together, our results expose a fundamentally new quantum effect in time and demon-
strate the richness of effects that arise from the intricate interplay of invasiveness, memory,
and the freedom to choose different instruments that quantum mechanics affords.

159





Concluding Discussion

Summary

Throughout this dissertation, we have demonstrated the connection between thermody-
namics, complexity, and multi-time phenomena from a variety of angles, highlighting their
complicated relationship and the ensuing implications for quantum information processing.

We began in Part I, where we studied the archetype of a difficult task from a
thermodynamic perspective, namely cooling a physical system (or, equivalently, erasing
information). In Chapter 1, we developed a unifying framework to encompass the—
seemingly contradictory—statements of both Landauer and Nernst by explicitly accounting
for the level of control, in full thermodynamic spirit. From this vantage point, we
considered two extremal levels of overall control—namely the coherent control setting
(where one has access to either a quantum battery or classical control with a precise
clock) and the incoherent control setting (where one can only use a heat engine to drive
the transformations)—and provided a number of fundamental insights regarding the
asymptotic attainability of what is technically forbidden, i.e., reaching a pure state.

First, given coherent resources, we constructed protocols that saturate the Landaur
limit when any one of three relevant resources—namely energy, time, or control complexity—
diverges. Our protocols apply to both finite and infinite dimensional systems and machines
with arbitrary Hamiltonians, thereby conclusively exploring the ultimate limitations of
quantum information processing with thermal machines across a variety of platforms.
Second, in the incoherent control paradigm, we began by showing a stark contrast with
that of coherent control by proving a “no-go” theorem that implies the impossibility of
preparing a pure state with either finite time or control complexity (i.e., a finite sized
machine) regardless of how much energy is drawn from a hot bath. We then derived the
ultimate limitation for the energy cost of cooling in this fully thermodynamic setting,
namely the Carnot-Landauer bound, and provided protocols for its asymptotic saturation.

Following this, in Chapter 2, we shifted our focus away from the asymptotic setting
and considered how finite amounts of resources can be traded off against one another
to cool a system. Disregarding the energy cost, we showed that control over memory
effects—a relevant proxy for control complexity in the temporal setting—leads to an
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exponential enhancement of the ground state population (and thus in cooling) at any
given time. By considering the task of cooling with memory within the framework of
generalised collision models, we demonstrated a powerful tool for treating memory effects
in quantum thermodynamics and showed that dramatic improvements in refrigeration
performance are possible with realistic (i.e., finite) control. As the corresponding results
here recover the well-studied memoryless setting as a special case, we have unified a
number of seemingly disparate approaches to cooling with practical resources.

Focussing more concretely on the properties of memory itself, we then dropped the
thermodynamic assumptions and considered the intricacies regarding quantum information
processing within the more general open dynamics framework in Part II. Whenever an
environment interacts non-trivially with a system of interest, it generically perpetuates
memory effects, which lead to complicated multi-time correlations as a manifestation of
the underlying complexity. Continuing with our previously developed perspective, on the
one hand, if one can control such memory effects, they can be incredibly useful (as we
showed regarding cooling with memory); on the other hand, if they are uncontrollable,
then they are observed as correlated noise, making processes with memory incredibly
difficult to characterise and manipulate advantageously (as is well known).

In Chapters 3 and 4, we asked the question: Which traits are fundamentally quantum
and what resources are required to observe non-classical behaviour? Of course, there
are a plethora of potential candidates (coherence, discord, non-commutativity, to name
but a few), all of which being well-justified as markers of non-classicality in their own
right. As we showed throughout the second part of this dissertation, their relationship
to a fully operational notion of classicality—namely measurement non-invasiveness (or
Kolmogorov consistency), which implies the existence of a potentially exotic underlying
classical stochastic process—plays out over a rich and interesting tapestry.

In Chapter 3, we first demonstrated that a quantum process need not be able to
generate or detect coherence in the system state to yield non-classical statistics. We
then analysed the connection between non-classicality and the ability to generate and
detect quantum discord between the system and environment, highlighting that while
the inability regarding the latter implies classicality, the converse is not true. Both of
these results demonstrate a clear distinction between processes with memory and those
without. Perhaps the most emblematic and insightful take-away from these results is the
realisation that, while all memoryless quantum processes can hide their non-classicality
in principle (via measurements performed with respect to the eigenbasis of the system),
there exist quantum processes with memory that are genuinely non-classical, in the sense
that their non-classicality can never be hidden, no matter the choice of instruments.

We subsequently analysed the connection between measurement non-invasiveness and
commutativity in Chapter 4. The results of this chapter can be read as a multi-time
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extension of Lüders’ theorem, which provides a one-to-one relationship in the two-time
setting. However, as we demonstrated by way of various examples, this link is not so
clear in the multi-time setting, even for memoryless processes. Nonetheless, we uncovered
various Lüders-type theorems in the sense that they relate the vanishing of pertinent
commutator expressions—typically involving a complicated interplay of the dynamics, the
system state, and the measuring devices themselves at each time—with said operational
notion of classicality.

Finally, having detailed a number of insightful distinctions between classical and
quantum processes with respect to the criterion of measurement non-invasiveness, in
Chapter 5 we considered the connection between the underlying dynamical property of
memorylessness and the related operationally observed notion of Markovianity. In the
classical setting, these two concepts are one and the same; however, this connection is not
immediately clear for quantum processes due to measurement invasiveness. We asked the
question: Given Markovian statistics deduced from probing a quantum process with sharp,
projective measurements, does there always exist an underlying memoryless dynamical
model that faithfully reproduces said statistics? Perhaps surprisingly, we answered this
question in the negative by constructing processes that lead to Markovian statistics which
can either have “hidden” non-Markovian, or Markovian but nonetheless incompatible,
sub-statistics. In addition to being impossible in the classical setting, such multi-time
phenomena stand in direct contradiction with the possibility of an underlying memoryless
quantum description. Thus, we have here uncovered a novel type of genuinely quantum
effect, namely the existence of Markovian statistics that fundamentally require memory
for their physical implementation.

Overall, our work throughout this dissertation makes significant progress towards a
more holistic understanding of the crucial role of control regarding quantum information
processing. We highlighted this in the first part by demonstrating the impact that control
has on thermodynamic tasks, showing—amongst other insights—that control complexity
must be considered as a meaningful thermodynamic resource. In the second part, we
considered the control over physical systems in time, i.e., over memory effects, and
demonstrated the ensuing implications in terms of complex multi-time phenomena; yet
again, we saw that complexity (either in the form of memory effects or non-classicality)
depends upon the interplay between the underlying process as well as the control one has
to probe it. Coming full circle to highlight the intricacies involved regarding a suitable
understanding of complexity, we finally showed that simple observations—e.g., Markovian
statistics—can not only arise from complex processes (as is well known), but can in some
cases indeed necessitate underlying complexity (in our case, dynamics with memory).
We now move to consider the broader implications of our work, in particular the rich
landscape for future investigation.
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Outlook

We anticipate that our introduction of control complexity as a resource will initialise
a shift in the way that resources are perceived, especially in quantum thermodynamics,
but also more broadly in all areas of quantum information processing, from quantum
computing to quantum sensing and beyond.

In particular, our results lay the foundations for a plethora of practically relevant
follow-up opportunities concerning finite-resource trade-offs in quantum technologies and
the intricate relationship between energy, time and control complexity. For instance, given
a finite maximum amount of energy, time, and control (which could concern limitations
on interaction Hamiltonians, machine sizes, gate sets, etc.) that one is willing or able to
invest, what is the optimal allocation of such resources to reach a desired final temperature?
As we discussed, such an optimisation is complicated and perhaps no “one-size-fits-all”
solution exists; nonetheless, we expect there to be assumptions that can be reasonably
justified with respect to certain platforms that might lead to further insights. Additionally,
directly connecting the notion of control complexity to what is experimentally feasible in
near-term quantum platforms will provide another important step to eventually transcend
the era of Noisy Intermediate-Scale Quantum (NISQ) devices.

More generally, properly accounting for the overall cost of control in quantum informa-
tion processing is critical, as it can quickly outweigh any potential benefits to be had. In
other words, any reported “quantum advantage” over a classical protocol might not be so
desirable if the quantum algorithm requires substantially more resources to implement.
This is in stark contrast with the classical setting, where states encoding information are
generally stable, errors easily correctable, and read-out procedures accurate—all of which
allows one to more-or-less neglect the cost of control and impact of heat dissipation in
classical computers. From this perspective, it would seem desirable to understand the
limitations of quantum information processing in a setting that embodies the assumption
of minimal control at the outset, as we have put forth regarding the thermodynamic
paradigm of incoherent control, where one only requires the ability to switch on and off
interactions. This, of course, comes with its own resource cost—namely that of precise
timing [57, 58]—which should also be accounted for a more rounded treatment moving
forwards. Nonetheless, it will be interesting to understand the ultimate possibilities of
such a thermodynamically driven quantum computer: What kind of algorithms can be run
efficiently? To what extent is it scaleable? Which experimental platforms could be used in
the near term to build such devices?

On a more foundational level, we have shown that a diverging level of either control
or time is required to saturate the Landauer limit and asymptotically attain the “unat-
tainable”, namely a perfectly pure state. The Landauer bound is closely related to the
Second Law of Thermodynamics, which states that the sum of local entropy changes in
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any (initially uncorrelated) closed system-environment dynamics cannot decrease; on the
other hand, the unattainability principle is essentially the Third Law of Thermodynamics.
Unlike the Third Law, which explicitly focuses on the ability to prepare a perfectly pure
state, the Second Law makes no assumptions on the purity of the final state. Although one
would require a high degree of control to cool a system to any finite temperature at the
Landauer limit, such a task is, in principle, possible with finite time and control resources;
it is only when one wants to cool the system to absolute zero that this resource requirement
necessarily diverges. On the other hand, the Third Law makes no mention of the efficiency
or energy cost—given any finite amount of energy (which could be much larger than
the Landauer cost), one would still require either diverging time or control complexity
to prepare a pure state asymptotically. In this sense, we see the intricate relationship
between the Second and Third Laws of Thermodynamics (in the asymptotic setting) in
terms of control as a resource: The former dictates the minimum energy requirements for
any entropy-decreasing (i.e., irreversible) procedure, which requires ever-increasing levels
of control to saturate as the system gets cooler; whereas the latter concerns itself with
how cold a system can (or cannot) be made with the investment of any finite amount
of energy in terms of the level of control complexity and/or time requirements. With
this in mind, developing general energy-optimal cooling protocols given finite time and
control complexity to achieve any desired finite temperature would further strengthen the
connection between these two fundamental laws.

The last future research direction related to thermodynamics that we will mention
in this thesis concerns its connection to multi-time phenomena. Most thermodynamic
processes are, in some sense, simple: Systems rapidly equilibrate with their environments;
dynamics are typically ergodic; and environments do not carry memory. It is clear that
such behaviour follows from the standard assumptions of thermodynamics. However,
operationally testing the validity of such assumptions often requires one to probe the
evolving system at multiple points in time and to try to make inferences on the underlying
dynamical behaviour from the multi-time observations. We saw that the connection
between Markovianity of statistics and the memory structure of the underlying process
is—in contrast to the classical setting—rather complicated in the quantum realm. Our
results to this end strengthen the notion of memory as an emergent phenomenon, i.e., as a
fundamentally multi-time property that cannot be readily determined from sub-statistics.

On the other hand, although almost all processes carry memory, in our typical
experience, we mostly do not see it. This raises a natural question: To what extent is
underlying complexity necessary for other emergent concepts, for example, those in quantum
thermodynamics? Many dynamical thermodynamic phenomena such as equilibration,
thermalisation, and ergodicity, look simple at the macroscopic level in spite of all the
possible underlying complexity. Even more so, they seem to require a sufficient level of
complexity: For instance, simple—e.g., non-interacting or integrable—systems do not
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tend to thermalise (loosely speaking, because they have too many constants of motion).
However, such connections between complexity on the one hand and the simplicity of
observed phenomena on the other are yet to be fully and rigorously understood, especially
in the multi-time setting with general measurements. For instance, amongst the various
notions of thermalisation that abound [101], some make explicit assumptions on the kinds
of observables being measured whereas others do not; the former fall more in line with what
we have called operational considerations and the latter with structural properties. As we
have seen, in quantum theory such approaches are generally not equivalent, and clearly
demonstrating a fundamental incompatibility between them for such thermodynamic
concepts would drive a definitive wedge between classical and quantum thermodynamics.
In this context, note the work in Refs. [135, 214–218, 351–353] that set a preliminary
foundation for addressing multi-time phenomena in quantum thermodynamics from an
operational standpoint.

Continuing with understanding the distinction between classical and quantum pro-
cesses, our work in the second part of this dissertation naturally begs the question: How
does operational classicality (in terms of measurement non-invasiveness) relate to other
structural notions of classicality that are prevalent throughout the community? For in-
stance, how is it related to non-negativity of phase-space distributions? Or uncertainty
relations? Or broadcastability criteria? Furthermore, having derived the existence of
genuinely quantum processes (i.e., those that cannot hide their non-classicality), a natural
follow-up study would characterise such processes and detail their properties. A good
starting point would be to develop generic witnesses for such genuine non-classicality.

Lastly, our work on the relationship between Markovianity and memorylessness in
the quantum realm poses the following concrete open question: Given a Markovian
statistics, deduced from probing a quantum process with sharp projective measurements,
such that all sub-statistics are Markovian and compatible, does there always exist a
dynamical description in terms of a memoryless quantum process? An answer in the
negative would provide extremely strong evidence for not just a subjective but rather a
fundamental difference regarding complexity (in this case, memory effects) as measured on
an observational level and that concerning the underlying physical resources. Furthermore,
we have seen throughout this thesis both the contrasts between classical and quantum
processes on the one hand, and between processes with and without memory (in both
settings) on the other; an interesting research direction would focus on the overlap: What
can be achieved by quantum processes that only have classical memory? To this end,
note the recent work of Refs. [354, 355] that begin such an exploration. Understanding
such processes would have profound implications for near-term quantum devices, as—in
contrast to quantum memory—classical memory can be reliably stored, processes, and
read-out without any measurement “back-action” and is therefore more practical for
controlling quantum dynamics in “real-world” applications. Thus, aside from being of
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theoretical interest in its own right, the development of a framework for describing such
processes is imperative for building reliable and efficient quantum devices and gauging
their information processing power.

In summary, the above questions all pose promising routes for future research that
apply across a wide array of areas: From practical implementations of quantum computers
with minimal control, to the very foundations of thermodynamics; from mathematical
concepts at the heart of quantum theory, to their manifestation on an operational level
(and back again); from a theoretic description of open quantum processes, to sophisticated
quantum information processing across both space and time. Accordingly, we believe
that the fundamental insights and results presented in this dissertation will serve as an
important springboard for future endeavours.
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APPENDIX A
Supplemental Information for

Chapter 1

A.1 Equality Forms of the (Carnot-)Landauer Limit

In this section, we present lower bounds on the energy change of the machine (or heat
dissipated into its environment) in terms of the entropy change of the target system, both
in the coherent and incoherent-control settings outlined in the main text. In the coherent
setting, this amounts to the well-known Landauer’s principle [3], whereas the incoherent
setting requires an extension of this derivation. These lower bounds are important, because
they put limits on the optimal energetic performance of the machines for cooling. Note,
finally, that the initial state of the machine is diagonal in its energy eigenbasis and must
remain so for any process saturating the (Carnot-)Landauer limit; moreover, the target
begins similarly and ends up in the pure state |0〉〈0| when perfect cooling is achieved.
As a result, all quantities relevant to perfect cooling at the (Carnot-)Landauer limit
can be computed in terms of their “classical” counterparts, i.e., %X → pX := (p0, . . . , pd)
with pn = e−βEn , tr [H%X ] → 〈E〉pX := ∑

n pnEn, S(%X ) → S(pX ) := −∑n pn log (pn),
Z(β,HX ) = ∑

n e
−βEn , and so on. Nonetheless, all of the results presented hold for the

more general “quantum” properties.

A.1.1 Coherent-Control Paradigm: The Landauer Limit

The coherent setting was already studied in detail in Ref. [200], where the authors
derived an equality version of Landauer’s principle. We restate the results here for
convenience, since we will also use them in the incoherent paradigm. Recall that the
setting we consider consists of two parts, the target system S and the machineM. In
the beginning, the joint state is %SM = %S ⊗ τM(β,HM) for some arbitrary (but fixed)
Hamiltonian HM and β ∈ R. Note that any full-rank state % can be associated to some
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chosen temperature β, which sets the energy scale, and a Hamiltonian H = − 1
β

log (%); as
we consider arbitrary Hamiltonians, we only write the state dependence on these parameters
when necessary. If the state is not full rank, the rank can be used to re-define the dimension.
We assume that both systems are finite-dimensional. Let U be a global unitary on SM.
We write %′SM := U [%S ⊗ τM(β,HM)]U † and denote by %′S and %′M the respective reduced
states. The quantity I(S : M)%′SM = S(%′S) + S(%′M) − S(%′SM) is the final mutual
information between S and M and D(%′M||%M) = tr

[
%′M log(%′M)

]
− tr

[
%′M log(%M)

]
is

the relative entropy of the final machine state with respect to its initial state.

Lemma A.1 ([200, Lemma 2]). Let the setting be as above. Then

[S(%′S)− S(%S)] + [S(%′M)− S(%M)] = I(S :M)%′SM ≥ 0. (A.1)

Proof. We note that

[S(%′S)− S(%S)] + [S(%′M)− S(%M)] = S(%′S) + S(%′M)− S(%′SM), (A.2)

since the von Neumann entropy is additive for product states and invariant under unitary
evolution. The assertion follows from the definition of the mutual information and the
fact that it is non-negative.

Theorem A.1 (Equality form of Landauer’s principle, [200, Theorem 3]). Let the setting
be as above. Then

β tr[HM(%′M − %M)]− [S(%S)− S(%′S)] = I(S :M)%′SM +D(%′M||%M) ≥ 0. (A.3)

Proof. From Lemma A.1, it follows that

[S(%S)− S(%′S)] + I(S :M)%′SM = S(%′M)− S(%M). (A.4)

Using the fact that %M = τM(β,HM), we infer that D(%′M||%M) = −S(%′M)+βtr[HM%′M]+
log [tr(e−βHM)] and S(%M) = βtr[HM%M]+log [tr(e−βHM)]. Re-expressing the first of these
for S(%′M) and inserting both yields Eq. (A.4). The inequality results from non-negativity
of relative entropy and mutual information. This completes the proof.

A.1.2 Incoherent-Control Paradigm: The Carnot-Landauer Limit

Landauer’s principle provides a relationship between how much heat must necessarily
be dissipated into the thermal background environment upon manipulating the entropy
of a given quantum system. Until now, we have assumed that the system of interest
can interact arbitrarily with its environment (i.e., the machine); in other words, we
have considered general joint unitary interactions between system and machine, without
restriction. In doing so, we have tacitly assumed the ability to draw energy from some
external resource (i.e., a work source) in order to implement said unitaries, which are
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in general not energy preserving. The particularities of such a resource are left as an
abstraction. However, from a thermodynamicists’ perspective, this setting may seem
somewhat unsatisfactory, as the joint target-machine system is not energetically closed. In
order to provide a more self-contained picture of the cooling procedure, one can explicitly
include the energy resource, modelled as a quantum system itself, into the setting.

To this end, note first that said resource must be out of thermal equilibrium with
respect to the target and machine in order to perform any meaningful thermodynamic
transformation. Furthermore, it is sensible to assume that the energy resource system is
in thermal equilibrium with its own environment to begin with. The joint target-machine-
resource system is then considered to be energetically closed; as such, global unitaries
in this setting are restricted to be energy conserving. In order to act as a resource for
cooling the target in this picture, the energy source here must begin in equilibrium with
a heat bath that is hotter than the initial temperature of the machine (assuming that
the machine and resource both begin in thermal states), such that a natural heat flow is
induced that leads the environment of the machine to act as a final heat sink. This setting
is what we call the incoherent-control scenario. In this context, Landauer’s principle
translates to studying the relationship between the heat that is necessarily dissipated into
the machine’s environment upon manipulating the entropy of the target system. Finally,
note that the relationship between the coherent and the incoherent-control paradigms is
interesting in itself: While on the one hand the incoherent setting includes an additional
system and therefore increases the dimensionality of the overall joint system, on the other
hand by restricting the transformations on this larger space to be energy conserving, one
limits the orbit of attainable states.

Now let us consider the incoherent-control setting. Here, we have the target system S
and the machine comprises of one part C coupled to the cold bath and another H coupled
to the hot bath. We assume that all systems are finite-dimensional. Every subsystem
A is associated to a Hamiltonian HA and C, H are initially in a thermal state; the cold
bath has inverse temperature β and the hot bath has inverse temperature βH < β. We
assume β, βH . Thus, the initial joint state is %SCH = %S ⊗ τC(β,HC)⊗ τH(βH , HH). The
global evolution on SCH is implemented via a unitary U , leading to %′SCH = U(%SCH)U †.
We further assume that the unitary evolution on the joint system is energy conserving,
i.e., [U,HS + HC + HH] = 0. We write ∆SA := S(%′A) − S(%A) for the entropy change
on subsystem A and ∆EA := tr[HA(%′A − %A)] for the average energy change. Moreover,
the free energy of a state %A with respect to the inverse temperature β is Fβ(%A) =
tr[HA%A]− β−1S(%A).

In the incoherent setting, it makes sense to look at the energy decrease in the hot bath
H, since the hot bath can be seen as the energetic resource one must to expend in order
to cool the system S (alternatively, as we present after the following theorem, one can
consider the energy dissipated into the cold bath C, which serves as the heat sink).
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Theorem A.2. In the above setting, it holds that

∆F (β)
S + η∆EH = − 1

β
[∆SS + ∆SC + ∆SH +D(%′C||%C) +D(%′H||%H)] ≤ 0, (A.5)

where (0, 1) 3 η := 1− βH
β

is the Carnot efficiency and ∆F (β)
S = Fβ(%′S)− Fβ(%S).

Proof. Let us consider

I(S : C : H)%′SCH := S(%′S) + S(%′C) + S(%′H)− S(%′SCH) ≥ 0. (A.6)

Note that the quantity I(S : C : H)%′SCH , which quantifies the tripartite mutual information
of the state %′SCH, is non-negative via subadditivity S(%A) + S(%B) ≥ S(%AB) for any
state %AB. Furthermore, since the von Neumann entropy is invariant under unitary
transformations and additive for tensor product states, we have

I(S : C : H)%′SCH = ∆SS + ∆SC + ∆SH. (A.7)

We also have that
∆SC = β∆EC −D(%′C||%C) (A.8)

and
∆SH = βH∆EH −D(%′H||%H). (A.9)

Thus,

I(S : C : H)%′SCH = ∆SS + β∆EC −D(%′C||%C) + βH∆EH −D(%′H||%H). (A.10)

Since the unitary is energy conserving, we infer that ∆ES + ∆EC + ∆EH = 0. Hence, we
have

∆SS − β∆ES + (βH − β)∆EH = I(S : C : H)%′SCH +D(%′C||%C) +D(%′H||%H). (A.11)

Using the free energy, we can rewrite this as

−β[Fβ(%′S)−Fβ(%S)]−(β−βH)∆EH = I(S : C : H)%′SCH+D(%′C||%C)+D(%′H||%H). (A.12)

Dividing by −β, we obtain the assertion, since, in particular, I(S : C : H)%′SCH+D(%′C||%C)+
D(%′H||%H) ≥ 0 by the non-negativity of each term.

In particular, we have shown that the energy extracted from the hot bath is lower-
bounded by the increase in free energy, weighted by the inverse Carnot efficiency:

tr[HH(%H − %′H)] ≥ 1
η

[Fβ(%′S)− Fβ(%S)]. (A.13)

Note that if %S = τS(β,HS), the r.h.s. is non-negative for any nontrivial thermodynamic
process, i.e., any for which the target system is heated or—of particular relevance for

174



Appendix A

us—cooled. This follows by the Gibbs variational principle which states that the free
energy of % is minimal if and only if % is the Gibbs state.

Finally, in order to make a more concrete connection to the spirit of Landauer’s original
derivation, note that one can consider bounding the heat dissipated into the cold bath,
rather than that drawn from the hot bath. Substituting ∆EH = −(∆ES + ∆EC) into
Eq. (A.10) leads to

−∆̃SS − βH∆ES + (β − βH)∆EC ≥ 0, (A.14)

which recovers the standard Landauer bound for the dissipated heat in the limit of an
infinitely-hot heat bath, i.e., βH → 0.

A.2 Diverging Energy

A.2.1 Sufficiency: Diverging Energy Cooling Protocol

This cooling protocol is arguably the simplest of those presented. The thermal
populations of any target system can be exchanged with a machine system of the same
dimension, in the thermal state of HM = ωM

∑d−1
n=0 n|n〉〈n|. As ωM → ∞, the machine

state τM(β,HM) approaches |0〉〈0|M independently of β (as long as β 6= 0). Such a
population-exchange operation is a single interaction (i.e., the protocol occurs in unit time)
which is of finite complexity (in a sense that we discuss below). However, the energy drawn
from the resource W upon performing said swap is at least E = (p(1)

S − p
(1)
M )(ωM − ω(1)

S ),
where p(1)

X is the initial population of the first excited level of system X and ω(1)
S is the

first energy eigenvalue of the target system. Denoting by ω(k)
S the energy eigenvalue of

the kth excited level of the target system, we have above assumed that ω(0)
S = 0 (which

we do for all Hamiltonians without loss of generality) and ωM > ω
(d−1)
S . As such, perfect

cooling will incur diverging energy cost.

A.2.2 Necessity of Diverging Energy for Protocols with Finite Time and
Control Complexity

Consider the following Hamiltonians for the target system and machine with finite but
otherwise arbitrary energy levels, HS = ∑dS−1

n=0 ω
(n)
S |n〉〈n|S and HM = ∑dM−1

n=0 ω
(n)
M |n〉〈n|M,

respectively. For any finite inverse temperature β, the initial thermal states τS(β,HS)
and τM(β,HM) are of full rank. Suppose now that one can implement a single unitary
transformation (i.e., a unit time protocol) of finite control complexity on the joint target
and machine, yielding the joint output state %′SM = trM

[
U(τS(β,HS)⊗ τS(β,HM))U †

]
,

and wishes to attain perfect cooling of the target in doing so. By invariance of the
rank under unitary transformations and the fact that the system and machine begin
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uncorrelated, we have

rank[τS(β,HS)] rank[τM(β,HM)] = rank[%′SM] ≤ rank[%′S ] rank[%′M], (A.15)

where the inequality follows from the subadditivity of the Rényi-zero entropy [356], which
is the logarithm of the rank. To achieve perfect cooling of the target, one must (at
least asymptotically) attain rank[%′S ] < rank[τS(β,HS)], which implies that rank[%′M] >
rank[τM(β,HM)]. However, if this condition is achieved, then D[%′M‖τM(β,HM)] diverges,
implying a diverging energy cost by Eq. (1.8). The above argument already appears in
Ref. [200].

The other situation that one must consider is the case where one attains a %′S such
that rank[%′S ] = rank[τS(β,HS)] but nonetheless %′S is arbitrarily close to a pure state,
as is the case, for instance, in the protocols that we present. Consider a sequence
of machines %(i)

M and unitaries U (i) such that %(i)
M → %M and U (i) → U . Note that

since we fixed the dimensions of S andM, any sequence of machines has a converging
subsequence by the Bolzano-Weierstrass theorem and the fact that the set of quantum
states is compact. Here, %M and U achieve perfect cooling. If we fix %S , we obtain
a corresponding sequence (%′M)(i) such that (%′M)(i) → %′M. Crucially, here, since we
restrict the unitary transformation to be of finite control complexity, the states %M and
%′M are effectively finite-dimensional, in the sense that whatever their true dimension,
they can be replaced by finite-dimensional versions without changing any of the relevant
quantities (see Appendix A.4). Since the relative entropy (%, σ) 7→ D(%||σ) is lower
semicontinuous [357, 358] and since D(%′M||%M)→∞ by the arguments above, we infer
that D[(%′M)(i)||%(i)

M]→∞ as i→∞. This argument holds independently of rank[%′S ]; in
particular, for the special case rank[%′S ] = rank[τS(β,HS)] that we are considering here.
Thus, to approach perfect cooling in finite time and with finite control complexity, one
would need a diverging energy cost. Thus, we see that within the resource trinity of
energy, time and control complexity, if the latter two are finite, then energy must diverge
to asymptotically achieve a pure state. Whether or not there exist other (unaccounted
for) resources that allow one to achieve this with all three of the aforementioned resources
being finite remains an open question.

Importantly, the above argument no longer holds if the time or control complexity
is allowed to diverge. In such cases, both %M and %′M can be infinite-dimensional, and
because of this the rank argument no longer applies and the relative entropy does not
necessarily diverge in the limit of perfect cooling. On the contrary, as we show, it is even
possible to saturate the Landauer bound.
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A.3 Diverging Time Cooling Protocol for Finite-Dimensional
Systems

A.3.1 Proof of Theorem 1.2

Proof. Consider a target system S of dimension d with associated Hamiltonian

HS =
d−1∑
k=0

ωk|k〉〈k|S , (A.16)

where we also set ω0 = 0 without loss of generality. Consider also the machineM to be
composed of N subsystems, {Mn}n=1,...,N , each of the same dimension d as the target,
whose local Hamiltonians are

H(n)
M = (1 + nε)HS , (A.17)

where ε = βmax−β
Nβ

. We first cool the system initially at non-zero β to some fixed, finite
βmax, which we will eventually take βmax →∞ in order to asymptotically achieve perfect
cooling. We treat the case β = 0 as a limiting case of β → 0: Here, as β → 0, we
let N → ∞ such that Nβ → ∞, e.g., we specify a suitable function N(β) such that
N(β)→∞ “faster” than β → 0.

We now show that, given the ability to perform a diverging number of operations on
such a configuration, one can reach the target state τS(βmax, HS). In particular, we show
that the protocol presented uses the minimal amount of energy to do so, and explicitly
calculate this to be β−1∆̃S units of energy, where ∆̃S := S[τS(β,HS)]− S[τS(βmax, HS)].
In other words, as the number of operations in the protocol diverges, we approach perfect
cooling at the Landauer limit, thereby saturating the ultimate bound.

The diverging time cooling protocol is as follows. At each step, the target system
interacts with a single machine labelled by n via the swap operator

S
d
SMn

:=
d−1∑
i,j=0
|i, j〉〈j, i|SMn . (A.18)

As the target and machine subsystems considered here are of the same dimension, we will
drop the subscript on the states associated to each subsystem, for ease of notation. Such
a transformation is, in general, not energy conserving, but one can calculate the energy
change for both the target system and the machine due to the nth interaction as

∆E(n)
S = tr

[
HS τ(β,H(n)

M )
]
− tr

[
HS τ(β,H(n−1)

M )
]
, (A.19)

and so the total energy change of the system over the entire N -step protocol is given by

∆ES =
N∑
n=1

∆E(n)
S = tr

[
HS τ(β,H(N)

M )
]
− tr

[
HS τ(β,H(0)

M )
]
. (A.20)
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The energy change of the machine subsystem that is swapped with the target system at
each step is given by

∆E(n)
M =tr

[
H(n)
M τ(β,H(n−1)

M )
]
− tr

[
H(n)
M τ(β,H(n)

M )
]

=
d−1∑
k=0

(1 + nε)ωk
[
pk(β,H(n−1)

M )− pk(β,H(n)
M )

]
, (A.21)

where pk(β,H(n)
M ) = e−β(1+nε)ωk/ZMn(β,H(n)

M ) is the population in the kth energy level
of the thermal state of the nth machine subsystem at inverse temperature β, with
ZMn(β,H(n)

M ) = tr
[
e−βH

(n)
M

]
being the partition function.

By summing the contributions of the energy changes in each step, one can obtain the
total energy change for the overall machine throughout the entire process:

∆E(N)
M =

N∑
n=1

∆E(n)
M =

N∑
n=1

d−1∑
k=0

(1 + nε)ωk
[
pk(β,H(n−1)

M )− pk(β,H(n)
M )

]
, (A.22)

In general, it is complicated to calculate the energy cost for the protocol up until a finite
time step N , since this depends on the full energy structure of the target system and
machine subsystems involved (we will return to resolve this problem for the special case
of equally-spaced system and machine Hamiltonians in the coming section). Here, we
focus on a special case in which N → ∞, i.e., there is a diverging number of machine
subsystems that the target system interacts with throughout the protocol. This limit
physically corresponds to that of requiring a diverging amount of time (in terms of the
number of steps). Furthermore, we take the limit ε→ 0 for any fixed β, βmax. Considering
the differentials

∆p(n)
k := pk(β,H(n)

M )− pk(β,H(n−1)
M ), (A.23)

and

∆xn := xn − xn−1 with xn := 1 + nε. (A.24)

In order for xn to become infinitesimal, and noting the explicit form of the machine
subsystem Hamiltonians H(n)

M = (1 + nε)HS , we can make the replacement

−∆p(n)
k

∆xn
∆xn → −

∂pk(β, xHS)
∂x

dx, (A.25)

where x := 1 + nε has become a continuous parameter. This way we can express the limit
N →∞ of Eq. (A.22) as a Riemann integral in the following form

lim
N→∞

∆E(N)
M =−

∫ xmax

1

d−1∑
k=0

xωk
∂pk(β, xHS)

∂x
dx, (A.26)
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where xmax := βmax
β

. Both the summation and the integral converge, so one can swap the
order of their evaluation. Integrating by parts then gives

lim
N→∞

∆E(N)
M =

d−1∑
k=0

[
−xωk pk(β, xHS)

∣∣∣xmax

1
+
∫ xmax

1
ωk pk(β, xHS) dx

]

=
d−1∑
k=0

[
−xωk pk(β, xHS)

∣∣∣xmax

1

]
−
∫ xmax

1

1
β

∂

∂x

[
logZ(β, xHS)

]
dx

=E[τ(β,HS)]−E[τ(β, xmaxHS)]−
1
β

logZ(β, xmaxHS)+ 1
β

logZ(β,HS),
(A.27)

where in the second line we again swapped the order of the integral and the sum to write∑d−1
k=0 ωkpk(β, xHS) = − 1

β
∂
∂x

[logZ(β, xHS)] and in the last line we invoke E[τ(β, xH)] =
tr [xH τ(β, xH)]. Finally, writing the partition function in terms of the average energy
and entropy, i.e., log[Z(β, xH)] = −β E[τ(β, xH)] + S[τ(β, xH)], the total energy change
of the machine is given by

lim
N→∞

∆E(N)
M =E[τ(β,HS)]− E[τ(β, xmaxHS)] + E[τ(β, xmaxHS)]

− 1
β
S[τ(β, xmaxH)]− E[τ(β,HS)] + 1

β
S[τ(β,HS)]

= 1
β

{
S[τ(β,HS)]− S[τ(βmax, HS)]

}
= 1
β

∆̃SS , (A.28)

where we have made use of the property τS(β, xmaxHS) = τS(βmax, HS) and the entropy
decrease of the target system corresponds to that associated with the transformation
τ(β,HS)→ τ(βmax, HS). Thus, as the number of timesteps diverges, this cooling process
saturates the Landauer limit for the heat dissipated by the machine. In order to achieve
perfect cooling at the Landauer limit, i.e., the final target state to approach |0〉〈0| and
thus prove Theorem 1.2, we can now take the limit βmax →∞.

The above proof holds for systems and machines of arbitrary (but equal) dimension,
either finite or infinite, with arbitrary Hamiltonians. We now present some more detailed
analysis regarding the special case where the Hamiltonians of the target system and all
machine subsystems are equally spaced; this provides an opportunity both to derive a
more detailed formula for the energy costs involved and to build intuition regarding some
of the important differences between the finite- and infinite-dimensional settings.

A.3.2 Special Case: Equally Spaced Hamiltonians

Consider a finite d-dimensional target system beginning at inverse temperature β with
an equally spaced Hamiltonian HS(ωS) = ωS

∑d−1
n=0 n|n〉〈n|S . In this case, we can derive a

more precise dimension-dependant function for the energy cost dissipated by the machines
throughout the optimal cooling protocol presented above.
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Consider an initial target system τS(β,HS) and a diverging number N of machines
{Mα}α=0,...,N of the same dimension d as the target, which all begin in a thermal state
at inverse temperature β with respect to an equally spaced Hamiltonian whose gaps
between neighbouring energy levels ωMα

are ordered non-decreasingly. Each machine
is used once and then discarded; the particular interaction is the aforementioned swap
between the target system and the nth qudit machine, i.e., that represented by the unitary
S
d
SMα

:= ∑d−1
i,j=0 |i, j〉〈j, i|SMα

. After applying such an operation, the state of the target
system is given by

τS(β, ωα) := e−βHS (ωα)

ZS(β, ωα) , (A.29)

where HS(ωα) := ωα
∑d−1
n=0 n|n〉〈n|S and ZS(β, ωα) := tr

[
e−βHS (ωα)

]
.

We now calculate the energy cost explicitly for the diverging time cooling protocol,
which saturates the Landauer bound in the asymptotic limit. In order to minimise the
energy cost of cooling, the target system must be cooled by the qudit system in the
machines with the smallest gap between neighbouring energy levels (that permits cooling)
as much as possible at each stage. In order to optimally use the given machine structure
at hand, we thus order the set of energy gaps ωα in non-decreasing order. In addition, the
protocol to reach the Landauer erasure bound, i.e., minimal energy cost, dictates that
one must infinitesimally increase ωα of the machines in order to dissipate as little heat as
possible throughout the interactions. Since we are here considering a diverging time limit,
we have access to a diverging number of qudit machine with distinct energy gap ωα at our
disposal; the task is then to use these in an energy-optimal manner.

It is straightforward to see that to minimise the total energy cost, one must apply
the sequence of unitaries SdSMα

such that SdSM0
is first applied to reach the optimally

cool τS(β, ω0), then SdSM1
to reach τS(β, ω1), and so on. The heat dissipated by the reset

machines in each stage of such a cooling protocol (i.e., for each value of α) can thus be
calculated as

∆EMα
(ωα) = −

{
tr
[
HMα

(ωα)τMα
(β, ωα)

]
+ tr

[
HMα

(ωα) τMα
(β, ωα−1)

]}
= −tr [HS(ωα) [τS(β, ωα)− τS(β, ωα−1)]] . (A.30)

In the second line, we have made use of the fact that the Hamiltonians of both the
target system and each of machine are d-dimensional and equally spaced. So far, we have
obtained the energy dissipated by the reset machines. To investigate the total energy cost
of cooling in such a process, we also must consider the contribution of energy transferred
to the target system S, which is characterised via its local Hamiltonian HS and calculated
via

∆ES(ωα) = tr [HS(ωS) τS(β, ωα)]− tr [HS(ωS) τS(β, ωα−1)] , (A.31)
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in which we set ω0 = ωS . Using Eqs. (A.30, A.31), the total energy cost for each stage of
cooling is given by

∆ESM(ωα) = ∆ES(ωα) + ∆EM(ωα)

= tr
{[
HS(ωS)−HS(ωα)

][
τS(β, ωα)− τS(β, ωα−1)

]}
, (A.32)

which leads to the overall energy cost after N stages, where N is the number of non-zero
distinct energy gaps of the reset machines, as

∆E(N)
SM =

N∑
α=1

∆ESM(ωα) =
N∑
α=1

tr
{[
HS(ωS)−HS(ωα)

][
τS(β, ωα)− τS(β, ωα−1)

]}
.

(A.33)

Now, we can obtain the total energy cost for each stage of the protocol (i.e., each value of
α considered) in terms of the transformation of the target system alone. Note that in this
protocol, each stage corresponding to each of the N distinct energy gaps {ωα} in itself
requires only one operation to perfectly reach τS(β, ωα). The end result of this protocol is
that the target system is cooled from the initial thermal state τS(β, ωS), where ωS is the
energy gap between each pair of adjacent energy levels in the system, to τS(β, ωmax) in
the energy-optimal manner.

Starting from Eq. (A.33), we have

∆E(N)
SM =

N∑
α=1

tr
{[
HS(ωS)−HS(ωα)

][
τS(β, ωα)− τS(β, ωα−1)

]}

=
N∑
α=1

(ωS−ωα)
[(

e−βωα

1− e−βωα −
e−βωα−1

1− e−βωα−1

)
−
(

d e−βdωα

1− e−βdωα −
de−βdωα−1

1− e−βdωα−1

)]

=
N∑
α=1

(ωS − ωα)×

lim
K→∞

K∑
k=0

[(
e−β(k+1)ωα − e−β(k+1)ωα−1 − d

(
e−β(k+1)dωα − e−β(k+1)dωα−1

)]

=
N∑
α=1

(ωS − ωα)×

lim
K→∞

K∑
k=0

[
e−β(k+1)ωα

(
1−e−β(k+1)(ωα−1−ωα)

)
−de−βd(k+1)ωα

(
1−e−βd(k+1)(ωα−1−ωα)

)]
.

(A.34)

Here, since both HMα
and HS are equally spaced Hamiltonians, the average energy can

be written as

E(ωx, ωy) = tr [HS(ωx) τS(β, ωy)] =
∑d−1
n=0 nωxe

−nβωy∑d−1
n=0 e

−nβωy

= ωx

(
e−βωy

1− e−βωy −
d e−βdωy

1− e−βdωy

)
(A.35)
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by evaluating the geometric series

Z(β, ωy) =
d−1∑
n=0

e−βnωy = 1− e−βdωy
1− e−βωy (A.36)

and writing

E(ωx, ωy) =
d−1∑
n=0

nωx
e−βnωy

Z(β, ωy)

= ωx
ωy

{
− ∂

∂β
log [Z(β, ωy)]

}

= −ωx
ωy

∂

∂β

[
log

(
1− e−βdωy

)
− log

(
1− e−βωy

)]
(A.37)

as we do in the second line of Eq. (A.34) and then using the infinite series expression
(1− x)−1 = limK→∞

∑K
k=0 x

k for any |x| < 1 as per the third line.
As we will see in Appendix A.5.2, the energy cost for cooling an infinite-dimensional

system when both target and machines have equally spaced Hamiltonians (i.e., harmonic
oscillators) is similar to the form of Eq. (A.34). Importantly, the second term in square
parenthesis vanishes as d→∞, simplifying the expression even further.

We now assume that the energy gaps of the machine are given by ωα = ωS + εα and
so the total energy cost can be written as follows:

∆E(N)
SM =

− lim
K→∞

N∑
α=1

αε
K∑
k=0

e−βk(ωS+αε)
(
1− eβkε

)
+ lim

K→∞

N∑
α=1

αdε
K∑
k=0

e−βkd(ωS+αε)
(
1− eβkdε

)

= lim
K→∞

K∑
k=0

[
e−βkωS

(
eβkε − 1

)( N∑
α=1

αεe−βkαε
)]

− lim
K→∞

K∑
k=0

e−βkdωS
[(
eβkdε − 1

)( N∑
α=1

dαε e−βkdαε
)]
, (A.38)

where we can swap the order of summation since both sums converge and the summands are
non-positive. This can be seen from the first line above, using the fact that e−αx(1− ex) ∈
[−1, 0] for all α ≥ 1 and x ≥ 0. We now calculate the sum over α.

N∑
α=1

αε e−βαε = − ∂

∂β

N∑
α=0

e−βαε = − ∂

∂β

(
1− e−β(N+1)ε

1− e−βε

)

= −
(

(N + 1)εe−β(N+1)ε − (N + 1)εe−β(N+2)ε − εe−βε + εe−β(N+2)ε

(1− e−βε)2

)

= εe−βε

(1− e−βε)2

(
1− (N + 1)e−βNε +Ne−β(N+1)ε

)
= εe−βε

(1− e−βε)2

(
1− e−βNε −Ne−βNε(1− e−βε)

)
. (A.39)
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Combining Eqs. (A.38) and (A.39), we arrive at

∆E(N)
SM = lim

K→∞

K∑
k=0

[
e−βkωS

k

kε(1− e−βNkε)
(1− e−βkε) −Nε e−βk(ωS+Nε)

]

− lim
K→∞

K∑
k=0

[
e−βkdωS

k

kdε(1− e−βNkdε)
(1− e−βkdε) −Ndε e−βkd(ωS+Nε)

]
. (A.40)

In order to optimise the energy cost, we now assume that the energy gaps of the machines
can be chosen to be smoothly increasing in such way that ε = ∆ ω

N
:= ωmax−ωS

N
. Substituting

this expression for ε into the above equation yields

∆E(N)
SM = lim

K→∞

K∑
k=0

[
e−βkωS

k

k∆ω(1− e−βk∆ω)
N(1− e−βk∆ω

N )
−∆ω e−βk(ωS+∆ω)

]

− lim
K→∞

K∑
k=0

[
e−βkdωS

k

kd∆ω(1− e−βkd∆ω)
N(1− e−βkd∆ω

N )
− d∆ω e−βkd(ωS+∆ω)

]
. (A.41)

We now wish to take the limit of N � K → ∞. This assumption means that energy
change of the system is approximately equal to its free energy change; in other words, the
process occurs quasi-adiabatically. The ability to switch the order of taking the limits
of K and N going to ∞ follows from the monotonic convergence of the sum over k. In
particular, note that the term inside square parentheses in each summand converges and
the first term in each summation (which is the only part that depends on N) is positive
and bounded.

Under this assumption, we can use the approximation limβx→0
x

1−e−βx = 1
β
; since

0 < e−βx < 1 for any positive x, the sum over k converges to a finite value. In general,
this approximation introduces a correction term for the energy change, however under
said assumption the error incurred becomes negligible. Then, the total energy change
∆Etot

SM for the transformation τS(β, ωS)→ τS(β, ωmax) throughout the overall process is

∆Etot
SM = lim

K→∞

K∑
k=0

[
e−βkωS

βk
− e−βkωmax

βk
− (ωmax − ωS) e−βkωmax

]

− lim
K→∞

K∑
k=0

[
e−βkdωS

βk
− e−βkdωmax

βk
− d(ωmax − ωS) e−βkdωmax

]
. (A.42)

As a side remark, note that here one can see that in the special case of equally spaced
Hamiltonians, one indeed requires a diverging number of machine subsystems to attain
perfect cooling at the Landauer limit, as this is the only way to fulfil the condition of
Theorem 1.3. This follows from the fact that the approximation x

1−e−βx ≈
1
β
only holds

for small βx and in general one would need to include higher-order terms that lead to an
increase in energy cost.
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We then have, using the expression for E(ωx, ωy) derived earlier:

∆Etot
SM = − 1

β
log(1− e−βωS ) + 1

β
log(1− e−βωmax)− (ωmax − ωS) e−βωmax

1− e−βωmax

+ 1
β

log(1− e−βdωS )− 1
β

log(1− e−βdωmax) + d(ωmax − ωS) e−βdωmax

1− e−βdωmax

= 1
β

log
(

1− e−βdωS
1− e−βωS

)
− 1
β

log
(

1− e−βdωmax

1− e−βωmax

)

− (ωmax − ωS)
(

e−βωmax

1− e−βωmax
− d e−βdωmax

1− e−βdωmax

)

= 1
β

log[ZS(β, ωS)]−
1
β

log[ZS(β, ωmax)]

− tr [HS(ωmax) τS(β, ωmax)] + tr [HS(ωS) τS(β, ωmax)]

= 1
β

log[ZS(β, ωS)]−
1
β

log[ZS(β, ωmax)]

− tr [HS(ωmax) τS(β, ωmax)] + tr [HS(ωS) τS(β, ωS)]

− tr [HS(ωS) τS(β, ωS)] + tr [HS(ωS) τS(β, ωmax)]

= 1
β

∆SS + ∆ES , (A.43)

where we have explicitly written the von Neumann entropy S(%) = −tr [% log(%)] of a
thermal state at inverse temperature β as S[τS(β, ω)] = log[ZS(β, ω)] + β E[τS(β, ω)].
Since the energy change of the target system only concerns its local Hamiltonian, we
immediately see that the heat dissipated by the resetting of machines in such a cooling
process, i.e., ∆EM, saturates the Landauer bound as it is equal to β−1∆SS . The process
described is thus energy-optimal.

A.4 Conditions for Structural and Control Complexity

Here we begin by considering the protocol-independent structural conditions that must
be fulfilled by the machine Hamiltonian to enable (1) perfect cooling and (2) cooling at
Landauer cost; combined, these independent conditions provide a necessary requirement,
namely that the machine must be infinite-dimensional with a spectrum that is unbounded
(from above) for the possibility of (3) perfect cooling at the Landauer limit. We then
turn to analyse the control complexity, which concerns the properties of the interaction
that implements a given protocol. The properties of the machine Hamiltonian define
the structural complexity, which set the potential for how cool the target system can
be made and at what energy cost; the extent to which a machine’s potential is utilised
in a particular protocol then depends on the properties of the joint unitary, i.e., the
control complexity. Here, we show that it is necessary that any protocol achieving perfect
cooling at the Landauer limit involves interactions between the target and infinitely-many
levels of the machine to realise the full cooling potential. We then analyse some sufficient
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conditions that arise as observations from our diverging control complexity protocols.
This then leads us to demonstrate that individual degrees of freedom of the machine
must be addressed in a fine-tuned manner to permute populations, highlighting that an
operationally meaningful notion of control complexity must take into account factors
beyond the effective dimensionality.

A.4.1 Necessary Complexity Conditions

Necessary Structural Conditions

1. Perfect Cooling.—Let us consider the task of perfect cooling, independently from
protocol-specific constraints, in the envisaged setting. One can lower-bound the smallest
eigenvalue λmin of the final state %′S (and hence how cold the system can become) after
any unitary interaction with a thermal machine by [200]

λmin(%′S) ≥ e−βω
max
M λmin(%S), (A.44)

where ωmax
M := maxi,j |ωj − ωi| denotes the largest energy gap of the machine Hamiltonian

HM with eigenvalues ωi. Without loss of generality, throughout this article we set the
ground state energy of any system to be zero, i.e., ω0 = 0, such that the largest energy
gap coincides with the largest energy eigenvalue. As we have made no restrictions on
the size or structure of the target or machine, the above inequality pertains to cooling
protocols that could, for instance, be realised via sequences of unitaries on the target and
parts of the machine. It follows that perfect cooling is only possible under two conditions:
Either the machine begins in a pure state (β →∞), or HM is unbounded, i.e., ωmax

M →∞.
Requiring β <∞, a diverging energy gap in the machine Hamiltonian is thus a necessary
structural condition for perfect cooling. Indeed, the largest energy gap of the machine
plays a crucial role in limiting how cool the target system can be made (see also, e.g.,
Refs. [82, 359]). We now detail an independent property that is required for cooling with
minimal energetic cost.

2. Cooling at the Landauer Limit.—Suppose now that one wishes to cool an initial
target state τS(β,HS) to any thermal state τ ′S(β∗, HS) with β∗ > β (not necessarily close
to a pure state), at an energy cost saturating the Landauer limit. In Ref. [200], it was
shown that for any finite-dimensional machine, there are correction terms to the Landauer
bound which imply that it cannot be saturated; these terms only vanish in the limit where
the machine dimension diverges. Thus, a necessary condition for achieving cooling with
energy cost at the Landauer limit is provided by the following:

Theorem A.3. To cool a target system τS(β,HS) to τS(β∗, HS), with β∗ > β, using a
machine in the initial state τM(β,HM) with energy cost at the Landauer limit, the machine
must be infinite-dimensional.
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As we will discuss below, this minimal requirement for the notion of complexity is far
from sufficient to achieve cooling at Landauer cost.

3. Perfect Cooling at the Landauer Limit.—We have two independent necessary
conditions on the structure of the machine that must be asymptotically achieved to enable
relevant goals for cooling: The former is required to achieve perfect cooling; the latter for
cooling at the Landauer limit. Together, these conditions imply that in order to achieve
perfect cooling at the Landauer limit, one must have an infinite-dimensional machine with
a spectrum that is unbounded (from above), as stated in Corollary 1.2.

Henceforth, we will assume that these conditions are satisfied by the machine. The
question then becomes: How does one engineer an interaction between the target system
and machine to achieve perfect cooling at Landauer cost?

Necessary Control Complexity Conditions

The unbounded structural properties of the machine support the possibility for perfect
cooling at the Landauer limit; however, we now focus on the control properties of the
interaction that realise said potential (see Fig. 1.2). This leads to the distinct notion
of control complexity, which aims to differentiate between protocols that access the
machine in a more or less complex manner. The structural complexity properties are
protocol-independent and related to the energy spectrum and dimensionality of the
machine, whereas the control complexity concerns properties of the unitary that represents
a particular protocol. For instance, the diverging-time protocol previously outlined
comprises a sequence of interactions, each of which is individually not very complex; at
the same time, the unconstrained control complexity protocol accesses the total (overall
infinite-dimensional) machine “at once”, and thus the number of (nontrivial) terms in
the interaction Hamiltonian, or the effective dimensionality of the machine accessed by
the unitary, becomes unbounded. Nonetheless, the net energy cost of this protocol with
unconstrained control complexity remains in accordance with the Landauer limit, as
the initial and final states of both the system and machine are identical to those in the
diverging-time protocol.

Effective Dimensionality.—We begin by considering the effective dimensionality ac-
cessed (nontrivially) by a unitary, whose divergence is necessary but insufficient for
achieving perfect cooling at the Landauer limit, as we show in the next section. This in
turn motivates the desire for a more detailed notion of control complexity that takes into
account the energy-level structure of the machine.

We define the effective dimension as the dimension of the subspace of the global Hilbert
space upon which the unitary acts nontrivially, which can be quantified via the minimum
dimension of a subspace A of the joint Hilbert space HSM in terms of which the unitary
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can be decomposed as USM = UA ⊕ 1A⊥ , i.e.,

d eff := min dim(A) : USM = UA ⊕ 1A⊥ . (A.45)

One can relate this quantity to properties of the Hamiltonian that generates the evolution
in a finite unit of time T (which we can set equal to unity without loss of generality) by
considering the interaction picture. In general, any global unitary USM = e−iHSMT is
generated by a Hamiltonian of the form HSM = HS ⊗ 1M + 1S ⊗HM +Hint. However,
all protocols considered in this work have vanishing local terms, i.e., HS = HM = 0. More
generally, one can argue that the local terms play no role in how the machine is used to
cool the target. As such, one can consider unitaries generated by only the non-trivial term
Hint to be those representing a particular protocol of interest. That is, we can restrict
our attention to USM = e−iHintT , where Hint is a Hermitian operator on HSM of the form∑
iA

i
S ⊗B

i
M such that none of the AiS , Bi

M are proportional to the identity operator. In
doing so, it follows that the effective dimension corresponds to rank(Hint). Lastly, note
that the above definition in terms of a direct sum decomposition provides an upper bound
on any similar quantification of effective dimensionality based on other tensor factorisations
of the joint Hilbert space considered and makes no assumption about the underlying
structure. On the other hand, knowledge of said structure would permit a more meaningful
notion of complexity to be defined. For instance, the effective dimensionality of a unitary
acting on a many qubit system is better captured by considering its decomposition into a
tensor product factorisation rather than the direct sum. We leave the exploration of such
considerations to future work.

The effective dimensionality provides a minimal quantifier for a notion of control
complexity, insofar as its divergence is necessary for saturating the Landauer bound, as we
prove in the next section. In fact, we prove a slightly stronger statement, namely that the
dimension of the machine Hilbert space to which the unitary (nontrivially) couples the
target system to must diverge. However, as we will discuss below, d eff →∞ is generally
insufficient to achieve said goal, and fine-tuned control is required. Nonetheless, the
manifestation of such control seems to be system-dependent, precluding our ability (so
far) to present a universal quantifier of control complexity. Thus, even though further
conditions need to be met to achieve perfect cooling at minimal energy cost in unit time
(see Theorem A.4), whenever we talk of an operation with finite control complexity, we
mean those represented by a unitary that acts (nontrivially) only on a finite-dimensional
subspace of the target system and machine. In contrast, by diverging control complexity,
we mean a unitary that couples the target (nontrivially) to a full basis of the machine’s
Hilbert space, whose dimension diverges. With this notion at hand, we have Theorem 1.3,
which is proven below. Intuitively, we show that if a protocol only accesses a finite-
dimensional subspace of the machine, then the machine is effectively finite-dimensional
inasmuch as a suitable replacement can be made while keeping all quantities relevant for
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cooling invariant. Invoking then the main result of Ref. [200], there are finite-dimensional
correction terms that then imply that the Landauer limit cannot be saturated.

Note finally that in Theorem 1.3 no particular structure of the systems is presup-
posed and the effective dimensionality relates to various notions of complexity put forth
throughout the literature (see, e.g., Refs. [360, 361]). For instance, for a finite-dimensional
target system with equally spaced energy levels ωS , suppose that the machine structure
is decomposed as N qubits with energy gaps ωMn

∈ {ωS + nε}n=1,...,N , with arbitrarily
small ε > 0 and N →∞. Then the overall unitary that approaches perfect cooling at the
Landauer limit has circuit complexity equal to the diverging N .

A.4.2 Proof of Theorem 1.3, Corollary 1.2, and Theorem A.3

Here we prove Theorem 1.3, which implies Theorem A.3 and leads to Corollary 1.2.

Proof. Let HX be a separable Hilbert space associated with the system X . Consider

HM =
∞∑
n=0

ωn|n〉〈n| and HM′ = spann≤m{|n〉}, (A.46)

for some finite m. In other words, HM′ is a finite-dimensional restriction of HM. We will
show that any unitary that (nontrivially) interacts the target system with only a subspace
spanned by finitely many eigenstates of HM cannot attain Landauer’s bound. Consider
a general unitary U . Suppose that U only couples HS with HM′ ; whenever we talk of
an operation with finite control complexity in this article, we mean specifically such a U ,
and by diverging control complexity we mean a unitary that couples the target to any
subspace of HM whose dimension diverges. Since

HS ⊗HM = HS ⊗ (HM′ ⊕H ⊥
M′) ' (HS ⊗HM′)⊕ (HS ⊗H ⊥

M′), (A.47)

we can associate the subspace HS ⊗HM′ with the label A and HS ⊗H ⊥
M′ with B and

write U = UA ⊕ 1B. Then the initial configuration can be expressed as:

%S ⊗ τM(β,HM) =

 %S ⊗ %M′ 0

0 %S ⊗ %⊥M′

 , (A.48)

where

%M′ := 1
ZM(β,HM)

∑
n≤m

e−βωn|n〉〈n| and %⊥M′ := 1
ZM(β,HM)

∑
n>m

e−βωn|n〉〈n|

(A.49)

add up to a (normalised) thermal state. Now consider the state

%̃M =

 %M′ 0

0 tr
[
%⊥M′

]
 . (A.50)
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It is straightforward to check that is indeed a quantum state; moreover, it is the Gibbs
state (at inverse temperature β) associated with the Hamiltonian

H̃M =
∑
n≤m

ωn|n〉〈n| −
1
β

log
(∑
n>m

e−βωn
)
|m+ 1〉〈m+ 1|. (A.51)

To see this, note that ZM(β,HM) = ZM(β, H̃M) and that

exp
{
−β

[
− 1
β

log
(∑
n>m

e−βωn
)]}

=
∑
n>m

e−βωn . (A.52)

Thus %̃M = τM(β, H̃M). To ease notation in what follows, we will write ω̃m+1 :=
− 1
β

log
(∑

n>m e
−βωn

)
. In the rest of the proof, we will show that the unitary U and

the Hamiltonian HM can be replaced by finite-dimensional versions without changing the
quantities relevant for Landauer’s principle.

Let Ũ = UA ⊕ (1S ⊗ |m+ 1〉〈m+ 1|). We then have

Ũ (%S ⊗ %̃M) Ũ † =

 UA(%S ⊗ %M′)U †A 0

0 e−βω̃m+1

ZM(β,HM) %S

 (A.53)

and

trM
[
Ũ (%S ⊗ %̃M) Ũ †

]
= trM′

[
UA (%S ⊗ %M′)U †A

]
+ e−βω̃m+1

ZM(β,HM) %S . (A.54)

Compare this to the expression

trM
[
U(%S ⊗ %M)U †

]
= trM′

 UA(%S ⊗ %M′)U †A 0

0 %S ⊗ %⊥M′


= trM′

[
UA(%S ⊗ %M′)U †A

]
+ tr

[
%⊥M′

]
%S

= trM′
[
UA(%S ⊗ %M′)U †A

]
+ e−βω̃m+1

ZM(β,HM) %S , (A.55)

since tr
[
%⊥M′

]
= 1
ZM(β,HM)

∑
n>m e

−βωn . Thus, the final system state is the same as it
would be if we replaced the full initial machine state with %̃M; in particular, the entropy
decrease of the system for any unitary that cools it is also unchanged.

The last thing we need to check is that the energy change of the machine similarly
remains invariant. To that end, we have that

%̃′M = trS
[
Ũ(%S ⊗ %̃M)Ũ †

]
= trS

[
UA(%S ⊗ %M′)U †A

]
+ e−βω̃m+1

ZM(β,HM) |m+ 1〉〈m+ 1|,

%̃M = %M′ + e−βω̃m+1

ZM(β,HM) |m+ 1〉〈m+ 1|. (A.56)

Thus, we have

tr
[
H̃M(%̃′M − %̃M)

]
= tr

{
HM

[
trS

[
UA(%S ⊗ %M′)U †A

]
− %M′

]}
, (A.57)
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since US only acts on HS ⊗HM′ and H̃M|M′ = HM|M′ . In the same way, we have

trS
[
U(%S ⊗ %M)U †

]
= trS

[
UA(%S ⊗ %M′)U †A

]
+ %⊥M′

%M = %M′ + %⊥M′ . (A.58)

Thus, the energy difference is also

tr
{
HM

[
trS

[
UA(%S ⊗ %M′)U †A

]
− %M′

]}
. (A.59)

Hence, we have shown that we can replaceM by some m+ 1 dimensional machine M̃ if
the joint unitary U only acts on m levels of HM. By Theorem 6 of Ref. [200], there are
finite-dimensional corrections to the Landauer bound, which then imply that it cannot be
reached for finite m. Thus, the effective machine dimension, i.e., that which is actually
(nontrivially) accessed throughout the interaction, must diverge in order for cooling to be
possible at the Landauer limit. This proves Theorem 1.3, which implies Theorem A.3.

A.4.3 Sufficient Complexity Conditions

Having shown the necessary requirements for cooling at Landauer cost, namely a control
interaction that acts nontrivially on an infinite-dimensional (sub)space of the machine’s
Hilbert space, let us now return to emphasise the properties of the machine and cooling
protocol that are sufficient to achieve perfect cooling at Landauer cost. For simplicity,
we consider the case of a qubit, which exemplifies the discussion of finite-dimensional
systems. The case of infinite-dimensional systems shall be treated independently in the
next appendix.

We first consider the structural properties of the machine. The diverging-time protocol
discussed in Appendix A.3 makes use of a diverging number N of machines. Thus, the
machine begins in the thermal state τ(β,Htot

M ) of a (2N)-dimensional system (with N

eventually diverging), with energy-level structure given by the sum of the Hamiltonians
in Eq. (A.17), i.e.,

Htot
M =

N∑
n=1

H(n)
Mn

=
∑
n

(1 + nε)H(n)
S , (A.60)

that acts on the full Hilbert space (we use the usual convention that it acts as identity on
unlabelled subspaces, e.g., H(1)

M ≡ H
(1)
M ⊗ 1(2) ⊗ · · · ⊗ 1(N)). Let us analyse in detail the

properties of this Hamiltonian. The ground state is |0〉⊗N , which is set at zero energy.
More generally, the energy eigenvalue corresponding to an eigenstate |i0, i1, . . . , iN〉 is
given by ω1 multiplied by the number of indices ik that are equal to 1, plus a sum of
terms kε where k is the label of each index equal to 1. Thus, the energy eigenvalue of the
eigenstate |1, . . . , 1〉 diverges as the number of subsystems diverges. At the same time,
letting the factor ε go to zero renders all eigenstates with the same (constant) number
of indices such that ik = 1 approach the same energy. Thus, in the limit ε → 0, one

190



Appendix A

obtains subspaces of energy E(k)
M = kω1 with degeneracy given by Dk =

(
N
k

)
, which also

diverges for each constant k and diverging N . Therefore, in addition to satisfying the
structural conditions that are necessary for perfect cooling, as stated in Theorem A.3,
the machine used here features additional properties, which are crucially important for
this particular protocol, in particular because they are sufficient for perfect cooling at
Landauer cost. As a remark, we also emphasise that for fixed (large) N and (small) ε, the
machine is finite-dimensional and has a non-degenerate Hamiltonian without any energy
levels formally at infinity.

Concerning the control complexity properties of the unitary that achieves perfect
cooling in unit time, note that it is a cyclic shift operator, which can be written as

USM = ΠN
n=1S

2
SMn

= Πn

 1∑
i,jn=0

|i, j1, . . . , jn, . . . , jN〉〈jn, j1, . . . , i, . . . , jN |SM


=

1∑
i,j1...jN=0

|i, j1, . . . , jN〉〈jN , i, j1, . . . , jN−1|SM. (A.61)

As it is evident from its form, this unitary acts nontrivially on all of the (divergingly many)
energy levels of the machine. The only basis vectors of the system-plus-machine Hilbert
space that are left invariant are |i = 0, j1 = 0, . . . , jN = 0〉 and |i = 1, j1 = 1, . . . , jN = 1〉.

A.4.4 Fine-tuned Control Conditions

Theorem 1.3 captures a notion of control complexity as a resource in a thermodynam-
ically consistent manner, i.e., in line with Nernst’s unattainability principle. However,
following the discussion around Theorem A.3 and that above, the protocols that we present
that achieve perfect cooling at Landauer cost make use of machines and interactions with
a far more complicated structure than suggested by the necessary condition of infinite
effective dimensionality. In particular, the interactions couple the target system to a
diverging number of subspaces of the machine corresponding to distinct energy gaps in
a fine-tuned manner. Moreover, there are a diverging number of energy levels of the
machine both above and below the first excited level of the target.

This suggests that an operationally meaningful quantifier of control complexity must
take into account the energy-level structure of the machine that is accessed throughout
any given protocol; additionally that of the target system plays a role. Indeed, both
the final temperature of the target as well as the energy cost required to achieve this
depends upon how the global eigenvalues are permuted via the cooling process. First, how
cool the target becomes depends on the sum of the eigenvalues that are placed into the
subspace spanned by the ground state. Second, for any fixed cooling amount, the energy
cost depends on the constrained distribution of eigenvalues within the machine. Thus, in
general, the optimal permutation of eigenvalues depends upon properties of the target
and machine.
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For instance, consider an arbitrary initially thermal target qubit, whose state is given
by diag(p, 1− p) and a thermal machine of dimension dM with spectrum {λiM}i=0,...,dM−1.
Now consider the decomposition of the joint Hilbert space into two orthogonal subspaces,
B0 and B1, corresponding to the ground and excited eigenspaces of the target. The initial
joint state is p diag(λiB0

)⊕ (1− p) diag(λiB1
), where we have written λiBj to denote the ith

machine eigenvalue in the subspace Bj. The total population in the subspaces B0 and B1

are p and (1−p) respectively. To achieve perfect cooling one must permute the eigenvalues
such that approximately a net transfer of population (1− p) is moved from B1 to B0. To
do this, one can take any subset K of {λiB1

} such that as dM →∞, ∑i∈K λ
i
B1
→ (1− p)

and a subset K ′ (with |K| = |K ′|) from {λiB0
} such that ∑i∈K′{λiB0

} → 0 and exchange
them. Although the choice of eigenvalues permuted is non-unique, the requirement must
be fulfilled for some sets to perfectly cool the target. For any pair of eigenvalues exchanged
between the subspaces, demanding that the exchange costs minimal energy amounts to
a fine-tuning condition of the form λiM → pλiB0

+ (1 − p)λiB1
that must be satisfied. In

general, the fine-tuned eigenvalue conditions that must be asymptotically attained depend
upon target and machine eigenvalues, making it difficult to derive a closed-form expression.
However, in the restricted scenario in which the target qubit begins maximally mixed (i.e.,
at infinite temperature), the machine begins thermal at some β > 0 and of dimension dM,
and that the unitary implemented is such that the target is cooled as much as possible, one
can derive precise conditions in terms of the machine structure alone, as we demonstrate
below. The case for higher-dimensional target systems is similar.

This discussion highlights the importance of capturing properties beyond the effective
dimensionality, e.g., those regarding the distribution of machine (and, more generally,
target system) eigenvalues, in order to meaningfully quantify control complexity in thermo-
dynamics. Our protocols display similar behaviour to that discussed above asymptotically.
Moreover, the machines exhibit an energy-level structure such that every possible energy
gap is present, i.e., the set of machine energy gaps {ωij = ωi − ωj} densely covers the
interval [ωS ,∞), where ωS is the energy of the first excited level of the target. Whether
or not such a condition is necessary in general remains an open question.

Here we analyse the fine-tuned control conditions that are asymptotically required
for cooling at the Landauer limit. We begin with some general considerations before
focusing on a special case for which an analytic expression can be derived. Furthermore,
we demand that the unitary implemented is such that the target is cooled as much as
possible: This does not preclude the possibility for cooling the target system less (albeit
still close to a pure state) at a cost closer to the Landauer bound without satisfying all of
the fine-tuning conditions. Nonetheless, in general there are a number of such conditions
to be satisfied, and the special case serves as a pertinent example that demonstrates how
the particular set of fine-tuning conditions for any considered scenario can be derived.

Consider an arbitrary thermal target system and machine of finite dimensions, with re-

192



Appendix A

spective spectra λS := {λ0
S , . . . , λ

dS−1
S } and λM := {λ0

M, . . . , λ
dM−1
M }. The states begin un-

correlated, so the global spectrum of the initial joint state is λSM := {λ0
SM, . . . , λ

dSdM−1
SM } =

{λ0
Sλ

0
M, λ

0
Sλ

1
M, . . . , λ

dS−1
S λ

dM−1
M }. Consider now a global unitary transformation; such a

transformation cannot change the values of the spectrum, but merely permute them. In
other words, the spectrum of the final global state after any such unitary is invariant and
we have equivalence of the (unordered) sets λ′SM and λSM.

The transformation that cools the target system as much as possible1 is the one
that places the dM largest of the global eigenvalues into the subspace spanned by the
ground state of the target, the second dM largest into that spanned by the first excited
state of the target, and so forth, with the smallest dM global eigenvalues placed in the
subspace corresponding to the highest energy eigenstate of the target system (we prove
this statement shortly). More precisely, we denote by λ↓ the non-increasing ordering of
the set λ. Since the target and machine begin thermal, the local spectra λS and λM are
already ordered in this way with respect to their energy eigenbases, which we consider
to be labelled in non-decreasing order. Cooling the target system as much as possible
amounts to achieving the final reduced state of the target

%′S =
dS−1∑
i=0

dM−1∑
j=0

λ↓idM+j
SM

 |i〉〈i|S . (A.62)

As a side remark, note that since each of the global eigenvalues are a product of the initial
local eigenvalues (due to the initial tensor product structure), which are in turn related to
the energy-level structure of the target system and machine (as they begin as thermal
states), one can already see here that in order to approach perfect cooling, the machine
must have some diverging energy gaps, such that the (finite) sum of the global eigenvalues
contributing to the ground-state population of the target approaches 1.

Of course, there is an equivalence class of unitaries that can achieve the same amount
of cooling; in particular, any permutation of the set of the dM global eigenvalues within
each energy eigenspace of the target system achieves the same amount of cooling, since
it is the sum of these values that contribute to the total population in each subspace.
Importantly, although such unitaries cool the target system to the same extent, their effect
on the machine differs, and therefore so too does the energy cost. However, demanding
that such cooling is achieved at minimal energy cost amounts to a unique constraint on
the global post-transformation state, namely that it must be

%′SM =
dS−1∑
i=0

dM−1∑
j=0

λ↓idM+j
SM |ij〉〈ij|SM. (A.63)

1We take majorisation among passive states to be the measure of cooling; this implies the highest possible
ground state population and purity, and lowest possible entropy and average energy via Schur convexity.
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We can derive the above form of the final joint state as follows. Consider the following
ordering for the energy eigenbasis of SM chosen to match the above form

{|00〉SM, |01〉SM, ..., |0, dM − 1〉SM,

|10〉SM, ..., |1, dM − 1〉SM,
...

|dS − 1, 0〉SM, ..., |dS − 1, dM − 1〉SM}. (A.64)

This ordering is monotonically non-decreasing primarily with respect to the energy of
S, and secondarily w.r.t. M. We take the final state %′SM to be expressed in this basis.
To maximise the cooling in a single unitary operation, we maximise the sum of the first
k · dM diagonal elements, for each k ∈ {1, 2, ..., dS}, as each sum corresponds to the total
population in the kth lowest energy eigenstate of S. The initial state %SM is diagonal in
this basis, so the vector of initial diagonal elements, which we label θ := diag(%SM), is also
the vector of eigenvalues, λSM, i.e., θ = λSM. Furthermore, since the unitary operation
leaves the set of eigenvalues invariant, we have via the Schur-Horn lemma [362] that the
vector of final diagonal elements, which we label θ′ := diag(%′SM), is majorised by the
vector of initial ones, i.e., θ′ ≺ θ. It follows that the partial sums we wish to maximise are
upper bounded by the corresponding partial sums of the k · dM largest diagonal elements
of the initial state. We claim that the unitary that cools this maximal cooling amount at
minimum energy cost is the one that permutes the diagonal elements to be ordered w.r.t.
the basis ordering in Eq. (A.64).

More precisely, via the Schur-Horn lemma, one can always write θ′ = Dθ, with D a
doubly stochastic matrix. The partial sums of the k ·dM first elements are linear functions
of the elements of θ. Thus the maximum values are obtained at the extremal points of
the convex set of doubly stochastic matrices, which are the permutation matrices, via
the Birkhoff-von Neumann theorem [362]. One can see by inspection that the optimal
permutation matrices are the ones that place the largest dM diagonal elements in the
first block (i.e., the ground state eigenspace of S), the next largest dM elements in
the second block (i.e., the first excited state eigenspace of S), and so on. Within each
block, the ordering does not affect the cooling of the target, so there is an equivalence
class of permutations that satisfy the maximal cooling criterion. However, adding the
optimisation over the energy cost eliminates this freedom. We may consider the reduced
set of stochastic matrices that satisfy maximal cooling, generated by the permutations
described above. Since the average energy of the final state is again a linear function
of the diagonal elements, here too the minimum corresponds to a permutation matrix.
Clearly the permutation that minimises the average energy is the one that orders the
elements within each block to be decreasing w.r.t. the energies ofM. Thus, the unique2

2Note that degeneracies in energy eigenvalues would lead to sets of equal diagonal elements, and prevent one
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stochastic matrix D which leads to maximal cooling at the least energy cost possible is
the one that permutes the energy eigenvalues to be ordered decreasing primarily w.r.t. the
system energies, and secondarily w.r.t. the machine energies. The action of the stochastic
matrix on diagonal elements of the state is related to the unitary operation on the entire
quantum state by |Uij|2 = Dij, so that the unitary operation is also a permutation (up
to an energy dependent phase, which is irrelevant since the initial and final states are
diagonal).

We may understand this optimal operation through the notion of passivity, by noting
that it cools at minimal energy cost by rendering the machine into the most passive
reduced state in the joint unitary orbit with respect to the cooling constraint on the target.
Intuitively, one has cooled the target system maximally at the expense of heating the
machine as little as possible. The final reduced state of the machine corresponding to this
energetically-optimal cooling transformation is

%′M =
dM−1∑
j=0

dS−1∑
i=0

λ↓idM+j
SM

 |j〉〈j|M. (A.65)

In general, any unitary that achieves these desired conditions simultaneously depends
upon the energy-level structure of both the target system and machine, precluding a
closed-form set of conditions that can be expressed only in terms of the machine. However,
for the special case of a maximally-mixed initial target state (i.e., cooling a thermal state
at infinite temperature or erasing quantum information from its most entropic state), one
can deduce this ordering precisely and moreover relate it directly to properties of the
machine Hamiltonian, as we now demonstrate. In the following, we assume that dM is
even; the case for odd dM can be derived similarly.

Theorem A.4. Consider the target system to begin in the maximally mixed state and a
thermal machine at temperature β > 0, whose eigenvalues are labelled in non-increasing
order, {λ↓iM}i=0,...,dM−1. In order to cool the target perfectly, with the restriction that the
target must be cooled as much as possible, at an energy cost that saturates the Landauer
limit, the machine eigenvalues must satisfy

dM
2 −1∑
i=0

λ↓iM → 1,
dM−1∑
i= dM

2

λ↓iM → 0, (A.66)

and

1
2

(
λ
↓b i2 c
M + λ

↓ dM2 +b i2 c
M

)
λ↓iM

→ 1 (A.67)

from choosing a unique permutation. However, as the state in such degenerate subspaces is proportional to the
identity matrix, we may take any unitary that is block diagonal w.r.t. the degeneracies without affecting the
state, and hence the final cooling or average energy change.
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for all i ∈ {0, . . . , dM − 1}, where b·c denotes the floor function and → denotes that the
condition is satisfied asymptotically, i.e., as dM →∞.3

Proof. We consider a qubit for simplicity, but the generalisation to cooling an arbitrary-
dimensional maximally-mixed state is straightforward. The initial joint spectrum of the
system and machine is

λSM = 1
2{λ

↓
M,λ

↓
M} = 1

2{λ
↓0
M, λ

↓1
M, . . . , λ

↓dM−1
M , λ↓0M, λ

↓1
M, . . . , λ

↓dM−1
M }. (A.68)

As each λ↓iM = 1
ZM(β,HM)e

−βωi for any thermal state with Hamiltonian HM = ∑
i ωi|i〉〈i|M

written with respect to non-decreasing energy eigenvalues, it follows that the globally
ordered spectrum is

λ↓SM = 1
2{λ

↓0
M, λ

↓0
M, λ

↓1
M, λ

↓1
M, . . . , λ

↓dM−1
M , λ↓dM−1

M }. (A.69)

Expressing the global states with respect to the product of local energy eigenbases, we
have that the initial joint state is 1S

2 ⊗ τM(β,HM) = diag(λSM) [see Eq. (A.68)] and
the unitary that cools the target as much as possible at minimum energy cost is the
one achieving the globally passive final joint state %′SM = diag(λ↓SM). This leads to the
following reduced states

%′S =


dM

2 −1∑
i=0

λ↓iM

 |0〉〈0|S +

dM−1∑
i= dM

2

λ↓iM

 |1〉〈1|S , (A.70)

%′M = 1
2

(
λ↓0M + λ

↓ dM2
M

)
|0〉〈0|M + 1

2

(
λ↓0M + λ

↓ dM2
M

)
|1〉〈1|M+

+ 1
2

(
λ↓1M + λ

↓ dM2 +1
M

)
|2〉〈2|M + 1

2

(
λ↓1M + λ

↓ dM2 +1
M

)
|3〉〈3|M + . . . (A.71)

Intuitively, the reduced target state has the larger half of the initial machine eigenvalues
in the ground state and the smaller half in the excited state; the reduced machine state
has the sum of the largest elements from each of these halves in its ground state, the
next largest element from each half (which, in this case, is equal to the first) in its first
excited state, and so forth. Let us denote the spectrum of the final state of the machine
by λ′↓M := {λ′↓0M , λ′↓1M , . . . , λ

′↓dM−1
M } = 1

2{λ
↓0
M + λ

↓ dM2
M , λ↓0M + λ

↓ dM2
M , . . . , λ

↓ dM2 +1
M + λ

↓dM−1
M }.

Importantly, by construction, the reduced state of the final machine has its local eigenvalues
in non-increasing order, i.e., it is energetically passive.

We therefore have the final reduced states of the protocol that cools the initially
maximally-mixed target as much as possible at minimal energy cost, in particular with
minimal heat dissipation by the machine, given the structural resources at hand. We can
now analyse the properties that are required to saturate the Landauer limit by considering

3Strictly speaking, in the limit dM →∞ the conditions in Eq. (A.67) must only be satisfied for almost all i,
i.e., for all but a small subset that contributes negligibly to the relative entropy, as we discuss below.
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the terms on the r.h.s. of Eq. (1.8) for any fixed initial inverse temperature of the machine
β ≥ 0.

First note that cooling the target system by any amount fixes the change in entropy of
the target system, so the first term is irrelevant. The second term concerns the mutual
information built up between the target system and machine. In general, this is non-
vanishing, although one can achieve any desired amount of cooling without generating
such correlations (as per our constructions). Furthermore, in the case where one wants to
consider attaining a perfectly cool final state, as we do here, the final reduced state of the
target is approximately pure and so I(S : M)%′SM → 0. In terms of the reduced states

above, this means that ∑ dM
2 −1

i=0 λ↓iM → 1 and ∑dM−1
i= dM

2
λ↓iM → 0, which can only occur if the

largest half of energy eigenvalues of the machine, i.e., ωi for all i ≥ dM
2 , diverge (since the

summation contains only non-negative summands).
The final term that must be minimised to saturate the Landauer limit is the relative

entropy of the final with respect to the initial machine state, D(%′M‖%M). Here one can
already see that an infinite-dimensional machine is required to saturate the Landauer
bound: From Ref. [200], D(%′M‖%M) ≥ f(∆SM, dM), where f is a dimension-dependant
function of the entropy difference of the machine that exhibits non-negative correction
terms that only vanish in the limit dM →∞. The relative entropy vanishes iff %M = %′M;
moreover, by Pinsker’s inequality one has 1

2‖%M − %
′
M‖

2
1 ≤ D(%M‖%′M), so one can bound

the trace distance between the initial and final state of the machine for any desired value
of the relative entropy. Although %M = %′M implies a trivial process that cannot cool
the (initially thermal) target system, as our protocols that saturate the Landauer limit
demonstrate, there are processes that asymptotically display the behaviour %′M → %M

and cool the target system. For the asymptotic machine states to converge, in particular
their eigenvalues must become approximately equal asymptotically. Demanding this on
the spectrum in Eq. (A.71) leads to a generic term that must be asymptotically satisfied
of the form:

1
2

(
λ
↓b i2 c
M + λ

↓ dM2 +b i2 c
M

)
λ↓iM

→ 1 ∀ i ∈ {0, . . . , dM − 1}. (A.72)

In order to achieve perfect cooling at the Landauer limit, one thus must simultaneously
satisfy the conditions outlined in Theorem A.4. In other words, to minimise the relative
entropy term with the additional constraints ∑ dM

2 −1
i=0 λ↓iM → 1 and ∑dM−1

i= dM
2
λ↓iM → 0. The

first thing to note is that since the eigenvalues λ↓iM contribute to different sums depending
on whether i is in the larger half {0, . . . , dM2 − 1} or smaller half {dM2 , . . . , dM}, one

cannot have λ↓
dM

2 +b i2 c
M = λ

↓b i2 c
M ∀ i (i.e., a completely degenerate machine), since then
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both summations would be over identical values and there is no way for them to converge
to distinct values. This precludes the trivial solution that satisfies the constraints of
Eq. (A.67) alone, namely the maximally mixed machine state which cannot be used to
perform any cooling [as, in particular, it does not satisfy the constraints of Eq. (A.66)].
For the conditions to be simultaneously satisfied, we intuitively require that, although
they must be distinct, for each i both λ↓b

i
2 c

M and λ↓
dM

2 +b i2 c
M become “close” to each other,

but with a difference that decays rapidly as dM →∞, such that in the infinite-dimensional
limit the larger “half” of the eigenvalues sum to one and the smaller “half” sum to zero.
A subtle point to note is that because the relative entropy involves the ratio of final
to original eigenvalues it is not enough that the absolute difference |λ′↓iM − λ↓iM| goes to
zero, as in the infinite dM limit, it is possible for this to happen for all of the eigenvalues
approaching zero without the ratios of final to initial eigenvalues approaching unity (and
hence the relative entropy not vanishing). One manner of satisfying such a constraint, as
evidenced by the construction we proceed with next, is for the ratios of final to initial
eigenvalues go to unity for all but a small number energy levels, with the population in
this exceptional subspace going to zero in the infinite dM limit (along with the ratios not
diverging within said subspace).

The natural question that arises here is whether or not it is possible to satisfy these
constraints concurrently. (Note that none of the cooling protocols provided throughout
this article use the max-cooling operation, so do not serve as examples.) To this end, we
now construct a family of machine Hamiltonians HM of increasing dimension that in the
limit dM →∞ manages to attain both perfect cooling of a maximally-mixed qubit and
the Landauer limit for the energy cost using the maximal cooling operation discussed
above. The form of the Hamiltonian is instructive regarding the complexity requirements
for perfect cooling at the Landauer limit. The construction is inspired by the infinite-
dimensional Hamiltonian found in Ref. [200] (Appendix D), therein used to perfectly
cool a qubit with energy cost arbitrarily close to the Landauer limit. Their construction
already begins with infinitely many machine eigenvalues, as well as infinitely many of them
corresponding to diverging energy levels. In the following, we demonstrate that one can
arbitrarily closely attain perfect cooling and the Landauer limit with finite-dimensional
Hamiltonians, and by taking the limit dM →∞, recover the result of Ref. [200].

The Hamiltonian of the machine is dM := 2N+1 dimensional,

HM =
N∑
n=0

2n∑
j=1

(
n∆|n; j〉〈n; j|M

)
+N∆|N ; 2N+1〉〈N ; 2N+1|M. (A.73)

Here, each energy eigenvalue labelled by n is 2n-fold degenerate. Thus the ground state is
unique, the first excited state is two-fold degenerate, the second excited state four-fold
degenerate, and so on, with the degeneracy doubling every energy level. In order to
make the Hamiltonian of even dimensionality for convenience, we have added an extra
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degenerate state to the final level (which makes this level (2N + 1)-fold degenerate). Also
note that the Hamiltonian is equally spaced with energy gap ∆. In the following, we use
the index n to denote any one of the degenerate states in the nth energy level from n = 0
to n = N , and the index i to denote individual energy eigenstates from i = 1 to i = 2N+1

(note that in contrast to the previous section, we are here beginning with i = 1 in order
to simplify some future notation). With these indices, the eigenvalues are related by

λ↓iM = e−β∆λ
↓b i2 c
M ∀ i ∈ {2, . . . , dM − 1}, (A.74)

λ↓nM = e−β∆λ↓n−1
M ∀ n ∈ {1, . . . , N}. (A.75)

We introduce a parameter ε to express the Gibbs ratio as

e−β∆ = 1− ε
2 , (A.76)

where 0 < ε < 1, and we will eventually take the limit ε → 0 appropriately as the
dimension diverges. Note that this constrains the Gibbs ratio to be smaller than 1

2 , which
in turn ensures that the total population over all of the degenerate eigenstates in the nth

level is smaller than that in the (n− 1)th level (as it has twice the number of eigenstates,
but less than half the population in each). If this constraint failed to hold, then in the
asymptotic limit, all of the population would lie in energy levels that diverge.

We now consider using this machine to cool a maximally-mixed qubit target. The final
ground-state population of the qubit under the maximal cooling operation is the sum over
the larger half of the eigenvalues of the machine, corresponding to the eigenvalues from
i = 1 to i = 2N (equivalently, from n = 0 to n = N − 1 plus a single eigenvalue from the
n = N energy level), and is thus given by

p′0 = 1
ZM

(
N−1∑
n=0

2n
(1− ε

2

)n
+
(1− ε

2

)N)
, (A.77)

where ZM =
N∑
n=0

2n
(1− ε

2

)n
+
(1− ε

2

)N
(A.78)

is the partition function of the machine. The geometric series above evaluates to

p′0 =
(

1 + ε(1− ε)N
1− (1− ε)N + ε(1− ε)N2−N

)−1

. (A.79)

As an ansatz, supposing that ε scales inversely with N as ε := θ
N

leads to the simplification
(1− ε)N → e−θ as dM (and hence N) diverges. The asymptotic behaviour of the ground-
state population is thus

p′0 = 1− 1
N

(
θ

eθ − 1

)
+O

( 1
N2

)
, (A.80)

and so p′0 → 1 in the N →∞ limit.
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We now move to calculate the energy cost. Rather than considering the optimal
max-cooling operation described above, we consider a slight modification in order to
make the connection to the construction in Ref. [200] clear as well as to simplify notation.
Nonetheless, the energy cost of this modified protocol upper-bounds that of the max-
cooling operation (for the same achieved ground-state population), and so showing that
the Landauer limit is attained for the modified protocol implies that it would be too for
the max-cooling protocol. The modification is simply to relabel the smallest eigenvalue of
the machine λ2N+1

M as λ0
M, and treat it as the ground-state eigenvalue in the max-cooling

operation. For general machine states, such a switch would lead to less cooling (if the
same unitary were applied), but in this case it does not because the sum of the first half
of the machine eigenvalues, from i = 0 to i = 2N − 1, is the same as the original sum from
i = 1 to i = 2N , due to the relabelling λ0 = λ2N , since they are both eigenvalues of states
corresponding the maximum excited energy level of the machine spectrum. The spectrum
of the final state of the machine is then given by

λ′↓iM = 1
2

(
λ
↓b i2 c
M + λ

↓b i2 c+
dM

2
M

)
∀ i ∈ {0, . . . , dM − 1}, (A.81)

which leads to

λ′↓0M = 1
2
(
λ↓0M + λ↓2

N

M

)
= λ↓0M, λ′↓1M = 1

2
(
λ↓0M + λ↓2

N

M

)
= λ↓0M,

λ′↓iM = 1
2

(
λ
↓b i2 c
M + λ

↓b i2 c+
dM

2
M

)
∀ i ∈ {2, . . . , dM − 1}

= 1
2

( 2
1− ελ

↓i
M + λn=N

M

)
= 1

2
1
ZM

[(1− ε
2

)n−1
+
(1− ε

2

)N]
, (A.82)

where we observe that the index b i2c+ dM
2 corresponds to the largest energy level of the

machine for all i, and we have used Eq. (A.74) for the spectrum of initial eigenvalues.
Using the index n instead to denote a generic eigenvalue of the nth energy level, we have
the simpler expression

λ′↓nM = 1
2
(
λ↓n−1
M + λ↓NM

)
∀ n ∈ {1, 2, . . . , N}. (A.83)

The energy cost can now be simply calculated from the difference in the average energy of
the machine state,

∆EM =
dM−1∑
i=0

(
λ′↓iM − λ

↓i
M

)
ωi, (A.84)

where we denote the ith energy eigenvalue by ωi. λ↓0M is unchanged, and although λ↓1M
does change, ω1 = 0 corresponds to the ground state and thus this eigenvalue change does
not affect the energy cost. We can thus express the energy cost in terms of the index n
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instead, starting from n = 1 (corresponding to i = 2 onward), as

∆EM =
N∑
n=1

(
λ′↓nM − λ

↓n
M

)
ωn

= 1
β

[
1− 2(1− ε)N

1− (1− ε)N + (1− 2−N)(1− ε)Nε

]
log

( 2
1− ε

)
. (A.85)

As we did above, we parameterise ε = θ
N
. The asymptotic behaviour of the energy cost is

then

β∆EM = log(2) + 1
N

(
1− 2 log(2)

eθ − 1

)
θ +O

( 1
N2

)
, (A.86)

or in terms of the decrease in entropy of the system,

β∆EM = ∆̃SM + logN
N

(
θ

eθ − 1

)
+O

( 1
N

)
. (A.87)

Combining (A.80) and (A.86), we have that in the limit N →∞, which is also dM →∞,
the ground state population approaches 1—corresponding to perfect cooling—and the
energy cost approaches β−1 log(2), which is the Landauer limit for the perfect erasure of a
maximally-mixed qubit.

To connect this construction to the constraints of Eq. (A.67), note that in the limit
N →∞ (recalling that ε = θ

N
),

λ′↓n

λ↓n
= lim

N→∞

1
2

[(
1−ε

2

)n−1
+
(

1−ε
2

)N]
(

1−ε
2

)n = lim
N→∞

[
1

1− ε + 1
2N−n+1

(
e−θ

(1− ε)n

)]
= 1, (A.88)

for all n ≥ 1, leaving only the ground state eigenvalue (corresponding to n = 0 and i = 1)
not satisfying the condition. However this term is actually a negative contribution to the
relative entropy as this eigenvalue decreases, and in any case can be verified independently
to approach zero.

To see this, note that a necessary condition that ensures the contribution of any set of
eigenvalues that do not satisfy Eq. (A.67) to the relative entropy to be negligible is that the
total population of the relevant subspace is vanishingly small. Writing the relative entropy
between two states in terms of their eigenvalues, we have D(%′‖%) = ∑

n λ
′
n log

(
λ′n
λn

)
,

which we split up into two sets: S0 containing all n for which Eq. (A.67) is satisfied
and S± containing the all n for which Eq. (A.67) is not satisfied. The contribution
of the first term to the relative entropy is asymptotically zero, so we are left with
D(%′‖%) = ∑

n∈S± λ
′
n log

(
λ′n
λn

)
. For each term in the sum here, one can write λn = λ′n(1+∆n)

with the condition |∆n| ≥ θ > 0 for some θ, i.e., the ratio of eigenvalues is bounded away
from unity (on either side) by at least θ. This leads to the expression

D(%′‖%) = −
∑
n∈S±

λ′n log(1 + ∆n) = −N±
∑
n∈S±

pn log(1 + ∆n), (A.89)
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where we have renormalised the eigenvalues (which here correspond to a subnormalised
probability distribution) by writing λ′n = N±pn, with N± := ∑

n∈S± λ
′
n being the total

population of the subspace S± and {pn} here forming a probability distribution. Note that
the ratio of eigenvalues going to unity in the S0 subspace implies that the total populations
of initial and final eigenvalues in this subspace are equal, i.e., ∑n∈S0 λn = ∑

n∈S0 λ
′
n, which

in turn implies that the same is true for the S± subspace, leading to ∑n∈S± pn∆n = 0.
We argue from the concavity of the logarithm function that

1
2 log(1 + θ) + 1

2 log(1− θ) ≥
∑
n∈S±

pn log(1 + ∆n). (A.90)

Visualising the graph of the function y = log(1 + x), the latter expression above must
evaluate to a point that lies within the intersection of the convex hull of (∆n, log(1 + ∆n))
and the linear equality ∑n∈S± pn∆n = 0, the latter of which is the line x = 0. By the
concavity of the logarithm, the aforementioned convex hull lies entirely below the line
segment connecting (1− θ, log(1− θ)) to (1 + θ, log(1 + θ)), and thus the expression is
upper bounded by the intersection of this line segment with x = 0, which is precisely the
l.h.s. of the inequality above. Thus we have the inequality

D(%′‖%) ≥ −N±
[

1
2 log(1 + θ) + 1

2 log(1− θ)
]

= −N±2 log(1− θ2) ≥ N±
2 θ2, (A.91)

where we used log(1 − θ2) ≤ −θ2 for all θ ∈ [−1, 1]. As θ > 0, the only way that this
contribution to the relative entropy by the eigenvalues that do not satisfy Eq. (A.67) can
be asymptotically negligible is if the total population of their associated subspace N±
goes to zero.

Finally note that, as mentioned in the main text, the above result pertains to the
restricted setting where the target system is cooled as much as possible. However, this
is not the only way to approach perfect cooling at the Landauer cost: Instead of the
largest half of global eigenvalues being placed into the ground state subspace of the target
system, any amount of them such that their sum is sufficiently close to one would suffice.
Although it is complicated to derive an exact set of conditions that would need to be
satisfied in such cases (since it depends upon exactly which eigenvalues are permuted to
which subspaces), the fact that fine-tuned control over particular degrees of freedom is
required remains. Lastly, note that even in the restricted setting of cooling the target as
much as possible, the situation becomes even more complicated when considering target
systems that begin at a finite temperature. Here, the choice of which global eigenvalues
should be permuted to which subspaces to cool the system as much as possible at minimal
energy cost depends on the microscopic structure of both the system and machine. This
means that one can no longer determine the final eigenvalue distributions of the reduced
states in terms of the initial machine eigenvalues alone, as we were able to do for the
maximally mixed state. In turn, one can no longer derive a condition on properties
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of the machine itself, independently of the target system. Nonetheless, again, the key
message that cooling at minimal energy cost requires fine-tuned control to access precisely
distributed populations still holds true. We leave the further exploration of such scenarios,
for instance constructing optimal machines for particular initial target systems, to future
work.

A.5 Diverging Time / Control Complexity Cooling Protocols
for Harmonic Oscillators

We now analyse the case of cooling infinite-dimensional quantum systems in detail.
More specifically, we consider ensembles of harmonic oscillators. For the sake of com-
pleteness, we first briefly present some key concepts that will become relevant throughout
this analysis. Following this, in Appendix A.5.2, we construct a protocol that achieves
perfect cooling at the Landauer limit using a diverging number of Gaussian operations.
Although such operations are typically considered to be relatively “simple” both when
it comes to experimental implementation and theoretical description, according to the
effective dimension notion of control complexity that we have shown must necessarily
diverge to cool at the Landauer limit [see Eq. (1.3)], such Gaussian operations have infinite
control complexity. Subsequently, in Appendix A.5.2, we consider the task of perfect
cooling with diverging time but restricting the individual operations to be of finite control
complexity. In particular, note that such operations are non-Gaussian in general. Here,
we present a protocol that approaches perfect cooling of the target system as the number
of operations diverges, with finite energy cost—albeit not at the Landauer limit. Whether
or not a similar protocol exists that also saturates the Landauer bound remains an open
question. Finally, in Appendix A.5.3, we reconsider the protocol from Appendix A.5.2
in terms of a single transformation, i.e., unit time. By explicitly constructing the joint
unitary transformation that is applied throughout the entire protocol, we show this to be
a multi-mode Gaussian operation acting on a diverging number of harmonic oscillators.
The key message to be taken away from these protocols is that, while the distinction
between Gaussian and non-Gaussian operations is a significant one in terms of experi-
mental feasibility, and it certainly plays a role regarding the task of cooling—in particular,
the energy cost incurred—these concepts alone cannot be used to characterise a notion
of control complexity that must diverge to approach perfect cooling at the Landauer
limit. On the other hand, the effective dimension of the machine used does precisely that;
however, in a manner that is far from sufficient (for the case of harmonic oscillators), as
even a single two-mode swap, which cannot cool perfectly at Landauer cost, would have
infinite control complexity. Indeed, a more nuanced characterisation of control complexity
in the infinite-dimensional setting, which takes more structure regarding the operations
and energy levels into account, remains an open problem to be addressed.
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A.5.1 Preliminaries

We consider ensembles of N harmonic oscillators (i.e., infinite-dimensional systems
consisting of N bosonic modes), which are associated to a tensor product Hilbert space
Htot = ⊗N

j=1Hj and (lowering, raising [respectively]) mode operators {ak , a†k} satisfying
the bosonic commutation relations:

[ak, a†k′ ] = δkk′ , [ak, ak′ ] = 0, ∀ k, k′ = 1, 2, . . . , N. (A.92)

The free Hamiltonian of any such system can be written as Htot = ∑N
k=1 ωka

†
kak, where

ωk represents the energy gap of the k-th mode (in units where ~ = 1). Position- and
momentum-like operators for each mode can be defined as follows (for simplicity, we use
the rescaled version below where the ωk are omitted from the pre-factors)

qk := 1√
2

(ak + a†k), pk := 1
i
√

2
(ak − a†k). (A.93)

As a consequence of the commutation relations in Eq. (A.92), the generalised position
and momentum operators satisfy the canonical commutation relations

[qk, pl] = iδkl. (A.94)

To simplify notation, one may further introduce the vector of quadrature operators
X := (q1, p1, . . . , qN , pN ); then, the commutation relations can be expressed succinctly as

[Xk, Xl] = iΩkl, (A.95)

where the Ωkl are the components of the symplectic form

Ω =
N⊕
j=1

Ωj, Ωj =

 0 1

−1 0

 . (A.96)

The density operator associated to N harmonic oscillators can be written in the so-called
phase-space representation as

% = 1
(2π)N

∫
χ(Ωξ)W(−Ωξ) d2Nξ, (A.97)

whereW(ξ) := eiξ
TX is the Weyl operator and χ(ξ) := tr [%W(ξ)] is called the characteristic

function.
Throughout our analysis, we will see that a particular class of states and operations,

namely those that are known as Gaussian, are of particular importance. A Gaussian state
is one for which the characteristic function is Gaussian

χ(ξ) = e−
1
4 ξ
TΓξ+iXT ξ. (A.98)
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Here, X := 〈X〉% is the displacement vector or vector of first moments, and Γ is a real
symmetric matrix that collects the second statistical moments of the quadratures, which
is known as the covariance matrix. Its entries are given by

Γmn := 〈XmXn +XnXm〉% − 2 〈Xn〉% 〈Xm〉% . (A.99)

We see that any Gaussian state is thus uniquely determined by its first and second moments.
As an example of specific interest here, we recall that any thermal state τ of a harmonic
oscillator with frequency ω is a Gaussian state and has vanishing first moments, X = 0.
Here and throughout this article, we are assuming that the infinite-dimensional thermal
state is well-defined (see, e.g., Ref. [363] for discussion). The covariance matrix of a
thermal state is proportional to the 2× 2 identity, and given by Γ[τ(β,H)] = coth

(
βω
2

)
12.

Gaussian operations are transformations that map the set of Gaussian states onto
itself. Such operations, which include, e.g., beam-splitting and phase-space displacement,
are generally considered to be relatively easily implementable in the laboratory. Although
non-unitary Gaussian operations exist as well, all of the examples mentioned above are
Gaussian unitaries. Such Gaussian unitaries are generated by Hamiltonians that are at
most quadratic in the raising and lowering operators. Conversely, any Hamiltonian that
can be expressed as a polynomial of at most second order in the mode operators generates
a Gaussian unitary. Any unitary Gaussian transformation can be represented by an affine
map (M,κ),

X 7→MX+ κ, (A.100)

where κ ∈ R2N is a displacement vector in the phase-space representation and M is a
symplectic 2N × 2N matrix that leaves the symplectic form Ω invariant, i.e.,

M ΩMT = Ω. (A.101)

Under such a mapping, the first and second moments transform according to

X 7→MX+ κ, Γ 7→MΓMT . (A.102)

Lastly, note that the energy of a Gaussian state %G with respect to its free Hamiltonian
H = ∑

k ωka
†
kak can be calculated in terms of the first and second moments as follows [54]

E(%G) =
∑
k

ωk

(1
4tr

[
Γ(k) − 2

]
+ 1

2 ||X
(k)||2

)
, (A.103)

where ‖ · ‖ denotes the Euclidean norm. Here, Γ(k) indicates the (2× 2)-submatrix of the
full covariance matrix Γ corresponding to the reduced state of the kth mode. Similarly
X

(k) denotes the two-component subvector of first moments for the kth mode of the
displacement vector X.
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A.5.2 Diverging Time Cooling Protocol for Harmonic Oscillators

Diverging Time Protocol using Gaussian Operations (with Diverging Control
Complexity)

We now consider a simple protocol for lowering the temperature of a single-mode
system within the coherent-control paradigm using a single harmonic oscillator machine.
This protocol will form the basic step of a protocol for achieving perfect cooling at the
Landauer limit using diverging time, which we subsequently present.

In the situation we consider here, the target system S to be cooled is a harmonic
oscillator with frequency ωS interacting with a harmonic oscillator machineM at frequency
ωM ≥ ωS via a (non-energy-conserving) unitary acting on the joint system SM initialised
as a tensor product of thermal states τS(β,HS)⊗ τM(β,HM) at inverse temperature β
with respect to their local Hamiltonians HS and HM, respectively. The joint covariance
matrix of the system and machine modes is block-diagonal since the initial state is of
product form, i.e.,

Γ[τS(β,HS)⊗ τM(β,HM)] = Γ[τS(β,HS)]⊕ Γ[τM(β,HM)], (A.104)

and the 2× 2 blocks of the individual modes are also diagonal, with the explicit expression
Γ[τX(β,HX )] = coth

(
βωX

2

)
12.

In this setting, it has been shown that the minimum reachable temperature of the target
system is given by Tmin = ωS

ωM
T (for the case ωM ≥ ωS) [83]. The non-energy-conserving

unitary transformation that achieves this is of the form

U = e−i
π
2 (a†b+ ab†), (A.105)

where the operators a (a†) and b (b†) denote the annihilation (creation) operators of the
target system and machine, respectively. This beam-splitter-like unitary acts as a swap
with a relative phase factor imparted on the resultant state; nonetheless, this phase is
irrelevant at the level of the covariance matrix, which fully characterises the (Gaussian)
thermal states considered, and transforms it according to a standard swapping of the
systems. After acting with such a swap operator, which is a Gaussian operation, the first
moment remains vanishing and the covariance matrix transforms as [see Eq. (A.102)]

coth
(
βωS

2

)
12 0

0 coth
(
βωM

2

)
12

 SWAP7−→

coth
(
βωM

2

)
12 0

0 coth
(
βωS

2

)
12

 . (A.106)

This means that both the output target system and machine are thermal states at different
temperatures T ′S = ωS

ωM
T and T ′M = ωM

ωS
T . Making use of Eq. (A.103), we can calculate
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the energy change for the system and machine as

∆ES = E
[
τS

(
ωM
ωS

β,HS

)]
− E [τS(β,HS)]

= ωS
2

[
coth

(
βωM

2

)
− coth

(
βωS

2

)]
,

∆EM = E
[
τM

(
ωS
ωM

β,HM

)]
− E [τM(β,HM)]

= ωM
2

[
coth

(
βωS

2

)
− coth

(
βωM

2

)]
. (A.107)

The total energy cost associated to such a swap operation is thus

∆ESM = ∆ES + ∆EM =(ωM − ωS)
2

[
coth

(
βωS

2

)
− coth

(
βωM

2

)]

=(ωM − ωS)
e−βωS (1− e−β(ωM−ωS ))
(1− e−βωS )(1− e−βωM) . (A.108)

Note that this form is similar to that for finite-dimensional systems with equally spaced
Hamiltonian [cf., Eq. (A.34)]; the dimension-dependent term vanishes as d→∞, simpli-
fying the expression in the infinite-dimensional case.

With this simple protocol for lowering the temperature of a harmonic oscillator target
using a single harmonic oscillator machine at hand, we are now in a position to describe
an energy-optimal (in the sense of saturating the Landauer bound) cooling protocol when
a diverging number of operations, i.e., diverging time, is permitted. In other words, we
now show how to achieve perfect cooling with minimal energy at the expense of requiring
diverging time, i.e., infinitely many steps of finite duration. As mentioned above, in
this specific protocol, the control complexity as per Eq. (1.3) is infinite in each of these
infinitely many steps. As we will argue after having presented the protocol, this is an
artefact of the simple structure of the Gaussian operations used. Indeed, we will later
present a non-Gaussian diverging-time protocol for cooling a single harmonic oscillator to
the ground state using finite control complexity in each of the infinitely many steps, and
at an overall finite (albeit not minimal, i.e., not at the Landauer limit) energy cost. Before
presenting this non-Gaussian protocol, let us now discuss the details of the Gaussian
diverging-time protocol for cooling at the Landauer limit.

We consider a harmonic oscillator with the frequency ωS as the target system and
the machine to comprise N harmonic oscillators, where the nth oscillator has frequency
ωMn = ωS + n ε. In addition, we assume that all modes are initially uncorrelated
and in thermal states at the same inverse temperature β with respect to their free
Hamiltonians, i.e., the target system is τS(β,HS) and the multi-mode thermal machine is
τM(β,HM) = ⊗N

n=1 τMn
(β,HMn

).
In this case, the cooling process is divided into N time steps. During each step, there

is an interaction between the target system and one of the harmonic oscillators in the
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machine. Here, we assume that at the nth time step, the target system interacts only
with the nth harmonic oscillator, which has frequency ωS + n ε. To obtain the minimum
temperature for the target system, we perform the previously outlined cooling process at
each step, which is given by swapping the corresponding two modes. Using Eq. (A.106),
the covariance matrix transformation of the two-mode process at the first time step takes
the form

Γ(1)(τS(β)⊗ τM1
(β)) =

coth
(
βωS

2

)
12 0

0 coth
(
β(ωS+ε)

2

)
12


SWAP7−→ Γ(1)

opt =

coth
(
β(ωS+ε)

2

)
12 0

0 coth
(
βωS

2

)
12

 . (A.109)

By repeating this process on each of the harmonic oscillators in the machine, after the
(n − 1)th step, the 2 × 2-block corresponding to the target system S in the covariance
matrix is given by coth

(
β(ωS+(n−1)ε)

2

)
12. Therefore, one can show inductively that the

covariance matrix transformation associated to the nth interaction is given by

Γ(n)(τS(β)⊗ τMn
(β)) =

coth
(
β(ωS+(n−1)ε)

2

)
12 0

0 coth
(
β(ωS+nε)

2

)
12


SWAP7−→ Γ(n)

opt =

coth
(
β(ωS+nε)

2

)
12 0

0 coth
(
β(ωS+(n−1)ε)

2

)
12

 . (A.110)

Based on this process, after N steps (i.e., after the system has interacted with all
N harmonic oscillators), the minimal achievable temperature of the target system is
T

(N)
min = ωS

ωS+NεT . Moreover, by using Eq. (A.107), one can calculate the energy changes of
the target system and the machine at each time step as

∆E(n)
S = ωS

2

[
coth

(
β(ωS + nε)

2

)
− coth

(
β(ωS + (n− 1)ε)

2

)]
,

∆E(n)
Mn

= (ωS + nε)
2

[
coth

(
β(ωS + (n− 1)ε)

2

)
− coth

(
β(ωS + nε)

2

)]
. (A.111)

The total energy change for the target system during the overall process (i.e., throughout
the N steps) is thus given by

∆ES =
N∑
n=1

∆E(n)
S =

N∑
n=1

ωS
2

[
coth

(
β(ωS + nε)

2

)
− coth

(
β(ωS + (n− 1)ε)

2

)]

= ωS
2

[
coth

(
β(ωS +Nε)

2

)
− coth

(
βωS

2

)]

= ωS

[
e−β(ωS+Nε)

1− e−β(ωS+Nε) −
e−βωS

1− e−βωS

]
. (A.112)
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Here, we have written coth (x) = 1 + 2e−2x

1−e−2x . Similarly, one can obtain the total energy
change of the overall machine

∆EM =
N∑
n=1

∆E(n)
Mn

=
N∑
n=1

ωS + nε

2

[
coth

(
β(ωS + (n− 1)ε)

2

)
− coth

(
β(ωS + nε)

2

)]

=
N∑
n=1

(ωS + nε)
[

e−β(ωS+(n−1)ε)

1− e−β(ωS+(n−1)ε) −
e−β(ωS+nε)

1− e−β(ωS+nε)

]
. (A.113)

It is straightforward to check that the total energy change, i.e., the sum of Eqs. (A.112)
and (A.113), is equal to the energy cost obtained in Eq. (A.34) with d→∞. In particular,
this can be seen by considering the second line of Eq. (A.34), where the second term in
round parenthesis vanishes as d → ∞ for any value of N . Thus, when the number of
operations diverges N →∞ and ε = ωmax−ωS

N
→ 0, where ωmax := βmax

β
ωS is the maximum

frequency of the machines, the heat dissipated by the machines throughout the process
saturates the Landauer bound and is therefore energetically optimal. Moreover, by taking
ωmax →∞ one approaches perfect cooling.

At this point, a comment on the notion of control complexity is in order. According to
Eq. (1.3), the effective dimension of the machine in the protocol we consider here diverges
in addition to time. Indeed, the notion of control complexity thusly defined diverges for
any Gaussian operation acting on the machine, in particular, it diverges for any single
one of the infinitely many steps of the protocol, as each operation is a two-mode Gaussian
operation. At first glance, this appears to be in contrast to the common conception that
Gaussian operations are typically easily implementable (cf. Refs. [54, 209]). However,
an alternative way of interpreting this protocol is that, exactly because of the simple
structure of Gaussian operations, reaching the ground state at finite energy cost requires
a diverging number of two-mode Gaussian unitaries, and thus divergingly many modes on
which to act (see also Appendix A.5.3). In fact, if non-Gaussian unitaries are employed,
then the ground state can be approached at finite energy cost using just a single harmonic
oscillator machine, as we now show.

Diverging Time Protocol using Non-Gaussian Operations (with Finite Control
Complexity)

We now consider a protocol for cooling a single harmonic oscillator at frequency ωS
to the ground state using a diverging amount of time, but requiring only a finite overall
energy input as well as finite control complexity in each of the diverging number of
steps of the protocol. In this protocol, the machine M is also represented by a single
harmonic oscillator whose frequency matches that of the target oscillator that is to be
cooled, ωM = ωS =: ω. The initial states of both the target system S and machineM are
assumed to be thermal at the same inverse temperature β, and are hence both described
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by thermal states of the form

τ(β) = e−βH

tr [e−βH ] =
∞∑
n=0

e−βω2n(1− e−βω) |n〉〈n| =
∞∑
n=0

pn |n〉〈n|SM, (A.114)

where the Hamiltonian H is given by H = ∑∞
n=0 nω |n〉〈n| and the pn = e−βω2n(1− e−βω)

are the eigenvalues of τ . The joint initial state is a product state that we can then write
as

τS(β)⊗ τM(β) =
∞∑

m,n=0
pmpn |m〉〈m|S ⊗ |n〉〈n|M =

∞∑
m,n=0

p̃m+n |m,n〉〈m,n|, (A.115)

where we have defined p̃k := e−βω2k(1− e−βω)2. We then note that the eigenvalues p̃k of
the joint initial state have degeneracy k + 1. For instance, the largest value p̃0 = p0p0,
corresponding to both the system and machine being in the ground state, is the single
largest eigenvalue, but there are two eigenstates, |0, 1〉 and |1, 0〉, corresponding to the
second largest eigenvalue p̃1, three states, |0, 2〉, |1, 1〉, and |2, 0〉 for the third largest
eigenvalue p̃2, and so forth. Obviously, not all of these eigenvalues correspond to eigenstates
for which the target system is in the ground state.

In order to increase the ground-state population of the target system oscillator, we can
now apply a sequence of ‘two-level’ unitaries, i.e., unitaries that act only on a subspace
spanned by two particular eigenstates and exchange their respective populations. The
two-dimensional subspaces are chosen such that one of the two eigenstates corresponds
to the system S being in the ground state, |0, k〉, while the other eigenstate corresponds
to S being in an excited state, |i 6= 0, j〉. In addition, these pairs of levels are selected
such that, at the time the unitary operation is to be performed, the population of |0, k〉 is
smaller than that of |i 6= 0, j〉, such that the two-level exchange increases the ground-state
population of S at each step.

More specifically, at the kth step of this sequence, the joint system SM is in the state
%(k)
SM and one determines the set Ωk of index pairs (i 6= 0, j) such that p̃k < 〈i, j|%(k)

SM|i, j〉,
i.e., the set of eigenstates for which S is not in the ground state and which have a larger
associated population (at the beginning of the kth step) than |0, k〉. One then determines
an index pair (mk, nk) for which this population is maximal, i.e., 〈mk, nk|%(k)

SM|mk, nk〉 =
max{〈i, j|%(k)

SM|i, j〉|(i, j) ∈ Ωk}, and performs the unitary

U (k)
SM = 1SM − |0, k〉〈0, k| − |mk, nk〉〈mk, nk|+

(
|0, k〉〈mk, nk|+ |mk, nk〉〈0, k|

)
. (A.116)

If there is no larger population that is not already in the subspace of the ground state of
the target system, i.e., when Ωk = ∅, which is only the case for the first step (k = 1), then
no unitary is performed. After the kth step, the joint state %(k + 1)

SM is still diagonal in the
energy eigenbasis, and the subspace of the joint Hilbert spaces for which S is in the ground
state is populated with the k+1 largest eigenvalues p̃i in non-increasing order with respect
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to non-decreasing energy eigenvalues of the subspace’s basis vectors |0, i〉. That is, for all
i ∈ {0, 1, 2, . . . , k} and for all j ∈ N with j > i, we have 〈0, i|%(k + 1)

SM |0, i〉 ≥ 〈0, j|%(k + 1)
SM |0, j〉.

Since the Hilbert spaces of both S andM are infinite-dimensional, we can continue
with such a sequence of two-level exchanges indefinitely, starting with k = 1 and continuing
step-by-step as k →∞. Here we note that the choice of (mk, nk) is generally not unique
at the k-th step, but as k →∞, the resulting final state is independent of the particular
choices of (mk, nk) made along the way. In particular, in a fashion that is reminiscent of
the famed Hilbert hotel paradox (see, e.g., Ref. [364, p. 17]), this sequence places all of
the infinitely many eigenvalues p̃k of the joint state of SM (which must hence sum to
one) into the subspace where S is in the ground state. In other words, in the limit of
infinitely many steps, the population of the ground-state subspace evaluates to

∞∑
k=0

(k + 1)p̃k =
∞∑
k=0

(k + 1) e−βω2k (1− e−βω)2 = 1, (A.117)

where we have taken into account the (k+ 1)-fold degeneracy of the kth eigenvalue p̃k. We
thus have limk→∞ trM

[
%(k)
SM

]
= |0〉〈0|S , the reduced state of the system is asymptotically

the pure state |0〉S .
As per our requirement on the structural complexity (see Appendix A.4), the Hilbert

space of the machine required to achieve this is infinite-dimensional, and since each step of
the protocol is assumed to take a finite amount of time, the overall time for reaching the
ground state diverges. At the same time, the control complexity for each individual step
is finite, since each Uk acts nontrivially only on a two-dimensional subspace. To see that
also the energy cost for this protocol is finite, we first note that the protocol results in a
final state of the machine that is diagonal in the energy eigenbasis |n〉M, with probability
weights p̃k decreasing (but not strictly) with increasing energy. Due to the degeneracy
of the eigenvalues p̃k, each one appears (k + 1) times on the diagonal (w.r.t. the energy
eigenbasis) of the resulting machine state, populating adjacent energy levels. The label
n(k) of the lowest energy level that is populated by a particular value p̃k can be calculated
as

ñ(k) :=
k−1∑
n=0

(n+ 1) = 1
2k(k + 1), (A.118)

while the largest energy populated by p̃k is given by ñ(k + 1)− 1. With this, we calculate
the energy of the machine after the protocol, which evaluates to

Efinal
M

ω
=

∞∑
k=1

e−βω2k (1− e−βω)2
ñ(k+1)−1∑
n=ñ(k)

n =
∞∑
k=1

e−βω2k (1− e−βω)2 1
2k(k + 1)(k + 2)

= 3
4 cosech2

(
βω
2

)
. (A.119)

Since the energy of the initial thermal state is given by
E [τ(β)]

ω
=

∞∑
n=0

n e−βω2n (1− e−βω) = e−βω

1− e−βω , (A.120)
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we thus arrive at the energy cost

∆EM
ω

= Efinal
M − E [τ(β)]

ω
= e−βω(2 + e−βω)

(1− e−βω)2 . (A.121)

We thus see that this energy cost is finite for all finite initial temperatures (although note
that the energy cost diverges when β → 0).

However, as we shall show next, the energy cost for attaining the ground state is
not minimal, i.e., the protocol achieves perfect cooling (with finite energy and control
complexity, but infinite time) but not at the Landauer limit. To see this, we first observe
that the entropy of the final pure state of the system S vanishes, such that ∆̃SS = S [τ(β)].
Evaluating this entropy, one obtains

S [τ(β)] = −tr [τ log(τ)] = −
∞∑
n=0

e−βω2n(1− e−βω) log
[
e−βω2n(1− e−βω)

]
= −

∞∑
n=0

e−βω2n(1− e−βω)
[
−βω2n+ log(1− e−βω)

]
= βωe−βω

1− e−βω + βω + log
(

e−βω

1− e−βω
)

= βω

1− e−βω + log
(

e−βω

1− e−βω
)
. (A.122)

Using the results from Eqs. (A.121) and (A.122), we can thus compare the expressions for
β∆EM and ∆̃SS , and we find that β∆EM − ∆̃SS > 0 for all nonzero initial temperatures.
The origin of this difference is easily identified: Although the protocol results in an
uncorrelated final state because the system is left in a pure state, that is, I(S :M)%′SM = 0,
the last term D(%′M‖τM) in Eq. (1.8) is nonvanishing for nonzero temperatures because
the protocol does not result in a thermal state of the machine.

With this, we have thus shown that perfect cooling is indeed possible using a finite
energy cost and a finite control complexity in every one of infinitely many steps (thus using
diverging time). As we have seen, the structural requirement of an infinite-dimensional
effective machine Hilbert space can be met by realisingM as a single harmonic oscillator.
Although the presented protocol does not minimise the energy cost to saturate the
Landauer bound, we cannot at this point conclusively say that it is not possible to do so
in this setting. However, we suspect that a more complicated energy-level structure of the
machine is necessary.

Finally, let us comment again on the notion of control complexity in terms of effective
machine dimension as opposed to the notion of complexity that is often (loosely) associated
with the distinction between Gaussian and non-Gaussian operations. As we see from
the protocols presented here, the concept of control complexity based on the nontrivially
accessed Hilbert-space dimension of the machine indeed captures the resource that must
diverge in order to reach the ground state, while the intuition of complexity associated
with (non)-Gaussian operations, albeit valid as a characterisation of a certain practical
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difficulty in realising such operations, seems to be irrelevant for determining if the ground
state can be reached. In the protocol presented in this section, non-Gaussian operations
with finite control complexity are used in each step to reach the ground state. Infinitely
many steps (i.e., diverging time) could then be traded for a single (also non-Gaussian)
operation of infinite control complexity, performed in unit time. In the previous protocol
based on Gaussian operations (Appendix A.5.2), the control complexity diverges in every
single step of the cooling protocol, but only when there are infinitely many such steps
(diverging time) or one operation in unit time on infinitely many modes (see below), can
we reach the ground state. However, in the latter case, the operation, although acting on
a diverging number of harmonic oscillators, remains Gaussian, as we now show explicitly.

A.5.3 Diverging Control Complexity Cooling Protocol for Harmonic
Oscillators

Here we give a protocol for perfectly cooling a harmonic oscillator in unit time and
with the minimum energy cost, but with diverging control complexity. In accordance
with Theorem 1.3, the machines used to cool the target system will likewise be harmonic
oscillators. Let the operators a (a†) and bk (b†k) respectively denote the annihilation
(creation) operators of the target system and a machine subsystem labelled k. We then
consider the the unitary transformation in Eq. (A.105), namely

Uk := ei
π
2 (a†bk+ab†

k
). (A.123)

One can then apply the diverging-time cooling protocol from Appendix A.5.2 to cool the
system to the ground state at the Landauer limit via the total unitary transformation

Utot := lim
N→∞

U(N), with U(N) :=
N∏
k=1

Uk. (A.124)

We now seek the Hamiltonian that generates Utot. First note that U(N)aU
†
(N) = ib1 and

U(N)bkU
†
(N) =


−bk+1 for k < N

ia for k = N

bk for k > N,

(A.125)

which can be proven by induction. In contrast with Appendix A.5.2, here we use the
complex representation of the symplectic group to describe the transformation, i.e., the
set of matrices S satisfying SKS† = K, where K := 1N ⊕ (−1N). Gathering the raising
and lowering operators of the target system and the first N machines into the vector
~ξ :=

(
a b1 b2 . . . bN a† b†1 b†2 . . . b†N

)T
, we can write the transformation above
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as U(N)~ξ U
†
(N) = ST~ξ [365], where

S =

α(N) 0

0 α(N)

 , with α(N) :=



0 0 0 . . . 0 i

i 0 0 . . . 0 0

0 −1 0 . . . 0 0

0 0 −1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −1 0



. (A.126)

Now, defining the matrix of Hamiltonian coefficients h(N) implicitly by U(N) =: exp(−i~ξ † ·
h(N) · ~ξ), we have that S = exp(−iKh(N)) [365], i.e., h(N) = iK log(ST) = iK log(S)T,
where we take the principal logarithm. To calculate this, we must diagonalise the matrix
α(N) in Eq. (A.126). The eigenvalues of α(N) are

λk := −e−iπ
2k−1
N+1 , with k ∈ {1, 2, . . . , N + 1}, (A.127)

i.e., the negative of the (N + 1)th roots of −1, and it is diagonalised by the unitary matrix
V constructed from the eigenvectors ~vk:

V :=
(
~v1 ~v2 ~v3 . . . ~vN+1

)
with ~vk := −1√

N + 1



i(−λk)−1

(−λk)−2

(−λk)−3

...

(−λk)−(N+1)


. (A.128)

Specifically, α(N) = V DV †, where D := diag(λ1, λ2, . . . , λN+1), and thus

hT
(N) = iK log

V DV † 0

0 V DV †

 = iK

V 0

0 W


log(D) 0

0 log(D)


V † 0

0 V †



=:

A 0

0 −A

 (A.129)

for some matrix A. By direct calculation, one finds that

Ajk = iδj1iδk1
π

(N + 1)2

N+1∑
p=1

(2p− 2−N)e−iπ
2p−1
N+1 (j−k). (A.130)

Now, considering the identity
N+1∑
p=1

eiθp = eiθ(N+1) − 1
1− eiθ (A.131)
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for θ ∈ R, as well as its derivative with respect to θ, one can calculate the sum in
Eq. (A.130). We then have

lim
N→∞

Ajk =

0, for j = k

iiδj1iδk1 1
j−k , for j 6= k

. (A.132)

Then, finally, we have that Utot = e−iHtot , where Htot = limN→∞
(
~v † · h(N) · ~v

)
, i.e.,

Htot = −
∞∑
j=2

(
1

j − 1b
†
ja+ H.c.

)
+

∞∑
j,k=1; j 6=k

i

j − k
b†jbk. (A.133)

Thus, the system is cooled to the ground state at an energy cost saturating the Landauer
bound, and in unit time, but via a procedure that implements a multi-mode Gaussian
unitary on a diverging number of modes.

A.6 Cooling Protocols in the Incoherent-Control Paradigm

In this section, we investigate the required resources to cool the target system within
the incoherent-control paradigm. For simplicity, we consider only the finite-dimensional
setting. Here, we have a qudit target system S interacting resonantly (i.e., in an energy-
conserving manner) with a qudit machineM, which is partitioned into one part, C, in
thermal contact with the ambient environment at inverse temperature β and another part,
H, in contact with a hot bath at inverse temperature βH < β. The Hamiltonians for each
subsystem are HX = ∑dX−1

n=0 nωX |n〉〈n|X ; the energy resonance condition enforces that
ωH = ωC −ωS . For the most part in this section, we focus on equally spaced Hamiltonians
for simplicity; we comment specifically whenever we consider otherwise.

In order to cool the target system, we aim to compress as much population as
possible into the its lowest energy eigenstates via interactions that are restricted to the
energy-degenerate subspaces of the joint SCH system. Thus we are restricted to global
energy-conserving unitaries UEC that satisfy

[HS +HC +HH, UEC] = 0. (A.134)

In Ref. [83], it was shown that for the case where all three subsystems are qubits, the
optimal global unitary in this setting (inasmuch as they render the target system in the
coldest state possible given the restrictions) is

UEC = |0, 1, 0〉〈1, 0, 1|SCH + |1, 0, 1〉〈0, 1, 0|SCH + 1̄, (A.135)

where 1̄ denotes the identity matrix on all subspaces that are not energy-degenerate.
Considering the generalisation to qudit subsystems, it is straightforward to see that, for
equally spaced Hamiltonians, the optimal global unitaries must be of the form

UEC =
 d−2∑
m,n,l=0

|m,n+1, l〉〈m+1, n, l+1|SCH+|m+1, n, l+1〉〈m,n+1, l|SCH

+1̄. (A.136)
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For the most general case where the Hamiltonians of each subsystem are arbitrary, it is
not possible to write down a generic form of the optimal unitary, since the energy-resonant
transitions that lead to cooling the target now depend on the microscopic details of the
energetic structure. Nonetheless, in Appendix A.7, we provide a protocol (i.e., not the
unitary per se, but a sequence of steps) in this setting that attains perfect cooling and
saturates the Carnot-Landauer limit.

Intuitively, the above types of unitaries simply reshuffle populations that are accessible
through resonant transitions. For the purpose of cooling, one wishes to do this in such
a way that the largest population is placed in the lowest energy eigenstate of the target
system, the second largest in the second lowest energy eigenstate, and so on (in line with
the optimal unitaries in the coherent-control setting); indeed, on the energy-degenerate
subspaces accessible, such unitaries act precisely in this way. It is straightforward to show
that interactions of this form satisfy Eq. (A.134).

For the sake of simplicity, we now focus on the case where all systems are qubits,
although the results generalise to the qudit setting. Consider the initial joint state
%SCH = ∑1

m,n,l=0 pmnl|m,n, l〉〈m,n, l|SCH. By applying a unitary UEC of the form given in
Eq. (A.136), the post-transformation joint state is

%′SCH = UEC%SCHU
†
EC = %SCH + ∆p |0, 1, 0〉〈0, 1, 0|SCH −∆p |1, 0, 1〉〈1, 0, 1|SCH, (A.137)

where ∆p := p101 − p010 indicates the amount of population that has been transferred
from the excited state of the target system to the ground state throughout the interaction.
Naturally, in order to cool the target system, ∆p ≥ 0, i.e., the initial population p101 must
be at least as large as p010.

Due to the energy-conserving nature of the global interaction, the energy exchanged
between the subsystems throughout a single such interaction, ∆EX = tr

[
HX (%′X − %X )

]
,

can be calculated via

∆ES = −ωS∆p, ∆EC = ωC∆p, ∆EH = −ωH∆p. (A.138)

Thus, for a fixed energy-level structure of all subsystems (i.e., given the local Hamiltonians),
one only requires knowledge of the pre- and post-transformation state of any one of the
subsystems to calculate the energy change for all of them.

A.6.1 Diverging Energy: Proof of Theorem 1.5

The first thing to note is that in the incoherent-control paradigm, even when one
allows for the energy cost, i.e., the heat drawn from the hot bath, to be diverging, it is not
possible to perfectly cool the target system, as presented in Theorem 1.5. The intuition
behind this result is that the target system can only interact with energy-degenerate
subspaces of the hot and cold machine subsystems. The optimal transformation that one

216



Appendix A

can do here to achieve cooling is to transfer the highest populations of any such subspace
to the lowest energy eigenstate of the target system; however, any such subspace has
population strictly less than one for any 0 ≤ βH ≤ β <∞ independently of the energy
structure. Moreover, the difference from one can be bounded by a finite amount that does
not vanish independent of the energy level structure of any machine of finite dimension.
This makes it impossible to attain a subspace population of one even as the energy cost
diverges for any fixed and finite control complexity. It follows that the ground-state
population of the target system can never reach unity in a single operation of finite control
complexity and hence perfect cooling cannot be achieved.

Precisely, we show the following. Let S be a finite-dimensional system of dimension
dS with associated Hamiltonian with finite but otherwise arbitrary energy gaps HS =∑dS−1
i=0 ωiS |i〉〈i|S , and let dC and dH be integers denoting the dimensions of the cold and

hot parts of the machine respectively. Then it is impossible to cool the system S in the
incoherent-control paradigm, i.e., using energy-conserving unitaries involving C and H at
some initial inverse temperatures β, βH respectively, arbitrarily close to the ground state.
Note that, in particular, this result holds irrespective of the energy level structure of C
and H and no matter how much energy is drawn from the hot bath as a resource.

In order to set notation for the following, we assume ωiX ≥ ωjX for i ≥ j and ω0
X = 0,

where ωiX denotes the ith energy eigenvalue of system X with X ∈ {S, C,H}. We also
assume the initial states on S and C to be thermal at inverse temperature β, and H is
assumed to be initially in a thermal state at inverse temperature βH ≤ β. We denote by
piX the ith population of system X in a given state, i.e., piX = 〈i|%X |i〉, where |i〉 denotes
the ith energy eigenstate of %X . We will also write pijk := piSp

j
Cp
k
H.

The intuition behind the proof is as follows. The global ground state level of the
joint hot-and-cold machine has some non-zero initial population for any finite-dimensional
machine; in particular it can always be lower-bounded by 1

dCdH
for any Hamiltonians and

initial temperatures, which is strictly greater than zero as long as the dimensions remain
finite. Fixing the control complexity of any protocol considered here to be finite in value
thus implies a lower bound on the initial ground state population of the total machine
that is larger than zero by a finite amount. Depending on the energy level structure of
the hot and cold parts of the machine, there may be other non-zero initial populations,
but in order to cool the target system S perfectly, at least all of the previously mentioned
populations must be transferred into spaces spanned by energy eigenstates of the form
|0jk〉SCH. This intuition is formalised via Lemma A.2, where we show that independent of
the energy structure of C and H, one must be able to make such transfers of population
in order to perfectly cool S. However, in order to make such transfers in an energy
conserving manner, all energy eigenstates of the form |i00〉SCH must be degenerate with
some of the form |0jk〉SCH. This degeneracy condition, in turn, also implies that every
energy eigenstate of the form |0jk〉SCH has an associated initial population p0jk that is
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non-vanishing for all machines of finite dimension (i.e., for all protocols with finite control
complexity). Thus, upon transferring some population pi00 into the subspace spanned
by |0jk〉SCH, i.e., one of a relevant form for the population to contribute to the final
ground state population of the target, one inevitably transfers some finite amount of
population away from the relevant space and into |i00〉SCH, which does not contribute
to the final ground state population of the target. We formalise this intuition in the
discussion following Lemma A.2. In this way, no matter what one does, there is always a
finite amount of population, which is lower-bounded by some strictly positive number due
to the constraint on control complexity, that does not contribute to the final ground state
population of the target, implying that perfect cooling is not possible.

The formal proof occurs in two steps. We first show that some specific degeneracies
in the joint SCH system must be present in order to be able to even potentially cool S
arbitrarily close to the ground state. We then prove that, given the above degeneracies,
one cannot cool the system S beyond a fixed ground-state population that is independent
of the energy structure of C and H; in particular, one can draw as much energy from the
hot bath as they like and still do no better. We begin with the following lemma.

Lemma A.2. Given S, dC and dH as above, one can reach a final ground-state population
of the system S arbitrarily close to one in the incoherent-control setting only if each
|i00〉SCH, where i ∈ {1, . . . , dS − 1}, energy eigenstate is degenerate with at least one
|0jk〉SCH energy eigenstate, where j ∈ {0, . . . dC − 1}, k ∈ {0, . . . dH − 1}.

Proof. Suppose that there exists an i∗ ∈ {1, . . . , dS − 1} such that |i∗00〉SCH is not
degenerate with any |0jk〉SCH, where j ∈ {0, . . . dC− 1}, k ∈ {0, . . . dH− 1}. We show that,
then, one cannot cool S arbitrarily close to zero.

Let Bi denote the degenerate subspace of the total Hamiltonian HS +HC +HH, where
HX denotes the Hamiltonian of system X ∈ {S, C,H}, that contains the eigenvector
|i00〉SCH. Then, any energy conserving unitary UEC used to cool the system in the
incoherent-control paradigm must act within such Bi subspaces, i.e., UEC = ⊕

i UBi (this
is a direct consequence of [UEC, HS +HC +HH] = 0, see, e.g., Lemma 5 of Ref. [96]). This
means in particular that the initial population of |i∗00〉SCH can only be distributed within
Bi∗ , and as no eigenvector of the form |0jk〉SCH is contained in Bi∗ by assumption, it can
never contribute to the final ground state population of S, which we denote p̃0

S . So we
have

p̃0
S ≤ 1− pi∗00. (A.139)

Now, as for X ∈ {C,H}, with any {ωiX} such that each ωiX ≥ 0 with ω0
X = 0 and any

inverse temperature β ≥ 0, we have for the partition function ZS that

ZX = 1 + e−βω
1
X + · · ·+ e−βω

dX−1
X ≤ dX , (A.140)
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and so we have the following bound on the initial populations associated to each eigenvector
|i00〉SCH

pi00 = e−βω
i
S

ZSZCZH
≥ e−βω

i
S

ZSdCdH
> 0 ∀ i ∈ {1, . . . , dS − 1}. (A.141)

Combining the above, we have that

p̃0
S ≤ 1− e−βω

i∗
S

ZSdCdH
< 1. (A.142)

So as desired, we have shown that one cannot cool beyond 1− e
−βωi

∗
S

ZSdCdH
, a bound strictly

smaller than 1 for any finite-dimensional machine (i.e., for any protocol using only finite
control complexity) and independent of the energies of C and H.

We can now proceed to the second step of the proof of Theorem 1.5.

Proof. To this end, consider any i∗ ∈ {1, . . . , dS − 1}. If |i∗00〉SCH is not degenerate with
any |0jk〉SCH, our assertion is proven by Lemma A.2. On the other hand, if there is
a j∗ ∈ {0, . . . , dC − 1} and a k∗ ∈ {0, . . . , dH − 1} for which |i∗00〉SCH and |0j∗k∗〉SCH
are degenerate, then Bi∗ , the degenerate subspace containing |i∗00〉SCH, also contains
|0j∗k∗〉. Now Bi∗ may also contain other eigenvectors of the form |0jk〉SCH, i.e., some
other |0j′k′〉SCH with j′ ∈ {0, . . . , dC − 1}, k′ ∈ {0, . . . , dH − 1}. Crucially, each such
eigenvector in Bi∗ must have an associated minimal amount of initial population as long
as the machine is finite-dimensional. Indeed, for any such |0j∗k∗〉SCH in Bi∗ , we have the
condition ωj

∗

C + ωk
∗
H = ωi

∗
S and so ωj

∗

C ≤ ωi
∗
S , ωk

∗
H ≤ ωi

∗
S , implying that βωj

∗

C ≤ βωi
∗
S and

βHω
k∗
H ≤ βωi

∗
S . Thus we have the bound

p0j∗k∗ = e−βω
j∗
C e−βHω

k∗
H

ZSZCZH
≥ e−2βωi∗S

ZSZCZH
≥ e−2βωi∗S

ZSdCdH
=: qi∗ . (A.143)

Now, take any particular i∗ ∈ {1, . . . , dS − 1} and let πi∗ be the dimension of Bi∗ , µ the
number of energy eigenstates of the form |0jk〉SCH that Bi∗ contains and ν = π − µ the
number of energy eigenstates of the form |ijk〉SCH, where i 6= 0, that Bi∗ contains. So

Bi∗ = span{|0jk〉, |0j2k2〉, . . . , |0jµkµ〉, |i∗00〉, |i2`2m2〉, . . . , |iν`νmν〉}. (A.144)

Let v = {p0jk, p0j2l2 , . . . , p0jµkµ , pi∗00, pi2`2m2 , . . . , piν`νmν} be the vector of initial popula-
tions associated to the eigenvectors of Bi∗ , and v↑ be the vector whose components are
those of v arranged in non-decreasing order. Using Schur’s theorem [362], we know that
after applying any unitary transformation UBi∗ on the relevant energy-degenerate subspace,
then the vector of transformed populations, ṽ, is majorised by v. In particular, labelling
the vector elements by vα, we have

p̃i∗00 +
ν∑

α=2
p̃iα`αmα ≥

ν∑
α=1

v↑α. (A.145)
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We now claim that ∑ν
α=1 v

↑
α ≥ qi∗ from Eq. (A.143). Indeed, as v has at most ν − 1

elements that do not belong to the set A := {p0jk, p0j2k2 , . . . , p0jµkµ , pi∗00}, at least one
element of A must contribute to the sum ∑ν

α=1 v
↑
α. Let x be that element. As v↑α ≥ 0 for

all α = 1, . . . , π = µ+ ν, we have
ν∑

α=1
v↑α ≥ x. (A.146)

Now as p0jγkγ ≥ qi∗ for all γ = 2, . . . , µ, we have

x ≥ min(qi∗ , pi∗00) = qi∗ , (A.147)

where pi∗00 ≥ qi∗ can be seen from Eq. (A.143), as claimed.
As the l.h.s. of Eq. (A.145) represents the amount of population in the subspace Bi∗

that does not contribute to the final ground-state population of the target system, we
have

p̃0
S ≤ 1−

(
p̃i∗00 +

ν∑
α=2

p̃iα`αmα

)
≤ 1− qi∗ = 1− e−2βωi∗S

ZSdCdH
. (A.148)

So, for any finite-dimensional machine, one cannot cool the system S beyond 1− e
−βωi

∗
S

ZSdCdH
,

a bound strictly smaller than 1 and independent of the energy structure of C and H, as
desired.

As a concrete example, consider the case where all systems are qubits. The initial
joint state is

%(0)
SCH = (|0〉〈0|+ e−βωS |1〉〈1|)S ⊗ (|0〉〈0|+ e−βωC |1〉〈1|)C ⊗ (|0〉〈0|+ e−βHωH|1〉〈1|)H

ZS(β, ωS)ZC(β, ωC)ZH(βH , ωH) .

(A.149)

The only energy-conserving unitary interaction that is relevant for cooling is the one that
exchanges the populations in the levels spanned by |010〉 and |101〉, which have initial
populations e−βωC

ZS (β,ωS )ZC(β,ωC)ZH(βH ,ωH) and e−βωS e−βHωH
ZS (β,ωS )ZC(β,ωC)ZH(βH ,ωH) respectively, which are

both strictly less than one. The necessary condition for any cooling to be possible implies
that e−βωSe−βHωH ≥ e−βωC ; now, performing the optimal cooling unitary leads to the final
ground-state population of the target system

p′S(0) = 〈0| trCH
[
U%(0)
SCHU

†
]
|0〉S = 1 + e−βHωH(1 + e−βωS + e−βωC)

ZS(β, ωS)ZC(β, ωC)ZH(βH , ωH) < 1. (A.150)

Indeed, using e−βωSe−βHωH ≥ e−βωC ,

p′S(0) ≤ 1 + e−βHωHe−βωS

ZS(β, ωS)ZC(β, ωC)
≤ 1
ZC(β, ωC)

≤ 1. (A.151)

The second inequality is strict unless βH = 0 or ωH = 0. In the both cases, for equality
in the first inequality, we need βωS = βωC. If β = 0, then ZC(β, ωC) = 2 and the last
inequality is strict. If ωS = ωC, no cooling is possible; hence p′S(0) = pS(0) < 1.
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A.6.2 Diverging Time / Control Complexity

We now move to analyse the case where diverging time is allowed, where we wish to
minimise the energy cost and control complexity throughout the protocol over a diverging
number of energy-conserving interactions between the target system and the hot and cold
subsystems of the machine. We again consider all three systems to be qubits, but the
results generalise to arbitrary (finite) dimensions. Here, the machines and ancillas begin as
thermal states with initial inverse temperatures β and βH ≤ β respectively. Just as in the
diverging time cooling protocol in the coherent-control setting presented in Appendix A.3,
we will consider a diverging number of machines, with slightly increasing energy gaps,
in a configuration such that the target system interacts with the nth machine at time
step n. Suppose that after n steps of the protocol, the target qubit has been cooled to
some inverse temperature βn > β; equivalently, this can be expressed as a thermal state
with corresponding energy gap ωn = βn

β
ωS . We now wish to interact the target system

τS(βn, ωS) with a machineMn+1 with slightly increased energy gaps with respect to the
most recent oneMn, i.e., we increase the energy gaps of the cold subsystem C from ωn to
ωn+1 = ωn + εn; the resonance condition enforces the energy gap of the hot subsystem H
to be similarly increased to ωn + εn − ωS . Thus, the next step of the protocol is a unitary
acting on the global state

%(n)
SCH = τS(βn, ωS)⊗ τC(β, ωn + εn)⊗ τH(βH , ωn + εn − ωS). (A.152)

In order to cool the target system via said unitary, we must have that p101 ≥ p010 for the
state in Eq. (A.152), which implies that εn must satisfy the following condition:

e−βωn−βH (ωn+εn−ωS ) ≥ e−β(ωn+εn) ⇒ εn ≥ γ(ωn − ωS) where γ := βH
β − βH

. (A.153)

This condition is crucial. It means that if the hot subsystem H is coupled to a heat bath
at any finite temperature, i.e., βH > 0, εn depends linearly on the inverse temperature of
the target system at the previous step βn, and can thus not be taken to be arbitrarily
small. As we will now show, this condition prohibits the ability to perfectly cool the
target system at the Landauer limit for the energy cost whenever the heat bath is at finite
temperature.

On the other hand, for infinite-temperature heat baths, perfect cooling at the Landauer
limit is seemingly achievable; here, βH → 0 and so γ → 0, leading to the trivial constraint
εn ≥ 0 which allows it to be arbitrarily small, as is required. Nonetheless, the explicit
construction of any protocol doing so in the incoherent-control setting is a priori unclear,
as the restriction of energy conservation makes for a fundamentally different setting from
the coherent-control paradigm. We now explicitly derive the optimal diverging-time
protocol to perfectly cool at the Landauer limit for an infinite-temperature heat bath,
thereby proving Theorem 1.6.
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A.6.3 Saturating the Landauer Limit with an Infinite-Temperature Heat
Bath

Before calculating the energy cost, we briefly discuss the attainability of the optimally
cool target state. We begin with all subsystems as qubits, for the sake of simplicity, but
the logic generalises to higher dimensions. In the incoherent paradigm, the target system
S interacts with a virtual qubit of the total machineM = CH that consists of the energy
eigenstates |0, 1〉CH and |1, 0〉CH, with populations p0C1H and p1C0H respectively. Suppose
that at step n+1 the cold subsystem involved in the interaction has energy gap ωn+εn. In
Ref. [83], it is shown that by repeating the incoherent cooling process [i.e., implementing
the unitary in Eq. (A.136)] and taking the limit of infinite cycles, this scenario equivalently
corresponds to the general (coherent) setting where arbitrary unitaries are permitted and
the target system interacts with a virtual qubit machine with effective energy gap ωeff

n

given by

e−βω
eff
n :=p1C0H

p0C1H
= e−β(ωn+εn) eβH (ωn+εn−ωS )

∴ ωeff
n =ωn + εn −

βH
β

(ωn + εn − ωS). (A.154)

It is clear that for finite-temperature heat baths, i.e., βH > 0, the effective energy gap ωeff
n

is always smaller than the energy gap of the machine at any given step, i.e., ωeff
n ≤ ωn + εn;

on the other hand, equality holds iff the heat bath is at infinite temperature, i.e., βH → 0.
Thus, in the infinite-temperature case, given a target system beginning at some step of
the protocol in the state %∗S(β, ωn), it is possible to get close to the asymptotic state
%∗S(β, ωn + εn); if the temperature is finite, however, this state is not attainable (even
asymptotically). Following the arguments in Appendix A.3, i.e., considering a diverging
number of machines, each of which having the part connected to the cold bath with energy
gap ωCn = ωn + εn and taking the limit of εn → 0, which one can only do if the hot bath
temperature is infinite, allows one to cool perfectly in diverging time in the incoherent
paradigm at the Landauer limit.

We now calculate the energy cost explicitly for the infinite-temperature heat bath case,
precisely demonstrating attainability of the Landauer limit. We use a similar approach to
that described in Appendix A.3: We have a diverging number of cold machines for each
energy gap ωn, with which the target system at the n − 1th time step interacts; for an
infinite-temperature heat bath, i.e., H is in the maximally mixed state independent of
its energy structure, the state of the target system at each step %∗S(β, ωn−1) is achievable.
From Eq. (A.138), the energy change between all subsystems for a given step of the
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protocol, i.e., taking %∗S(β, ωn−1)→ %∗S(β, ωn), can be calculated as

∆E(n)
S = tr

[
HS(ωS)(%∗S(β, ωn)− %∗S(β, ωn−1)

]
,

∆E(n)
C = −tr

[
HC(ωn)(%∗S(β, ωn)− %∗S(β, ωn−1)

]
,

∆E(n)
H = tr

[
HH(ωn − ωS)(%∗S(β, ωn)− %∗S(β, ωn−1)

]
. (A.155)

In general, i.e., for finite-temperature heat baths, we would have ωn = ωn−1 + εn−1, with a
lower bound on εn−1 for cooling to be possible [in accordance with Eq. (A.153)]. However,
for infinite-temperature heat baths, this lower bound trivialises since the energy structure
of the hot machine subsystem plays no role in its state; thus we can choose the energy
gap structure for the machines as {ωn = ωS + nε}Nn=1 with ε arbitrarily small. Taking the
limit ε→ 0, the diverging time limit N →∞, and writing ωN = ωmax for the maximum
energy gap of the cold machine subsystems, the energy exchanged throughout the entire
cooling protocol here is given by

∆ES = lim
N→∞

N∑
n=1

∆E(n)
S = tr

[
HS(ωS)(%∗S(β, ωmax)− %∗S(β, ωS)

]

∆EC = lim
N→∞

N∑
n=1

∆E(n)
C = 1

β

{
S[%∗S(β, ωS)]− S[%∗S(β, ωmax)]

}
= 1
β

∆̃SS

∆EH = lim
N→∞

N∑
n=1

∆E(n)
H = −∆ES −∆EC. (A.156)

Here, the expression for ∆EC can be derived using the same arguments as presented in
Appendix A.3.1. In particular, the heat dissipated by the cold part of the machine, which
is naturally connected to the heat sink in the incoherent setting as an infinite-temperature
heat-bath can be considered a work source since any energy drawn comes with no entropy
change, is in accordance with the Landauer limit. It is straightforward to obtain the same
result for qudit systems. Lastly, in a similar way to the other protocols we have presented,
one could compress all of the diverging number of operations into a single one whose
control complexity diverges, thereby trading off between time and control complexity.

A.6.4 An Analysis of Finite-Temperature Heat Baths

We now return to the more general consideration of finite-temperature heat baths,
i.e., 0 < βH ≤ β. In the case where βH = β, from Eq. (A.154), it is straightforward to
see that for any machine energy gap ωn, the effective gap ωeff

n is equal to the gap of the
target system, which means that no cooling can be achieved in the incoherent paradigm.
Nonetheless, for any H subsystem coupled to a heat bath of inverse temperature βH < β,
cooling is possible. We first provide more detail regarding why cooling at the Landauer
limit is not possible in this setting, before deriving the minimal energy cost in accordance
with the Carnot-Landauer limit presented in Theorem 1.4; in Appendix A.7, we provide
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explicit protocols that saturate this bound for any finite-temperature heat bath and
arbitrary finite-dimensional systems and machines.

Suppose that at some step n one has the initial joint state of Eq. (A.152), where
εn = γ(ωn−ωS) + ε and ωn = ωS + nε. Here, γ is as in Eq. (A.153). We now wish to cool
the target system to %∗S(β, ωn+ε). For cooling to be possible in the incoherent setting here,
we need the cold machine subsystem to have an energy gap of at least ωn + εn; moreover,
with a finite-temperature heat bath, this energy gap is insufficient to achieve the desired
transformation [see Eq. (A.153)]. Based on Eq. (A.138), we can see that nonetheless, if
we calculate the hypothetical energy change in this scenario if it were possible, we can
derive a lower bound for the actual energy cost incurred. Employing Eq. (A.155), we have

∆E(n+1)
C ≥ −tr{HC(ωn + εn)[%∗S(β, ωn + ε)− %∗S(β, ωn)]}

= −tr{HC[(γ + 1)ωn − γωS + ε][%∗S(β, ωn + ε)− %∗S(β, ωn)]}

= −tr{HC[(γ + 1)ωn − γωS + ε+ γε− γε][%∗S(β, ωn + ε)− %∗S(β, ωn)]}

= −(γ + 1)tr{HC(ωn + ε)[%∗S(β, ωn + ε)− %∗S(β, ωn)]}

+ γ tr{HC(ωS + ε)[%∗S(β, ωn + ε)− %∗S(β, ωn)]}

= (γ + 1)∆E∗(n+1)
C + γ∆E∗(n+1)

S + γtr{HC(ε)[%∗S(β, ωn + ε)− %∗S(β, ωn)]},
(A.157)

where we have made use of the fact that for equally spaced Hamiltonians, the structure of
the Hamiltonians on each subsystem take the same form [i.e., we can write, with slight
abuse of notation, HC(ω + ωS) = HC(ω) + HS(ωS)]. We use the star in ∆E∗A to denote
the idealised energy cost [i.e., that corresponding to what would be achievable in the
infinite-temperature setting; see Eq. (A.155)] and the energy costs without the star to
represent those for when the temperature of the heat bath is finite. The additional term
tr{H(γε)[%∗S(β, ωn + ε)− %∗S(β, ωn)]} vanishes for ε→ 0.

Summing up these contributions for a diverging number of steps gives the lower bound
for the heat dissipated throughout the entire protocol for cooling an initial state τS(β, ωS)
to some final τS(βmax, ωS) is given by

∆EC = lim
N→∞

N∑
n=1

∆E(n+1)
C

≥ (γ + 1) 1
β

∆̃SS + γ∆ES

= 1
β

∆̃SS + γ

(
∆ES + 1

β
∆̃SS

)
. (A.158)

Note that for infinite-temperature heat baths, γ → 0 and the usual Landauer limit is
recovered; nonetheless, for finite-temperature heat baths, γ > 0 and there is an additional
energy contribution, implying that the Landauer limit cannot be achieved. Moreover, note
that the expression inside the parenthesis in the second term above is always non-negative,
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as it is the free energy difference of the system during the cooling process. Lastly, it is
straightforward to show that this lower bound is equivalent to the Carnot-Landauer limit
in Eq. (A.14), which was derived in a protocol-independent manner as the ultimate limit
in the incoherent-control setting. We now present explicit protocols that saturate this
bound.

A.7 Perfect Cooling at the Carnot-Landauer Limit in the
Incoherent-Control Paradigm

The precise statement that we wish to prove regarding saturation of the Carnot-
Landauer limit is the following:

Lemma A.3. For any β∗ ≥ β > βH and ε1,2 > 0, there exists a cooling protocol in the
incoherent-control setting comprising a number of unitaries of finite control complexity
which, when the number of operations diverges, cools to some final temperature β′ that is
arbitrarily close to the ideal temperature value β∗, i.e.,

|β′ − β∗| < ε1, (A.159)

with an energy cost, measured as heat drawn from the hot bath, that is arbitrarily close to
the ideal Carnot-Landauer limit, i.e.,

∣∣∣∆EH − η−1∆̃F (β)
S

∣∣∣ < ε2, (A.160)

where η = 1− βH
β

and ∆F (β)
S = Fβ(%′S)− Fβ(%S) is the free energy difference between the

initial %S = τS(β,HS) and final %′S = τS(β∗, HS) system states (w.r.t. inverse temperature
β).

We begin by presenting the diverging-time protocol that saturates the Carnot-Landauer
limit when all three subsystems S, C,H are qubits. The simplicity of this special case
allows us to calculate precisely bounds on the number of operations required to reach any
chosen error threshold. Building on this intuition, we then present the generalisation to
the case where all systems are qudits. The protocols with diverging control complexity
follow directly via the same line of reasoning presented in the main text.

A.7.1 Qubit Case

We begin with setting some notation and intuition for the proof, before expanding on
mathematical details.

Sketch of Protocol.—The protocol consists of the following. There are N stages, each
labelled by n ∈ {1, 2, ..., N}. Each stage proceeds as follows:

225



Appendices

1. A qubit with energy gap ωS + nθ is taken from the cold part of the machine, and a
qubit with energy gap nθ is taken from the hot part (see below). The initial state of
the machine at the beginning of the nth stage is thus τC(β, ωS + nθ)⊗ τH(βH , nθ).

2. The energy-preserving three qubit unitary cycle in the {010, 101}SCH subspace is
performed [see Eq. (A.136)], after which the cold and hot qubits are rethermalised
to their respective initial temperatures.

3. The above steps are repeated mn times.

The energy increment θ is defined as

θ := ωS
N

(
β∗ − β
β − βH

)
, (A.161)

while the number of repetitions within each stage is given by

mn =
 log(δ)

log(1−N (n)
V )

. (A.162)

d·e is the ceiling function, and N (n)
V is the sum of the initial thermal populations in the

{01, 10}CH subspace of the machine, i.e.,

N (n)
V

:= 〈01|τC(β, ωS + nθ)⊗ τH(βH , nθ)|01〉+ 〈10|τC(β, ωS + nθ)⊗ τH(βH , nθ)|10〉 .
(A.163)

The parameter δ will be chosen appropriately to complete the proof (δ = 1
N2 works).

The intuition for the proof is as follows. We first consider how the populations of the
target system changes in the idealised protocol where mn →∞, so that in each stage, the
system reaches the virtual temperature determined by the CH qubits. We can use this
ideal setting to find expressions for the final temperature and energy cost, which serves
as a baseline that we wish to attain to within arbitrary precision. We then consider the
protocol as constructed above with a finite number of repetitions mn in each stage, and
show that its expressions for temperature and work cost are close (w.r.t. 1/N) to the
original expressions, and by taking N to be sufficiently large but still finite (i.e., in the
diverging time limit), we prove that the protocol can be arbitrarily close in temperature
and energy cost to the ideal values.

Proof. We label the population in the excited state level of the target system at the end
of stage n as pn. Thus p0 is the initial population and pN is the final population in the
excited level of the target system qubit, i.e., that spanned by |1〉〈1|S . We also label by
qn what the corresponding population pn would hypothetically be in the limit mn →∞.
This value can be calculated by matching the temperature of the target system qubit to
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the temperature of the {01, 10}CH virtual qubit within the machine (see Appendix G in
Ref. [83]). Thus qn is defined via the Gibbs ratio

qn
1− qn

= e−β(ωS+nθ)e+βHnθ = e−βωSe−(β−βH )nθ. (A.164)

Note that

1. {pn}, {qn} are both monotonically decreasing sequences, as each stage cools the
target qubit further.

2. pn > qn for all n, as more repetitions within each stage keep cooling the target qubit
further.

To keep track of the energetic resource cost, which we will take here to be the total
heat drawn from the hot bath, we must sum the energetic contribution from each time
the hot qubit is rethermalised to βH after the application of the three-party cycle unitary.
Due to the fact that the only manner in which the population of the hot qubit changes is
due to the {010, 101}SCH exchange, it follows that any population change in the hot qubit
is identical to the population change in the target system qubit.

Focusing on a single stage, where the machine qubits are fixed in energy gap, the total
population change in the hot qubit that must be restored by the hot bath is therefore
equal to the population change in the target system throughout that stage. The heat
drawn from the hot bath throughout the entire stage is therefore

∆̃E(n)
H = ω

(n)
H (pn−1 − pn) = nθ(pn−1 − pn). (A.165)

With these expressions derived, we can study the properties of the abstract protocol where
the number of repetitions within each stage goes to infinity: mn → ∞. First, the final
temperature asymptotically achieved here is given by finding the temperature β̃ associated
with the qubit with excited state population qN

qN
1− qN

= e−β̃ωS ⇒ e−βωSe−(β−βH )Nθ = e−β̃ωS ⇒ β̃ = β∗, (A.166)

where we have made use of the definition of θ in Eq. (A.161). We can thus identify
qN = q∗, since it is the population associated with the ideal final temperature β∗.

We also have the following expression for the total energetic cost of the ideal protocol
after N stages

∆̃E∗H =
N∑
n=1

nθ(qn−1 − qn), (A.167)

which can alternatively be expressed as

∆̃E∗H =
N∑
n=1

[(n− 1)θ(qn−1 − qn)] + θ(q0 − qN). (A.168)
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The sums appearing in the two alternate expressions are the left and right Riemann sums
of the integral of the variable y = nθ integrated with respect to the variable q, i.e.,

I :=−
∫ q∗

q0
y dq,

where q(y)
1− q(y) =e−βωSe−(β−βH )y, (A.169)

from Eq. (A.164). For y > 0, q(y) is monotonically decreasing and so the converse is
also true, i.e., y is monotonically decreasing w.r.t. q(y). This implies that the integral is
bounded by the left and right Riemann sums, so we have

N∑
n=1

(n− 1)θ(qn−1 − qn) ≤
∫ q∗

q0
y dq ≤

N∑
n=1

nθ(qn−1 − qn), (A.170)

from which we can deduce that the value of ∆E∗H is itself is bounded both ways from
Eqs. (A.167) and (A.168):∫ q∗

q0
y dq ≤ ∆̃E∗H ≤

∫ q∗

q0
y dq + θ(q0 − q∗). (A.171)

The integral itself can by expressed in terms of the free energy of the qubit target system
with respect to the environment inverse temperature β. Expressing the free energy as a
function of the excited state population q and differentiating w.r.t. q gives

F (q) = 〈E〉 (q)− S(q)
β

= q ωS + 1
β

[q log(q) + (1− q) log(1− q)] . (A.172)

∂F

∂q
= ωS + 1

β
log

(
q

1− q

)
=
(
ωS + 1

β
(−βωS − (β − βH)y)

)
= −β − βH

β
y. (A.173)

Using the above expression, the definite integral in Eq. (A.169) amounts to

I = 1
η

[F (q∗)− F (q0)] =: 1
η

(F ∗ − F0) , (A.174)

where we have identified the Carnot efficiency η = 1 − βH/β and for ease of notation
written F ∗ := F (q∗) and F0 := F (q0). Thus we can bound ∆̃E∗H on both sides

1
η

(F ∗ − F0) ≤ ∆̃E∗H ≤
1
η

(F ∗ − F0) + θ(q0 − q∗) ≤
1
η

(F ∗ − F0) + ωS
N

(
β∗ − β
β − βH

)
,

(A.175)

where the rightmost inequality follows from the fact that {qn} forms a decreasing sequence.
We now proceed to consider the cooling protocol with a finite number of repetitions mn

within each stage. We first bound the difference between pn and qn. Using the properties
of the exchange unitary under repetitions [83, 366] (in particular, see Appendix G in
Ref. [83]), we have that in each stage

pn − qn
pn−1 − qn

=
(
1−N (n)

V

)mn
. (A.176)
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Thus, the population difference to the asymptotically achievable population given by
the virtual temperature shrinks as a power law w.r.t. the number of repetitions. Since
0 < N

(n)
V < 1 (all strict inequalities), three points follow: First, the population qn can never

be attained with a finite number of steps within the stage n; Second, that every repetition
cools the system further by some finite amount; Third, that one can get arbitrarily close
to qn by taking mn sufficiently large. In fact, by our definition of mn, we have that

pn − qn
pn−1 − qn

≤ δ. (A.177)

From this, we can prove that

pn − qn ≤ δnq0 − δqn + (1− δ)δ
n−1∑
j=1

δn−j−1qj. (A.178)

The proof is by induction. For n = 0, p0 = q0 (initial state), and for n = 1, using
Eq. (A.177)

p1 − q1 ≤ δ(p0 − q1) = δ(q0 − q1). (A.179)

Suppose that the above statement holds true for pk. Then from Eq. (A.177)

pk+1 − qk+1 ≤ δ(pk − qk+1)

= δ(pk − qk + qk − qk+1)
...

≤ δk+1q0 − δqk+1(1− δ)δ +
(k+1)−1∑
j=1

δ(k+1)−j−1qj. (A.180)

With this result, we can now bound the difference between the energy cost of this
finite-repetition protocol and that of the idealised one. We now proceed to prove that

∆̃EH − ∆̃E∗H =
N∑
n=1

nθ(pn−1 − pn)−
N∑
n=1

nθ(qn−1 − qn)

≤ θ

q0

N−1∑
j=1

δN−j −
N−1∑
j=1

δN−jqj

 . (A.181)

We again use proof by induction. First note that we can rewrite

N∑
n=1

nθ(fn−1 − fn) = θ

(
N∑
n=1

fn−1

)
−NθfN , (A.182)

for fn ∈ {pn, qn}. Therefore, we can rewrite the difference

∆̃EH − ∆̃E∗H = θ
N∑
n=1

(pn−1 − qn−1)−Nθ(pN − qN) ≤ θ

(
N∑
n=1

(pn−1 − qn−1)
)
, (A.183)
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since the last subtracted term is always strictly positive. Consider now the partial sum

Ek =
k∑

n=1
(pn−1 − qn−1) . (A.184)

For k = 1, E1 = 0, since p0 = q0. For k = 2, we have

E1 = (p1 − q1) ≤ δ(q0 − q1) =
q0

1∑
j=1

δ2−j −
1∑
j=1

δ2−jqj

 , (A.185)

which matches the hypothesis of Eq. (A.181). Assuming that the same holds true for Ek,
then for Ek+1, we have

Ek+1 = Ek + (pk − qk)

≤

q0

k−1∑
j=1

δk−j −
k−1∑
j=1

δk−jqj

+
δkq0 + (1− δ)δ

k−1∑
j=1

δk−j−1qj − δqk


...

= q0

k∑
j=1

δk+1−j −
k∑
j=1

δk+1−jqj. (A.186)

Then, by dropping the second sum, which is a strictly positive quantity, the difference in
Eq. (A.181) can be further simplified to

∆̃EH−∆̃E∗H≤θq0

N−1∑
j=1

δN−j =θq0 δ
N−2∑
k=0

δk < θq0 δ(N − 1)<θq0 δN <ωS

(
β∗ − β
β − βH

)
δ,

(A.187)

where we have used that δ < 1. Finally, to upper bound the number of operations required
in the protocol, we bound the number of repetitions within each stage by bounding the
total population of the virtual qubit spanned by the levels {01, 10}CH as follows:

N (n)
V

= 〈01|τC(β, ωS + nθ)⊗ τH(βH , nθ)|01〉+ 〈10|τC(β, ωS + nθ)⊗ τH(βH , nθ)|10〉

= e−βHnθ + e−β(ωS+nθ)

(1 + e−βHnθ)(1 + e−β(ωS+nθ))

>
e−β(ωS+nθ)

4 . (A.188)

From this, it follows that

log
[
1−N (n)

V

]
< log

[
1− e−β(ωS+nθ)

4

]

< −e
−β(ωS+nθ)

4 if x ∈ (0, 1) ⇒ log(1− x) < −x.

⇒ − 1
log

[
1−N (n)

V

] < 4e+β(ωS+nθ). (A.189)
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Thus we can bound the number of repetitions in each stage from Eq. (A.162). Noting
that log(δ) < 0, we have

mn < 4 log
(1
δ

)
e+β(ωS+nθ) + 1. (A.190)

For a crude bound, we can replace n by its maximum value N , and sum over all the
stages to find an upper bound on the total number of three-qubit exchange unitaries
implemented throughout the entire protocol, which gives

M =
N∑
n=1

mn < N
[
4 log (1/δ) e+β(ωS+Nθ) + 1

]
= N

[
4 log (1/δ) eωS (β∗−βH )/η + 1

]
.

(A.191)
Also, note that limδ→0 pN = qN = q∗. More precisely, using Eq. (A.178), we have

pN − q∗ < δ

δN−1q0 + (1− δ)
N−1∑
j=1

δn−j−1qj − qN


< δ (1 + (1− δ)(N − 1)) < δN. (A.192)

In summary, we have the following bounds on the protocol in which each stage consists of
a finite number of steps

pN − q∗ < δN,

∆̃EH <
1
η

(F ∗ − F0) + ωS

(
β∗ − β
β − βH

)( 1
N

+ δ
)
, (A.193)

where we have combined Eqs. (A.175) and (A.187) for the second expression. For simplicity,
we choose δ = 1

N2 , so that

pN − q∗ <
1
N
,

∆̃EH <
1
η

(F ∗ − F0) + ωS

(
β∗ − β
β − βH

)( 2
N

)
. (A.194)

Thus, given any final temperature (encoded by the population q∗), and allowed errors ε1
and ε2 for the final population and energy cost respectively, one can always choose N
large enough so that both quantities are within the error threshold. Specifically, choosing
N as

N =
max

{
ε−1

1 , 2ωS
(
β∗ − β
β − βH

)
ε−1

2

}, (A.195)

we automatically have that pN − q∗ < ε1 and ∆EH < F ∗−F0
η

+ ε2. The total number of
unitary operations (each of which is followed by rethermalisation of the machine) is then
bounded by Eq. (A.191)

M < N
(
8 log[N ]eωS (β∗−βH )/η + 1

)
. (A.196)

We can see from Theorem A.2 that the protocol is asymptotically optimal with respect to
the energy extracted from the hot bath.
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A.7.2 Qudit Case

The extension of the proof above to the case of qudits is nontrivial. This is because,
while for qubits there is only one energy-resonant subspace that leads to cooling and hence
a unique protocol [see Eq. (A.136)] that asymptotically attains perfect cooling at the
Carnot-Landauer bound, this is no longer the case for higher-dimensional systems; here,
there can be a number of energy-resonant subspaces that cool the target and the question
of optimality hinges crucially on the complex energy-level structure of all systems involved.
Hence, it is not possible to provide a unique unitary that generates the optimal protocol
independently of the subsystem Hamiltonians. Nonetheless, we slightly modify the pro-
tocol for the qubit case above to be implemented on a number of particular three-qubit
subspaces of the three-qudit global state such that, at the end of each stage, the state of
the target system is arbitrarily close to the (known) state which would be achieved in
an abstract protocol in the diverging-time limit. This asymptotically-attainable state is
precisely that which would be achieved in the coherent-control paradigm with a machine
the same dimension as the joint hot-cold qudits. Thus, we will first begin by presenting
the necessary steps for the proof in the coherent-control setting, which we will then
adapt as appropriate for the incoherent setting control. Finally, summing the overall en-
ergy cost of said protocol over all stages saturates the Carnot-Landauer bound, as required.

Proof. An idealised sequence of temperatures and system states.—We construct the in-
coherent protocol in the following manner. We will seek to take the system through
a sequence of thermal states starting at inverse temperature β and ending at inverse
temperature β∗ with N equally spaced intermediary steps, i.e.,

βn = β + nθ (β − βH) , (A.197)

θ = 1
N

(
β∗ − β
β − βH

)
, (A.198)

so that βN = β∗ by construction. This corresponds to taking the system through the
following sequence of thermal states

%(n)
S = e−βnHS

ZS(HS , βn) . (A.199)

Note that, in contrast to the coherent protocol where such a sequence can be traversed
by simply swapping the target system with a sequence of appropriate machines, in the
incoherent setting such a protocol is generally not possible as such swaps are not energy
conserving. Nonetheless, we will develop a modified protocol that is energy conserving
and mimics this idealised one.
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Corresponding to each step in the sequence, we define the following quantity, which
we will eventually show to be related to the heat drawn from the hot bath:

G(n) = −nθ∆E(n)
S = −nθ tr

[
HS

(
%(n)
S − %

(n−1)
S

)]
. (A.200)

We proceed to show that the total ∑nG
(n) that we label the idealised heat cost ∆̃E∗H is

close to the free energy difference over the entire sequence. We have

∆̃E∗H =
N∑
n=1

G(n)

=
N∑
n=1

nθ tr
[
HS

(
%(n−1)
S − %(n)

S

)]
(A.201)

=
{

N∑
n=1

(n− 1)θ tr
[
HS

(
%(n−1)
S − %(n)

S

)]}
+ θ tr

[
HS

(
%(0)
S − %

(N)
S

)]
. (A.202)

The sums on the second and third lines above, (A.201) and (A.202) respectively, are the
right and left Riemann sums corresponding to the following integral:

I =
∫ qf

qi
q (−dx) =

∫ qi

qf

q dx,

where nθ → q,

x = tr [HS%S(q)] ,

%S(q) = e−[β+q(β−βH)]HS

tr [e−[β+q(β−βH)]HS ] . (A.203)

We observe that x is the average energy of the thermal state of temperature β+ q(β−βH),
and thus x and q are strictly monotonically decreasing w.r.t. each other (which explains
why the left and right sums are switched). It follows that the Riemann sums bound the
integral

N∑
n=1

(n− 1)θ tr
[
HS

(
%(n−1)
S − %(n)

S

)]
≤
∫ qi

qf

q dx ≤
N∑
n=1

nθ tr
[
HS

(
%(n−1)
S − %(n)

S

)]
. (A.204)

We can thus bound the idealised heat cost in both directions via

I ≤ ∆̃E∗H ≤ I + θ tr
[
HS

(
%(0)
S − %

(N)
S

)]
. (A.205)

The integral in Eq. (A.203) can be shown to be equal to the change in free energy of the
target system (w.r.t. inverse temperature β)

Fβ[%S(q)] = tr [HS%S(q)] + 1
β

tr [%S(q) log %S(q)] ,

d
dqFβ[%S(q)] = tr

[(
HS + 1S + log %S(q)

β

)
d%S(q)
dq

]
. (A.206)

Note that %S(q) and d%S(q) are both always diagonal in HS and full rank for all q ∈ R,
so we have no problems with log %S(q), and all of the operators in the expression are
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well-defined and commute. Proceeding, we repeatedly use tr [d%S(q)] = d tr [%S(q)] = 0
and label the partition function Z(q) := tr

[
e−[β+q(β−βH)]HS

]
to obtain

d
dqFβ[%S(q)] = tr

[(
HS + log %S(q)

β

)
d%S(q)
dq

]

= tr
[(
HS −

β + q(β − βH)
β

HS − 1S
logZ(q)

β

)
d%S(q)
dq

]

= −q
(

1− βH
β

)
d
dq tr [HS%S(q)] = −qηdxdq , (A.207)

where we have identified the Carnot efficiency η for an engine operating between β and
βH. The integral thus simplifies to

I = η−1
(
Fβ[%S(qf )]− Fβ[%S(qi)]

)
=: η−1∆F (β)

S . (A.208)

The idealised heat cost is thus bounded by

η−1∆F (β)
S ≤ ∆̃E∗H ≤ η−1∆F (β)

S + θ tr
[
HS

(
%(0)
S − %

(N)
S

)]
. (A.209)

The left inequality is Landauer’s bound applied to cooling a target system with Hamiltonian
HS (see Theorem 1.4), and the error term on the right can be bounded quite easily; for
instance, for β > 0, we have

tr
[
HS

(
%(0)
S − %

(N)
S

)]
= tr

[(
HS − Emin

S 1S

) (
%(0)
S − %

(N)
S

)]
≤ tr

[(
HS − Emin

S 1S

)
%(0)
S

]
≤ tr

[(
HS − Emin

S 1S

) 1S
dS

]
≤ ωmax

S

dS
, (A.210)

where ωmax
S := Emax

S − Emin
S is the largest energy gap in the target system Hamiltonian,

dS is the system dimension, anf the second line follows from the fact that HS −Emin
S 1S is

a positive semidefinite operator. We have used the fact that since %(0)
S is a thermal state

of positive temperature, its average energy is less than that of the infinite temperature
thermal state, 1S

dS
. Since θ ∝ 1

N
, it follows that one can always find an N large enough

such that the error is smaller than a given value, thereby saturating the Landauer bound.
A sequence of machine Hamiltonians to mimic the idealised sequence.—Next we con-

struct a protocol that mimics the above sequence and obeys the global energy conservation
condition imposed in the incoherent-control setting. The protocol is split into N stages
(like above). In each stage, the Hamiltonian of the machine is fixed. The machine here
comprises to two parts: The “cold” part and the “hot” part. The cold part is chosen to
begin in a thermal state at temperature β of the Hamiltonian

HC = (1 + nθ)HS . (A.211)

At this point we note that this sequence of cold machine states is exactly the same as in
the coherent protocol, which would proceed by simply swapping the full state of target
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system and machine in each stage. However, that is not possible here since this is not an
energy preserving operation. To allow for energy preserving operations, the hot part of
the machine consists of dS (dS−1)

2 qubits, each corresponding to a pair of levels (i, j) of the
target system (henceforth we take i < j to avoid double-counting), whose energy gap is
equal to the difference in energies of the target and cold qubit subspaces (hence rendering
the desired exchange energy-resonant)

H(ij)
H = [ωi + (1 + nθ)ωj − (ωj + (1 + nθ)ωi)] |1〉〈1|(ij)H = nθ (ωj − ωi) |1〉〈1|(ij)H , (A.212)

where we have labelled the energy eigenvalues of HS by {ωi}. Each of these hot qubits
begins at inverse temperature βH . After every unitary operation, the cold and hot parts
of the machine are rethermalised to their respective initial temperatures.

To understand the choice of machine Hamiltonians, consider the following two energy
eigenstates of the machine: |i〉C ⊗ |1〉

(ij)
H and |j〉C ⊗ |0〉

(ij)
H . The energy difference is

∆(ij) = ωj(1 + nθ)− ωi(1 + nθ)− nθ(ωj − ωi) = ωj − ωi, (A.213)

matching the energy difference between the corresponding pair of energy eigenstates of the
target system. Furthermore, calculating the ratio of populations of the two levels we find

g(ij) = e−βωj(1+nθ)

e−βωi(1+nθ)e−βHnθ(ωj−ωi)
= e−(ωj−ωi)[β+nθ(β−βH)]. (A.214)

This corresponds to the Gibbs ratio of a qubit at the temperature β+nθ(β−βH), which is
the temperature that defines stage n [see Eq. (A.197)]. In summary, we have constructed
a machine featuring dS (dS−1)

2 qubit subspaces (or virtual qubits), each of the same energy
gap as one pair of energy eigenstates of the system, and all of which have a Gibbs ratio
(or virtual temperature) corresponding the nth temperature of our desired sequence.

A single step of the protocol: The max-exchange operation.—Within each stage of
the protocol, a single step consists of a unitary operation on SCH, followed by the
rethermalisation of the machine parts to their respective initial temperatures. We construct
the unitary operation as follows: For every pair (i, j) of system energy levels, one can
calculate the absolute value of the difference in populations of the following two degenerate
eigenstates |i〉S |j〉C|0〉

(ij)
H and |j〉S |i〉C|1〉

(ij)
H . This value corresponds to the amount of

population that would move under an exchange |i〉S |j〉C|0〉
(ij)
H ↔ |j〉S |i〉C|1〉

(ij)
H . We then

choose the pair with the largest absolute value of this difference and perform that exchange,
with an identity operation applied to all other subspaces. We call this unitary operation
the max-exchange. We proceed to prove two statements about the max-exchange operation.
First, that the heat extracted from the hot bath is proportional to the change in average
energy of the system; and second, that system state under repetition of said operation
converges to the thermal state of the temperature that defines the stage n.

Consider the change in average energy of the target system under the exchange unitary.
The only two populations that change are those of the |i〉S and |j〉S . We label the increase
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in the population of |i〉S as δp. Then, we have

∆ES = tr
[
HS

(
%′S − %S

)]
= −δp (ωj − ωi) . (A.215)

On the other hand, the populations of the corresponding hot qubit (i.e., tracing out the
target system and cold machine) change by the same amount, i.e., there is a move of δp
from |1〉(ij)H to |0〉(ij)H . In order to rethermalise the hot qubit, the heat drawn from the hot
bath is thus

∆̃EH = δp nθ(ωj − ωi) = −nθ∆ES . (A.216)

This is an expression conveniently independent of the pair (i, j) that applies after an
arbitrary number of repetitions of the max-exchange operation (which will use different
pairs in general).

Convergence of the max-exchange protocol to the virtual temperature.—To show that
the max-exchange protocol indeed converges to the desired system state in each stage of
the protocol, we first prove a rather general statement: Given a state % diagonal in the
energy eigenbasis, if we exchange any qubit subspace within this system with a virtual
qubit of a particular virtual temperature, then the relative entropy of the target system
w.r.t. the thermal state of that (virtual) temperature decreases.

To this end, consider the relative entropy of a state % that is diagonal in the energy
eigenbasis to a thermal state τ . Labelling the populations of % as pi and those of τ as qi,
this can be expressed as

D(%||τ) =
∑
k

pk log
(
pk
qk

)
. (A.217)

We now focus on a single qubit subspace labelled by {i, j}, which leads to

D(%||τ) = pi log
(
pi
qi

)
+ pj log

(
pj
qj

)
+

∑
k/∈{i,j}

pk log
(
pk
qk

)

= (pi + pj)
 pi
pi + pj

log
 pi

pi+pj
qi

qi+qj

pi + pj
qi + qj

+ pj
pi + pj

log
 pj

pi+pj
qj

qi+qj

pi + pj
qi + qj


+

∑
k/∈{i,j}

pk log
(
pk
qk

)

= N

(
p̄i log p̄i

q̄i
+ p̄j log p̄j

q̄j
+ log N

NV

)
+

∑
k/∈{i,j}

pk log pk
qk
. (A.218)

In the last line we have renormalised the populations within the qubit subspace and
labelled the total populations of the system and thermal state qubit subspaces of interest
by N and NV respectively. Labelling the normalised states within these subspaces as %V
and τV respectively, we have

D(%||τ) = N

[
D(%V ||τV ) + log

(
N

NV

)]
+

∑
k/∈{i,j}

pk log
(
pk
qk

)
. (A.219)
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Suppose now that this qubit subspace of the target system is exchanged with a qubit
subspace of any machine that has the same temperature as the thermal state above. The
only object that changes in the the above expression is %V , since the norm N remains the
same. In addition, %V always gets closer to τV under such an exchange [83, 366], implying
that the relative entropy always strictly decreases under such an operation.

Returning to the max-exchange protocol, note that by construction, every virtual qubit
in the machine that is exchanged with the qubit subspace {i, j} of the target system in a
given stage n has the same virtual temperature, βn = β + nθ(β − βH). Thus the relative
entropy of the system to the thermal state at this temperature always decreases under
this operation, unless the operation does not shift any population, which only happens
at the unique fixed point where every qubit subspace of the system is already at the
virtual temperature βn. By monotone convergence, the relative entropy must converge,
and moreover converge to the value that it has at the fixed point of the operation, which
is the thermal state at inverse temperature βn. Note that rather than choosing the qubit
subspace with maximum population difference to exchange we could also have picked at
random from among the pairs {i, j} and convergence would still hold; the max-exchange
protocol simply ensured the fastest rate of convergence among these choices.

Choosing a large enough number of repetitions in each stage so that the overall heat
cost is close to the idealised heat cost.—Given that the max-exchange protocol in stage n
converges to the thermal state that we label %(n)

S , given any error δE, we choose a number
of repetitions mn that is large enough so that the difference between the average energy
of the actual final state of this stage, which we label %̃(n)

S , and that of the ideal state %(n)
S

is less than δE. In this case, the total heat cost over all stages is close to the idealised
heat cost

∣∣∣∆̃EH−∆̃E∗H
∣∣∣= ∣∣∣∣∣

N∑
n=1

{
−nθ tr

[
HS

(
%̃(n)
S −%̃

(n−1)
S

)]}
−

N∑
n=1

{
−nθ tr

[
HS

(
%(n)
S −%

(n−1)
S

)]}∣∣∣∣∣
=
∣∣∣∣∣
N−1∑
n=0

θ tr
[
HS

(
%̃(n)
S − %

(n)
S

)]
−Nθ

(
%̃(N)
S − %(N)

S

)∣∣∣∣∣
≤ 2NθδE = 2

(
β∗ − β
β − βH

)
δE. (A.220)

The number of repetitions in each stage mn required depends only upon the initial choice
of β∗ and N .

Completing the proof.—Finally, suppose that one is given any target temperature β∗

and two arbitrarily small errors, εβ for the cooling and εE for the heat cost, and asked to
cool incoherently in such a way that achieves

|β′ − β∗| ≤ εβ, (A.221)∣∣∣∆̃EH − η−1∆F (β)
S

∣∣∣ ≤ εE. (A.222)

237



Appendices

We proceed by first choosing a number of stages N so that the idealised heat cost ∆̃E∗H is
within εE

2 to the Carnot-Landauer bound above. The idealised sequence of temperatures
satisfies βN = β∗ by construction. Once N is fixed, for each stage from n = 1 to N − 1 we
choose a number of repetitions for each stage mn such that the actual heat cost is within
εE
2 of the idealised heat cost, as discussed above. This ensures that the total heat cost
is within εE of the bound. Finally, we check that the number of repetitions of the last
stage mN is large enough for us to be within εβ of β∗. If not, we increase the number of
repetitions (this can only decrease the error in the heat cost anyway) until we are close
enough, as required.

A.8 Comparison of Cooling Paradigms and Resources for
Imperfect Cooling

Although we have looked at a number of cooling protocols throughout to demonstrate
the ability for perfect cooling in the asymptotic limit, here we focus on imperfect cooling
behaviour, i.e., when all resources are restricted to be finite and thus a perfectly pure
state cannot be attained. We have three main goals in doing so:

1. To illustrate the finite trade-offs between the trinity of resources (energy, time,
control complexity),

2. To compare the behaviour of different constructions of the cooling unitary for
machines of the same size (i.e., analysing the energy-time trade-off for for fixed
control complexity),

3. To demonstrate the increase in resources required for cooling in the thermodynamic-
ally self-contained paradigm of energy-preserving unitaries (i.e., incoherent control),
as compared to coherently-driven unitaries.

A.8.1 Rates of Resource Divergence for Linear Qubit Machine Sequence

Consider cooling a qubit target system with energy gap ωS by swapping it sequentially
with a sequence of N machine qubits of linearly increasing energy gaps. In Appendix A.7.1,
we derived the deviation from the idealised heat dissipation in the incoherent control
setting for a sequence of N machines [see Eq. (A.175)], which we repeat below:

1
η

(F ∗ − F0) ≤ ∆̃E∗H ≤
1
η

(F ∗ − F0) + ωS
N

(
β∗ − β
β − βH

)
. (A.223)
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We can immediately adapt this result to the paradigm of coherent control by taking
βH = 0 and replacing the heat by work, which yields

∆FS ≤ W ≤ ∆FS + ωS
N

(
β∗

β
− 1

)
. (A.224)

Since the above inequalities are derived from the left and right Riemann sums of an
integral, as N becomes large, one can expect that W lies roughly halfway between both
extremes; we can thus cast the scaling in the approximate form[

W −∆F
ωS

]
N ∼ 1

2

(
β∗

β
− 1

)
. (A.225)

Thus, we see that the relevant quantifier of the energy resource here is the extra work cost
above the Landauer limit relative to the system energy. Additionally, the quantifier of
how much said resource is required (per machine qubit) is β∗

β
− 1, which, for cold enough

final temperatures, is approximately the ratio β∗

β
.

Returning to the incoherent control paradigm, analysing the scaling behaviour between
energy and time is more complicated. On the one hand, the expression above is only
slightly modified, with the work being replaced by the heat dissipated multiplied by the
Carnot factor: [

η ∆EH −∆F
ωS

]
N ∼ 1

2

(
β∗

β
− 1

)
, (A.226)

which is consistent with the work-to-heat efficiency of a Carnot engine. However, in
the case of incoherent control, since the population swap only takes place within a
subspace of the two-qubit machine, the total population is not completely exchanged
in a single operation (in contrast to that in the coherent control setting). Thus the
number of operations here required to transfer a desired amount of population to the
ground state of the target is greater than the number of machine qubits N . To make a
fair comparison, one could either compare the same number of machine qubits but swap
repeatedly (with rethermalisation of the machine in between operations)—thereby fixing
the control complexity at the expense of longer time—or one could increase the number
of machine qubits and count time by the number of two-level swaps—thereby fixing time
to be equal at the expense of increased control complexity overall. We investigate both
methods in the coming section.

A.8.2 Comparison of Coherent and Incoherent Control

Intuitively, the incoherent control paradigm requires the utilisation of a greater amount
of resources (albeit less overall control in general) than the coherent control counterpart
because of two distinct disadvantages. First, the temperature of the baths plays a
substantial role in cooling performance. Consider the example of a swap between a system
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and machine qubit: In the coherent control case, this operation transforms the target
system to the state of the thermal machine qubit, characterised by the Gibbs ratio of
ground-state to excited-state population. In the incoherent control case, one requires the
addition of a thermal qubit from the hot bath to render said operation energy-preserving;
as a result, the Gibbs ratio of the virtual qubit that the target system swaps with is,
in general, worse than that of the coherent control setting, and only becomes equal in
the limit of an infinite temperature hot bath. This is the first disadvantage. The second
disadvantage is that in the incoherent control setting, the target system swaps with only a
subspace of the machine rather than the entire one, i.e., it is swapped with a virtual qubit.
Thus, the exchange of population is only partial as compared to the coherent control
case: In the limiting case of an infinite temperature hot bath, said factor goes to 1

2 for all
relevant two-level subspaces. This implies that a greater number of operations, and thus
time, is required in the incoherent control paradigm in order to achieve a similar result as
its coherent control counterpart.

We illustrate this behaviour via the following example. The system is a degenerate
qubit (beginning in the maximally mixed state), and we fix the final target ground-state
population (p = 0.99, corresponding to ε = 1− p = 0.01). Even in this simple case, the
optimal finite-resource protocols with coherent and incoherent control are not known; we
therefore compare protocols from each setting that make use of machines of a similar
structure, namely swapping with machine qubits (virtual ones, in the incoherent control
setting) of linearly increasing energy gaps.

More specifically, the coherent control cooling protocol employed is that of a sequence
of swaps with machine qubits of linearly increasing energy gaps, and for the fixed target
population, we can calculate the surplus work cost over the Landauer limit as a function
of the number N of operations (which corresponds in this case to the number of machine
qubits). In the incoherent control case, we take the hot bath to be at infinite temperature,
allowing for the potential saturation of the Landauer limit as in the coherent case. In
this way we isolate the disadvantage that arises due to working in degenerate subspaces
in our analysis. Here too we take a linear sequence of energy gaps for the cold (and
hot) baths, with a single operation step corresponding to a three-level energy-conserving
exchange involving the qubit taken from each of the hot and cold parts of the machine, i.e.,
|1〉S |0〉C|0〉H ↔ |0〉S |1〉C|1〉H. As mentioned previously, for an incoherent control protocol
of fixed overall machine size, there are essentially two extremal methods of implementation.
The first is to identify N two-level subspaces of the total machine with distinct energy
gaps and perform the sequence of virtual swaps between them and the target; in the
language of Appendix A.7, we therefore have N different stages with a single step within
each stage (no repetitions) before moving on to the next stage. The second is to take N

m

two-level subspaces and swap the target with each virtual qubit m times before moving
on to the next; i.e., we here have N

m
different stages with m steps (repetitions) within each
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Figure A.1: Imperfect Cooling with Coherent and Incoherent Control. We compare the
performance of coherent and incoherent control protocols for cooling a degenerate qubit target by
swapping it with machine qubits with linearly increasing energy. The final ground-state population is
fixed to be 0.99. The inverse of the surplus work cost W − β∆̃SS (with β = 1) is plotted against the total
number of unitary operations, with the temperature of the hot bath in the incoherent control protocols
set to βH =∞ in order to make meaningful comparison to the coherent control case. We see that the
coherent control protocol (blue) outperforms the two incoherent ones (purple, red) at any given time. As
discussed in the text, there are two choices for how to implement an incoherent control protocol of this
type with fixed control complexity: The red line corresponds to a protocol in which a machine (subspace)
with the same energy gap is reused 5 times before moving on to the next; on the other hand, the purple
line depicts the case where there are no repetitions within each stage defined by a distinct energy gap in
the machine. By inspection, the single-use incoherent protocol (purple) requires ∼3 times more unitaries
to achieve the same efficiency as the coherent one (blue), whereas the 5-repetition incoherent protocol
(red) requires ∼5.3 times as many unitaries as the coherent one.

stage. For the same fixed ground-state population, we plot the surplus work cost (energy
drawn from the hot bath in the case of incoherent control) against the total machine size
/ number of two-level unitary swaps, as characterised by N , for both of these incoherent
control adaptations, comparing them to the coherent control paradigm in Fig. A.1.

In both control paradigms, we see that the deviation of the energy cost above the Land-
auer limit scales inversely with the number of operations [as expected from Eqs. (A.225)
and (A.226)], but the proportionality constant is worse in the case of incoherent control.
Moreover, the incoherent control paradigm with no repetitions within stages outperforms
that with multiple repetitions, as intuitively expected since the former protocol corres-
ponds to one for which the spacing between distinct energy gaps that are utilised is smaller,
allowing us to stay closer to the reversible limit in each step. In our example, the no
repetition incoherent control protocol is around 3 times worse than the coherent control
protocol and the incoherent control protocol with m = 5 repetitions is around 5.3 times
worse, implying that one would require that many times the number of operations (i.e.,
that much more time) to achieve the same performance with incoherent control paradigm
as with coherent control.
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Chapter 2

B.1 Markovian Embedding of Collision Models with Memory

We are interested in exploring analytically the effects of memory regarding the task of
cooling a quantum system. We do not wish to allow for arbitrary non-Markovianity, as
this would lead to an infinite resource in a sense that it allows us to cool the system to the
ground state perfectly. Rather aim to obtain a cooling bound in the limit of infinite cycles
for a particular class of non-Markovian dynamics, namely a generalised collision model
endowed with memory. Such collision models with memory are quite general, simply
assuming that between each step of the dynamics, the system interacts with k constituent
sub-machines (which altogether make up the full set of machines), of which some ` < k

of these carry the memory forward. The Markovian setting is recovered for ` = 0. A
schematic is provided in Fig. B.1.

We consider a target system of dimension dS and local HamiltonianHS = ∑dS−1
i=0 Ei|i〉〈i|S,

where {Ei} are sorted in non-decreasing order and an environment comprising of a number
of constituent identical machines of finite size dM , each of which has the local Hamiltonian
HM = ∑dM−1

i=0 Ei |i〉〈i|M , where {Ei} are also sorted in non-decreasing order. The system
and all machines (i.e., the entire environment) begin uncorrelated in a thermal state with
the same inverse temperature β:

%
(0)
S (β) = τS(β) and %

(0)
E (β) =

⊗
j

τMj
(β), (B.1)

where τX(β) := Z−1
X e−βHX with the partition function ZX := tr[e−βHX ].

Fixing k and ` provides a particular dynamical structure of the non-Markovian process:
It stipulates that at each timestep there are k machines interacting with the system, of
which ` are kept to perpetuate the memory. For example, after n steps, the system state
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Memory carrier
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t
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S
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Figure B.1: Generalised Collision Model with Memory. In the collision model picture, the
environment that the system (green) interacts with is assumed to be comprised of individual sub-units,
which we call machines. Between each step of dynamics, the system interacts unitarily (blue outline) with
a subset of these; the cardinality of this set is labelled by k throughout this work. A further subset of these
previously-interacted-with machines of cardinality ` < k take part in the following interaction, becoming
memory carriers (red). At each timestep, k− ` fresh machines are incorporated into the dynamics (yellow).
Here we have shown k = 2, ` = 1.

is

%
(n)
S (β, k, `) = trM [U (n)

k,` . . . U
(1)
k,` (τS(β)

m⊗
j=1

τMj
(β))U (1)†

k,` . . . U
(n)†
k,` ], (B.2)

where U (n)
k,` is an arbitrary unitary transformation between the target system and the k

machines labelled by {(n− 1)(k − `) + 1, . . . , n(k − `) + `} (an identity map is implied
on the other machines) and m := k + (n − 1)(k − `) is the total number of machines
used by the protocol up until timestep n, which will be important in making finite time
comparisons, as we do in Appendix B.4 (see Fig. 2.1 for a graphical depiction in terms of
a circuit diagram).

Importantly, the state of the system at any time is a function of the full microscopic
energy structure {Ei} and {Ei} (which we do not explicitly label for ease of notation),
β, k and `; the latter two numbers specify a particular dynamical structure in terms of
which systems the unitaries act upon between timesteps. If ` = 0, the dynamics of the
system is Markovian, since at each step, the system interacts with fresh machines that
contain no memory of the past dynamics of the system. Otherwise, each of the machines
interacts more than once with the target and only k − ` fresh machines are added into
the interaction at each step.

Eq. (B.2) highlights the restriction imposed by the assumption of generalised collision
model dynamics from the fully general case of non-Markovian dynamics where the full
system-environment must be tracked; in particular, a subset of the environment (the k− `
rethermalising systems) is traced out between steps, rendering the dynamics tractable
for small k, `. However, it is important to note that on the level of the system, memory
effects still play a role. We first show that for ` > 0 the dynamics considered is indeed
non-Markovian in general.

To analyse the proposed setting, we need to look at the evolution of the entire
joint system and machines to consider the effect of the memory in the protocol. For
instance, consider rewriting Eq. (B.2) as a dynamical map taking the initial system state
%

(0)
S (β) = τS(β) to the later one under a generic dynamical structure determined by the
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choice of k and `, i.e., define

Λ(n:0)
k,` (β)[XS] := trM [U (n)

k,` . . . U
(1)
k,` (XS

⊗
j

τMj
(β))U (1)†

k,` . . . U
(n)†
k,` ], (B.3)

where we have now included all of the machines in the environment and an identity map
on those not taking part in the interactions until timestep n is implied, such that

%
(n)
S (β, k, `) = Λ(n:0)

k,` (β)[%(0)
S (β)]. (B.4)

Linearity, complete positivity and trace preservation of the map Λ(n:0)
k,` (β) is guaranteed

for any β, k, ` and most importantly n by the fact that S and E begin initially uncorrelated
and the dynamics evolves unitarily on the global level, before a final partial trace is taken
over the environment degrees of freedom. Complete positivity is particularly important to
ensure that the map takes valid quantum states to valid quantum states. In general, the
global state %(n)

SM(β, k, `), where M labels the subset of the environment that has taken
part non-trivially in the dynamics up until timestep n, involves correlations between S
and M ; taking the partial trace over M destroys all such correlations. Thus, one cannot,
in general, describe the evolution of the system between multiple times as a divisible
concatenation of Completely Positive and Trace Preserving (CPTP) maps, i.e.,

%
(n)
S (β, k, `) = Λ(n:0)

k,` (β)[%(0)
S (β)] 6= Λ(n:t)

k,` (β) ◦ Λ(t:0)
k,` (β)[%(0)

S (β)]. (B.5)

Here, we have defined Λ(n:t)
k,` (β) as the map that would be tomographically constructed

if one were to discard the system at time t (which is generally correlated to M) and
perform a quantum channel tomography by preparing a fresh basis of input states (see
Fig. B.2); since the reprepared state is uncorrelated to M by construction, the map
Λ(n:t)
k,` (β) is guaranteed to be CPTP for any choice of parameters [264]. Testing for equality

in Eq. (B.5) then corresponds to the operational notion of Completely Positive (CP)-
divisibility proposed in Ref. [151]; importantly, its breakdown acts as a valid witness for
non-Markovianity that is stricter than other notions of CP-divisibility proposed throughout
the literature (in particular, it is stronger than that based on invertible CP-divisibility in
any case where the dynamical maps are invertible). Of course, the fact that Eq. (B.5) is
generally an inequality for generic dynamics does not imply that it is so for the particular
optimal cooling dynamics described throughout this article; however, it is simple to
show that the optimal cooling protocol indeed generates correlations between the system
and machines that lead to a breakdown of (operational) CP-divisibility, and hence the
particular dynamics considered throughout is inherently non-Markovian.

Nonetheless, the collision model memory structure that we have introduced crucially
allows for a Markovian embedding that permits a significant simplification in the ana-
lysis [95]. As mentioned previously, in general, one would need to track the total joint
evolution throughout the entire protocol, which quickly becomes computationally exhaust-
ive as k grows. However, for a choice of k and `, we can group the system S and ` of
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Figure B.2: Operational CP-Divisibility. A breakdown of operational CP-divisibility is a witness for
non-Markovianity. The test consists of tomographically constructing a set of maps describing the dynamics
and checking the validity of Eq. (B.5). We illustrate the scenario for a subset of times t = 2, n = 4, with
k = 2, ` = 1: The left panel depicts the map Λ(4:0)

2,1 , which comprises everything within the purple border,
i.e., the initial states of all machines, all joint unitary interactions, and the final partial trace. Note
that the final memory carrier M5 should continue forward, but the map Λ(4:0)

2,1 does not capture this and
traces out that subsystem. The middle panel depicts the map Λ(2:0)

2,1 . Both maps can be tomographically
reconstructed by preparing a basis of input states at the initial time and measuring the outputs at time
t = 4 and t = 2, respectively. As the system begins initially uncorrelated with the machines, the unitary
dilation guarantees that the maps constructed are CPTP. The final map needed, Λ(4:2)

2,1 , is shown in
the right panel. In general, at time t = 2, the system is correlated to the machines, thus breaking the
assumption of no initial correlations. An operational circumvention is to discard the system state at
t = 2 and reprepare a fresh one, thereby erasing all system-machine correlations. This has the effect
of rendering the memory carriers into a fixed quantum state, which can be included in the description
of Λ(4:2)

2,1 to ensure that it is CP. When memory is present, tracing out the system at the intermediary
timestep generally conditions the state of the memory carriers into a state that generally differs from the
initial thermal state τ(β), labelled here σ(β), with the altered part of the evolution depicted in green;
thus, the full dynamics generically differs from that described by the concatenation.

the machines into a larger joint system, which we label SL, which interacts with k − `
fresh machines at each timestep; we label these fresh machines with R as they model
rethermalization of some of the machines with the environment. On the level of SL, the
dynamics is Markovian, as the degrees of freedom carrying the memory have been included
in the description of the target system. One can obtain the state of the overall SL target
by tracing out the R machines at each step. We therefore have

%
(n)
SL(β, k, `) = trR[Ũ (n)

k,` . . . Ũ
(1)
k,` (%(0)

SL(β, `)⊗ %(0)
R (β, k, `)) Ũ (1)†

k,` . . . Ũ
(n)†
k,` ], (B.6)

where %(0)
SL(β, `) := τS(β)⊗`

j=1 τMj
(β), %(0)

R (β, k, `) := ⊗m
j=`+1 τMj

and Ũ (n)
k,` is an arbitrary

unitary interaction between SL and k − ` fresh machines occurring immediately prior to
timestep n (see Fig. B.3). Due to the fact that no memory transportation occurs on the
SL level throughout the protocol, the full dynamics of the system and memory carriers is
captured by the following concatenation of dynamical maps:

%
(n:0)
SL (β, k, `) = Λ̃(n:t)

k,` ◦ Λ̃(t:0)
k,` [%(0)

SL(β, `)], (B.7)

where Λ̃(n:t)
k,l is a CPTP map that acts only upon SL and depends on the unitary operators

Ũ
(n)
k,l , . . . , Ũ

(t)
k,l and the initial state of the k−` fresh machines taking part in each interaction.

Thus the dynamics is (operationally) CP-divisible on the level of SL, and it is easy to see
that it is even Markovian in the stronger sense provided in Refs. [128, 180].

This “Markovian embedding” of the non-Markovian dynamics provides an opportunity
to investigate the problem at hand with a simplified Markovian dynamics on the larger SL
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Figure B.3: Markovian Embedding of Generalised Collision Model. The generalised collision
models considered in this work can be embedded as a Markovian process by grouping together the system
and memory carriers into a larger target system. On the left, we show that by considering the original
circuit shown in Fig. 2.1, plus allowing for a swap interaction between relevant machines, the dynamics
can be transformed into the circuit in the right panel. Here, we identify the memory carrier systems
as L; the entire SL system now interacts with fresh machines between each timestep, which we label
R. The full dynamics of SL can be described by a Markovian sequence of CPTP maps: Here we show
only the first two, Λ̃(1:0)

2,1 , Λ̃(2:1)
2,1 within the purple borders, although the dynamics between any steps

can be described similarly. Note that, in contrast to the dynamics of the system itself, the dynamical
maps on the level of SL contain the complete description of the process and Eq. (B.7) always holds;
intuitively, this is because none of the systems carrying memory are artificially “cut” by the description
of the dynamical map (see the partial traces on the red lines in Fig. B.2 for comparison).

system instead of complicated non-Markovian dynamics that occurs on the level of S. In
the sense of Ref. [95], the number of memory carriers ` corresponds to the memory depth
of the dynamics; intuitively, this is the number of additional subsystems that need to be
included in the description of the system so that the dynamics is rendered Markovian.

B.2 Proof of Theorem 2.1

Here we prove Theorem 2.1. The proof makes use of the main result of Refs. [82, 83],
which derive the ultimate cooling bounds for a Markovian protocol. We first embed the
non-Markovian dynamics of S as a Markovian one by considering the target system SL,
before finding the optimally cool SL state in the asymptotic limit, which we denote %∗SL.
We then combine this result with the fact that there always exists a unitary that can
finally be implemented on just SL such that the reduced state of S majorises all of the
possible reduced states of the system SL, as long as %SL is majorised by %∗SL. This implies
that the optimal asymptotic system state %∗S can be calculated from the reduced state of
any %SL which has the same eigenvalue spectrum of the asymptotically optimal SL state.

Before we begin with the proof, we provide a definition of majorisation for completeness:

Definition B.1. Given a vector of real numbers a ∈ Rd, we denote by a↓ the vector with
the same components but sorted in non-increasing order. Given a,b ∈ Rd, we say that
a � b (a majorises b) iff

k∑
i

a↓i ≥
k∑
i

b↓i ∀ k ∈ {1, . . . , d}. (B.8)
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Proof of Theorem 2.1. We first perform a Markovian embedding of the non-Markovian
collision model dynamics by considering the evolution of the larger target system SL (with
dimension dSd`M); for a given number ` of memory carriers, the Markovian embedding
corresponds to a memory depth of ` in the sense of Ref. [95], which is to say that by
including the description of the ` memory carrying systems with that of the original
target system S, the dynamics is rendered Markovian. This is because, at each step of
the protocol, SL interacts with k − ` fresh machine systems (with total dimension dk−`M ),
which are subsequently discarded and play no further role in the dynamics.

In the Markovian regime, we can use the theorem of universal cooling bound presented
in Ref. [82], which holds for an arbitrary target system interacting with an arbitrary
machine, which are initially in a thermal state with inverse temperature β, in the limit of
infinite cycles.

Lemma B.1 (Markovian Asymptotic Cooling Limit [Theorem 1 in Ref. [82]]). For any
d
S̃
-dimensional system with Hamiltonian H

S̃
= ∑d

S̃
−1

i=0 Ei |i〉〈i|S̃ interacting with a d
M̃

dimensional machine with Hamiltonian H
M̃

= ∑d
M̃
−1

i Ei|i〉〈i|M̃ with {Ei}, {Ei} sorted in
non-decreasing order, in the limit of infinite cycles,

• The ground state population of the target system S̃ is upper bounded by

p̃∗(β) = (
d
S̃
−1∑

n=0
e−βnẼmax)−1 (B.9)

where Ẽmax is the largest energy gap of the machine.

• In both coherent and incoherent control scenarios, the vectorized form of eigenvalues
of the final state is majorised by that of the following state,

%∗
S̃
(β) =

d
S̃
−1∑

n=0

e−βnẼmax

Z
S̃
(β, Ẽmax)

|n〉〈n|
S̃
, (B.10)

if the initial state %(0)
S̃

(β) is majorised by %∗
S̃
(β).

• In the coherent control paradigm, the asymptotically optimal state, which is also
achievable, is given by %∗

S̃
(β).

In view of the fact that the final state %∗
S̃
(β) has a unique eigenvalue distribution and

is achievable in the infinite-cycle limit, it is possible to investigate this bound on the
population of a particular subspace of dimension d, rather than just the ground state
population. It is straightforward to show that its population is upper bounded by the d
largest eigenvalues

p̃∗Hd(β) ≤
∑d−1
n=0 e

−βnẼmax

Z
S̃
(β, Ẽmax)

. (B.11)
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With this knowledge, we are in the position to study the optimal cooling of the non-
Markovian collision model protocol in the limit of infinite cycles by employing Lemma B.1.
In our case, an arbitrary target system S interacts with k machines at each step and `
of these carries memory forward to be involved in the next interaction. Thus, the joint
system SL corresponds to the target system S̃ here, which undergoes Markovian dynamics
with respect to the k − ` fresh machines added at each step, which comprise M̃ ; hence,
Ẽmax is equal to (k − `)Emax. It turns out that the maximum energy gap of the fresh
machines and the total dimension and number of the memory carriers play an important
role in the ultimate cooling bound.

Using our Markovian embedding of the dynamics and Lemma B.1, we see that in
the limit of infinite cycles for any control paradigm, the vector of the eigenvalues of the
asymptotic state is majorised by

%∗SL(Emax, β, k, `) =
dSd

`
M−1∑

n=0

e−βn(k−`)Emax

ZSL(β, (k − `)Emax)
|n〉〈n|SL (B.12)

if %(0)
SL(Emax, β, k, `) ≺ %∗SL(Emax, β, k, `) and {|n〉SL} is the energy eigenbasis with respect

to which the energy eigenvalues are sorted in non-decreasing order. So far, we have found
the achievable passive state that majorises all other reachable states of SL via unitary
operations on SLR. However, this state is not unique as the characterisation is based solely
on its eigenstate distribution: One can indeed find a whole set of equally cool reachable
states, i.e., those for which ~λ[%∗SL(Emax, β, k, `)] = ~λ[USL%∗SL(Emax, β, k, `)U †SL] ∀ USL, where
~λ[%] indicates the vectorised form of the eigenvalues of %. We now present another lemma
which says that from any such state of SL, one can reach the optimally cool state of S,
%∗S, helping us complete the proof.

Lemma B.2 (Reduced State Majorisation). For any pair states %AB and σAB, if σAB ≺
%AB, there exists a unitary Uopt

AB on HAB such that:

trB
[
UABσABU

†
AB

]
≺ trB

[
Uopt
AB%ABU

opt †
AB

]
∀ UAB. (B.13)

Proof. Without loss of generality, we assume that the eigenvalues of both states %AB and
σAB are sorted in non-increasing order as follows

pAB = {p↓α}
dAdB−1
α=0 and qAB = {q↓α}

dAdB−1
α=0 . (B.14)

Based on the sorted eigenvalues, σAB ≺ %AB if and only if

k∑
α=0

q↓α ≤
k∑

α=0
p↓α ∀ k ∈ {0, 1, . . . , dAdB − 1}. (B.15)

Now we aim to find the reduced state σoptA majorising all of the achievable reduced states
possible to generate by a unitary transformation of σAB, which we assume to be diagonal
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in the orthonormal basis {|ij〉AB} without loss of generality:

σAB =
dA−1∑
i=0

dB−1∑
j=0

qij|ij〉〈ij|AB (B.16)

One can show that it is possible to obtain σoptA from a bipartite state that is diagonal in
the same basis. Then we have,

σ̃AB = Uopt
ABσABU

opt †
AB =

dA−1∑
i=0

dB−1∑
j=0

q̃ij|ij〉〈ij|AB, (B.17)

where Uopt
AB is simply a permutation matrix that reorders the eigenvalues appropriately.

The final reduced state is then given by

σ̃A =
dA−1∑
i=0

( dB−1∑
j=0

q̃ij
)
|i〉〈i|A. (B.18)

We now need to show that the appropriate unitary maximises the eigenvalues of the
reduced state with respect to eigenvalues of σAB. If we rearrange the eigenvalues in such
a way that q̃ij = q↓α where α is given by α := i dB + j, we obtain σoptA as the following

σoptA =
dA−1∑
i=0

η↓i |i〉〈i|A =
dA−1∑
i=0

( dB−1∑
j=0

q↓α=idB+j

)
|i〉〈i|A, (B.19)

where, due to the sorting of {q↓α}, the eigenvalues of σoptA are sorted in non-decreasing
order. The final reduced state satisfies the following condition

trB
[
UABσABU

†
AB

]
≺ trB

[
Uopt
ABσABU

opt †
AB

]
= σoptA ∀ UAB . (B.20)

Similarly one can find %optA by applying a unitary V opt
AB ,

%optA =
dA−1∑
i=0

ξ↓i |i〉〈i|A =
dA−1∑
i=0

( dB−1∑
j=0

p↓α=idB+j

)
|i〉〈i|A, (B.21)

whose eigenvalues are also in non-increasing order by construction. The final step of the
proof is to show that σoptA ≺ %optA whenever σAB ≺ %AB. This majorisation condition can
be recast in the form of

k∑
i=0

η↓i ≤
k∑
i=0

ξ↓i ⇒
(k+1)dB−1∑

α=0
q↓α ≤

(k+1)dB−1∑
α=0

p↓α ∀ k ∈ {0, 1, . . . , dA − 1}. (B.22)

Using inequality (B.15), one can easily show that inequality (B.22) always holds, i.e.,
σoptA ≺ %optA , completing the proof.

In the next step, we aim to maximise the population of the system ground state, i.e.,
the maximum population of the specific subspace of the SL target given in Eq. (B.11).
One must therefore find the target state %∗S(β, k, `) that can be achieved from the states
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%SL with the same eigenvalues as %∗SL(Emax, β, k, `), since, from Lemma B.2 we know
that this state majorises the largest set of states in S. In order to do so, we maximise
the eigenvalues of %∗S(Emax, β, k, `) with respect to those of %∗SL(Emax, β, k, `). One can
appropriately sort the eigenvalues of the system S and the memory carrier machines L
with the following unitary:

Uopt
SL %

∗
SL(Emax, β, k, `)Uopt

SL

†

=
dS−1∑
n=0

d`M−1∑
j=0

e−β(nd`M+j)(k−`)Emax

ZSL(β, (k − `)Emax)
|nj〉〈nj|SL

=
dS−1∑
n=0

d`M−1∑
j=0

e−β(nd`M+j)(k−`)Emax∑dS−1
n′=0

∑d`M−1
j′=0 e−β(n′d`M+j′)(k−`)Emax

|nj〉〈nj|SL

=
dS−1∑
n=0

e−βnd
`
M (k−`)Emax∑dS−1

n′=0 e
−βn′d`M (k−`)Emax

|n〉〈n|S ⊗
d`M−1∑
j=0

e−βj(k−`)Emax∑d`M−1
j′=0 e−βj′(k−`)Emax

|j〉〈j|L, (B.23)

Thus, beginning with the optimally cool SL state in Eq. (B.12), we can reorder the
eigenvalues via Uopt

SL in Eq. (B.23) such that the subsystem S is optimally cool; finally
applying Lemma B.2 then implies that

trL[USL %∗SL(Emax, β, k, `)U †SL] ≺ %∗S(Emax, β, k, `) ∀ USL , (B.24)

where %∗S(Emax, β, k, `) is indeed given by taking the partial trace over L of the optimal
joint state %∗SL(Emax, β, k, `):

%∗S(Emax, β, k, `) =
dS−1∑
n=0

∑d`M−1
j=0 e−β(nd`M+j)(k−`)Emax∑dS−1

n′=0
∑d`M−1
j′=0 e−β(n′d`M+j′)(k−`)Emax

|n〉〈n|S

=
dS−1∑
n=0

e−βnd
`
M (k−`)Emax∑dS−1

n′=0 e
−βn′d`M (k−`)Emax

|n〉〈n|S, (B.25)

thus establishing %∗S(Emax, β, k, `) as the optimal system state in the asymptotic limit.
In conclusion, from Lemma B.1, we know that the final state of the system SL, for any

control paradigm in the infinite-cycle limit, is majorised by %∗SL(Emax, β, k, `). Consequently,
via Lemma B.2, the final state of S is also majorised by %∗S(Emax, β, k, `). Then, the
population of the ground state of the system is upper bounded by the sum of the d`M
largest eigenvalues of %∗SL(Emax, β, k, `), i.e., p∗(Emax, β, k, `) = (∑dS−1

n=0 e−βnd
`
M (k−`)Emax)−1.

We finally prove that in the coherent scenario, the state %∗S(Emax, β, k, `) is achievable
in the limit of infinite cycles. Using Lemma B.1, one can easily show that the final state
of SL under optimal coherent operations converges to %∗SL(Emax, β, k, `). To do so, we
use the fact that in the coherent scenario, one can apply any unitary operation on the
system SL at the final step. We then achieve the desired target state %∗S(Emax, β, k, `) via
employing the unitary Uopt

SL , completing the proof.
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B.3 Role of System-Memory Carrier Correlations

We here remark on the correlations that can develop between the target system S and
memory carriers L throughout the cooling protocols that have been discussed in the main
text.

In particular, we have focused on two procedures. The first strategy optimally cools
the joint SL system at each timestep, which does not necessarily ensure that S is locally
optimally cool; it is only at the final step that the target system is further cooled by
transferring entropy away from it and toward the memory carriers. More precisely, this
protocol implements the unitary whose action is defined in Eq. (2.7) at each step (which
globally cools SL), and only finally implements the unitary that ensures S to be locally
cool, whose action is defined in Eq. (2.8). This protocol thus focuses in each step on
cooling SL globally: In effect, it cools SL with respect to its own (global) energy eigenbasis
(|0〉SL, |1〉SL, . . . , |n〉SL), with |i〉SL denoting the ith excited state of SL and n = dSdM − 1;
as such, we refer to it here as the “global basis cooling protocol”.

While the above protocol eventually, i.e., at the last step, optimally cools S, it does not
necessarily do so at each step. To this end, in the main text we presented a second cooling
protocol which is step-wise optimal. Intuitively, this protocol globally cools SL optimally
at each step (as does the strategy described above), and, given that optimally cool state,
additionally performs a unitary on SL to furthermore optimally cool S locally at each step;
as such, we refer to this scheme as the “local basis cooling protocol”. In practical terms,
one can view this protocol as cooling SL optimally at each step in the locally-ordered
energy eigenbasis (|00〉SL, |01〉SL, . . . , |0, dL − 1〉SL, |10〉SL, . . . , |dS − 1, dL − 1〉SL), where
|i〉S is the ith energy excited state of S and |j〉L the jth energy excited state of L.

Note that, while related by a permutation of the basis elements, this local energy
eigenbasis generally differs from the global energy eigenbasis of SL, which does not take
local information regarding the energy structure into account. For instance, if the target
and memory comprise a qubit each with (respectively) distinct energy gaps, {ES, EL} such
that EL > ES without loss of generality, then cooling with respect to the global basis would
order the eigenvalues λ0 ≥ · · · ≥ λ3 into the respective subspaces {|00〉, |10〉, |01〉, |11〉}.
However, for S to be optimally cool, the eigenvalues need to be sorted in non-increasing
order with respect to {|00〉, |01〉, |10〉, |11〉}; this type of ordering is only achieved at the
last timestep via the final unitary in the global cooling protocol, but at every timestep in
the local cooling protocol. Discrepancies between the locally-optimal and globally-optimal
basis ordering typically become more pronounced as systems become more complex, i.e.,
multi-partite and high-dimensional, highlighting the necessity for careful accounting. In
general, the logic above implies that the local cooling protocol will not reach the coldest
SL possible state in particular at each step, but nonetheless always reaches one that is
unitarily equivalent to it.
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Figure B.4: Finite-Time Correlations for Global and Local Cooling Protocols. Here we
compare the correlations generated in the global and local cooling protocols, as described in the text. The
orange line depicts the protocol that cools SL globally, disregarding the local energy structure, whereas
the blue line corresponds to the procedure that ensures S itself is locally optimally cool. Note that,
strictly speaking, the global basis cooling protocol includes a final unitary to be implemented at the
last timestep, which yields the optimally cool S state; this is not shown above (in order to highlight the
distinction between the behaviour of correlations for both protocols) but it implies that at any finite
time, the joint states achieved by either protocol are unitarily equivalent. In particular, for enough
timesteps, the state achieved by the global cooling protocol is arbitrarily close to being unitarily equivalent
to a correlation-free product state, which has the coolest possible state of S as its marginal (i.e., the
asymptotic state achieved by the local basis cooling protocol). The values used for this simulation are:
dS = 2, dM = 3, k = 5, ` = 3, E1 = 1, E1 = 0.5, E2 = 1.2 and β = 0.2, in natural units where kB is set to 1.

We now analyse the evolution of correlations in SL, as measured by the mutual
information I(S : L) := H(%S) +H(%L)−H(%SL), where H(X) := −tr [X log (X)] is the
von Neumann entropy. In both protocols, the joint state begins as a tensor product and
therefore has no correlations. Moreover, the asymptotic state of both protocols is also
correlation-free, as was shown in Appendix B.2. It is of particular interest to note that
the asymptotic state of the global protocol always has a product state in its unitary orbit
that has the coldest possible state that S can be brought to as its marginal.

Nonetheless, although both protocols start and end with states that are completely
decorrelated, correlations do build up for both protocols at finite steps, before decreasing
asymptotically as shown in Figure B.4. The finite-time behaviour of the correlations
generally depends on the full spectrum of SL and the number of steps performed (as does
the cooling behaviour). In particular—in contrast to the coolness of S—the behaviour
of correlations is non-monotonic, and one cannot even establish a hierarchy between the
amount of correlations at any finite time of either protocol. Having presented these initial
insights, we leave the full analysis of the role of correlations in quantum cooling as an
interesting open avenue for pursuit.
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B.4 Step-Wise Optimal Protocol and Finite Time
Comparisons

Here we provide some analysis on the finite time behaviour for the cooling strategies
discussed throughout the main text. It is important to note that the finite time properties
in general depend upon the details of the full complex energy spectrum of the machines;
nonetheless, we have the following observations.

We first detail the step-wise optimal protocol, briefly described in the main text and
prove its optimality.

Definition B.2 (Step-Wise Optimal Cooling Unitary). Given a joint state %SLR, let V opt
SLR

be the unitary that reorders the eigenvalues of %SLM within each block partitioned by R
such that the largest is in the subspace |000〉〈000|SLR, second largest in |001〉〈001|SLR,
third largest in |002〉〈002|SLR, . . . , (dk−`M )th largest in |010〉〈010|SLR, and so on until the
smallest eigenvalue is in |dS−1, d`M−1, dk−`M −1〉 〈dS−1, d`M−1, dk−`M −1|SLR, i.e., perform

Uopt
SLR%SLRU

opt †
SLR =

dS−1∑
µ=0

d`M−1∑
ν=0

dk−`M −1∑
ω=0

λ↓
µ·dkM+ν·dk−`M +ω|µνω〉〈µνω|SLR, (B.26)

where λ↓ denotes the vector of eigenvalues of %SLR labelled in non-increasing order.

Theorem B.1 (Step-Wise Optimal Cooling Protocol). By applying the unitary defined
in Eq. (B.26) at each step, the cooling protocol is step-wise optimal.

In the Markovian case, the step-wise optimal protocol simply considers all of the
eigenvalues of the joint system-machine at each timestep and optimally reorders them
such that the system is as cool as possible. However, such a protocol does not ensure
step-wise optimality when memory is present: Here, not only must we optimally cool the
system by rearranging the eigenvalues of the total accessible state at each step, but we
must also ensure that this accessible state at each step is as cool as possible given its
history. As the only information pertaining to the history is transmitted by the system
SL, this means that the optimal protocol must at each step optimally cool S, and then
subject to this constraint, optimally cool the memory carriers L which go on to further
cool the system at later times.

Proof. We first need to show that %optS := trLR
[
Uopt
SLR%SLRU

opt †
SLR

]
obtained from Eq. (B.26)

majorises the all of the reachable marginal states of S; this problem reduces to a constrained
rearrangement of the eigenvalues of the entire system, i.e., the eigenvalues are to be
arranged optimally with respect to certain eigenspaces. Since majorisation theory is
independent of the eigenbasis, we choose the energy eigenbasis for simplicity.

To obtain the eigenspectrum of the system S that majorises all of the reachable states
under unitary transformations on SLR, note that the output state of the entire system
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can be written in the form of

Ũopt
SLR%SLRŨ

opt †
SLR =

dSL−1∑
µ=0

dkM−1∑
η=0

λ↓
µ·dkM+η|µη〉〈µη|SLR, (B.27)

where |µ η〉SLR = |µ〉S ⊗ |η〉LR and dSL = dSd
`
M . By the ordering of the eigenvalues that

the unitary performs, it is straightforward to see that the S marginal following the optimal
transformation majorises all others in the unitary orbit.

Second, we show that the state of the memory carriers after applying the optimal
unitary, i.e., %optL := trSR

[
Uopt
SLR%SLRU

opt †
SLR

]
, also majorises all of the reachable states of L

given the mentioned majorisation condition. We must therefore rearrange the eigenvalues
of %SLR within each block corresponding to a fixed µ, i.e., sort {λ↓

µ·dkM+η}
dkM−1
η=0 in such a

way that the νth largest dk−`M eigenvalues are placed in the νth eigenspace of the system L,
which gives the state %optL that majorises all of those reachable via unitary transformations
on SLR. To do so, we rearrange the eigenvalues of the joint SLR system as λ↓

µ·dkM+ν·dk−`M +ω,
via the unitary transformation defined in Eq. (B.26), where |µνω〉SLR = |µ〉S⊗|ν〉L⊗|ω〉R.
It is clear that the reduced state satisfies the required majorisation condition for %L, i.e.,
for all µ, we have

ν > ν ′ ⇒ λ↓
µ·dkM+ν·dk−`M +ω ≥ λ↓

µ·dkM+ν′·dk−`M +ω′ ∀ ω, ω
′ ∈ {0, 1, . . . , dk−`M − 1}, (B.28)

where this inequality holds due to the eigenvalue ordering of joint state of SLR.
Finally, we show that the output state of the system SL from Eq. (B.26) majorises all

of those reachable states of SL. To do so, must show that νth largest dk−`M eigenvalues of
SLR only contribute to the νth eigenvalue of SL. This statement follows from

µ ·dkM + ν ·dk−`M > µ′ ·dkM + ν ′ ·dk−`M ⇒ λ↓
µ·dkM+ν·dk−`M +ω ≥ λ↓

µ′·dkM+ν′·dk−`M +ω′ ∀ ω, ω
′. (B.29)

Eq. (B.29) states that under the protocol considered, one achieves the SL state that
majorises all other reachable states via unitaries on SLR. We now need to show that
achieving this at every finite timestep j is necessary for subsequent optimal cooling, i.e.,
that any other protocol is suboptimal. By the stability of majorisation under tensor
products [367], we know that %(j)opt

SL ⊗ τR, where %(j)opt
SL := trR

[
Ũopt
SLRσ

(j)
SLRŨ

opt †
SLR

]
for any

global state σ(j)
SLR, majorises all of the states %(j)

SL ⊗ τR, where %
(j)
SL is generated by any

other protocol and τR are the thermal bath machines to be added at said timestep. This
majorisation relation cannot be changed by performing the optimal SLR unitary on
%

(j)opt
SL ⊗ τR and any other unitary on %

(j)
SL ⊗ τR as the next step of the transformation,

with the former therefore yielding %(j+1)opt
SLR and the latter some suboptimal %(j+1)

SLR . Lastly,
invoking the subspace majorisation result of Lemma B.2, it follows that %(j+1)opt

SL � %
(j+1)
SL .

Thus, we have shown that at each step of the protocol, we have reached the optimal
SL state possible given the history; it is important to note that at this level, the process
is Markovian, allowing for an inductive extension of the above argumentation to hold. By
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further invoking Lemma B.2 on the level of SL at each timestep, we yield the optimally
cool state of the system S, thereby completing the proof.

B.5 Relation to Heat-Bath Algorithmic Cooling (HBAC) and
State-Independent Asymptotically Optimal Protocol

Here, we propose a general and robust Heat-Bath Algorithmic Cooling (HBAC)
technique, which we show to be a special case of our generalised collision model, to
optimally cool down a target system in the limit of infinite cycles. To obtain the cooling
limit most rapidly, in general one must adapt the operations based on the state of SL
output by the dynamics at the most recent step. However, via the correspondence between
the generalised collision model and HBAC, we can show that not only it is possible to
cool down the system by a state-independent, fixed sequence of operations, but also that
the protocol converges to the optimally cool state in the asymptotic limit. The result
hence draws attention to the fact that in the limit of infinitely many repeated cycles, the
dimension of the memory carriers of the protocol (not necessarily knowledge about the
state at intermediate times) plays an important role and can already lead to exponential
improvement over the Markovian case; in fact, perhaps surprisingly, the role of memory
depth is more significant than that of the ability of the agent to implement multi-partite
interactions between the system and machines at each step (although, of course, the
number of memory carriers is upper bound by how multi-partite the interactions are
allowed to be).

Here we will consider the effect of adding compression systems (in the terminology
of the HBAC community) or a number of machines that carry memory forward (in the
language of our generalised collision model) for a non-adaptive cooling protocol in which
a fixed interaction between the target system and a subset of machines at each timestep
is repeated infinitely many times. As we have previously, we assume that k machines
interact with the system at each step and ` of them carry memory forward to the next
step. This means that (k − `) fresh machines and ` memory carriers participate in the
interaction at each timestep. We fix at the outset, for any given choice of these parameters,
the dimension of the machines dM , which (along with k and `) fixes the control complexity
in each of the many cases we will look at, and we also fix the temperature at which
everything begins, β.

In Appendix B.1, we showed how the dynamics of the system S in the non-Markovian
collision model can be described by Markovian dynamics on the larger system SL (with
total dimension dSd`M ); in the HBAC community, the larger system of such an embedding
is known as the computation system, which comprises the original target and what are
often referred to as compression or refrigerant systems. In this case, the system SL

interact with k − ` fresh machines (with total dimension d(k−`)
M ) with maximum energy
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Figure B.5: Equivalence Between HBAC and Generalised Collision Model. The circuit for a
HBAC protocol applied to a quantum system S with one compression system (labelled L to be consistent
with our notation) and one reset system R. The compression systems store memory of previous interactions
(red), whereas the reset ones are assumed to rethermalise with a bath at inverse temperature β between
each step of the protocol (orange). Noting that the “reset” step has the effect of tracing out the system
and preparing a fresh one in the thermal state with the same temperature as the bath, it is clear that
HBAC is equivalent to generalised collision model we consider (here, k = 2, ` = 1). Further comparison
with Fig. B.3 highlights that HBAC need not require the agent to control the compression systems with
high fidelity for the entire duration of the protocol: By making appropriate swaps, one only needs to
track the ` compression systems / memory carriers for ` timesteps.

gap (k − `)Emax; this is known as the reset system, since these are the machines that
are discarded after each interaction step, modelling a rethermalisation with the external
environment. One can decompose the total Hilbert space into the computation part and
the reset part R, i.e., HSLR = HSL ⊗HR, where here R refers to all of the reset machines
comprising the environment. At any timestep, the dynamics of the system SL, which
arises from unitary evolution on the system SLR, is given by (with identity maps implied
on the parts of R that do not yet take part in the interaction)

%
(n)
SL(β, k, `) = Λ(n)

k,` (β)[%(n−1)
SL (β, k, `)] := trR

[
U

(n)
k,` (%(n−1)

SL (β, k, `)⊗ %(0)
R (β, k, `))U (n)†

k,`

]
.

(B.30)

Note that %(0)
R (β, k, `) = ⊗k

j=`+1 τMj
is fixed and the same at each step of the protocol as

it refers to the k − ` fresh machines taken from a thermal bath. In Fig. B.5, we depict
the equivalence between the standard HBAC protocol and the generalised collision model
formalism.

We now wish to consider a non-adaptive protocol, in which the agent is only allowed
to repeatedly apply a fixed unitary operation, i.e., U (n)

k,` = Uk,` ∀ n. The dynamics can
then be simplified to

%
(n)
SL(β, k, `) = ◦nΛk,`(β)[%(0)

SL(β, `)], (B.31)

where %(0)
SL(β, `) = τS(β)⊗`

j=1 τMj
(β) and ◦nΛk,`(β) is an n-fold concatenation of the

dynamical map induced between any pair of timesteps, with Λk,`(β) defined such that
Λk,`(β)[XSL] := trR

[
Uk,`(XSL ⊗ %(0)

R (β, k, `))U †k,`
]
. This dynamical map is thus independ-

ent of the timestep and fully determined by the unitary Uk,` and the initial state of the
fresh machines. In the following, we will show that it is possible to asymptotically reach
the ultimate cooling limit via such a non-adaptive protocol.
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Theorem B.2. In the non-adaptive scenario, for a given dS-dimensional system interact-
ing at each step with k dM−dimensional identical machines, with ` of the machines used
at each step carrying the memory forward, in the limit of infinite cycles, it is possible to
reach the state %∗S(β, k, `) if the initial state %(0)

SL(β, `) = τS(β)⊗`
j=1 τMj

(β) is majorised by
%∗SL(β, k, `). Moreover, it is possible to reach the asymptotic state via a state-independent
protocol in which the operation acts on only neighbouring energy levels.

Proof. Due to our definition of cooling being based upon majorisation, only the eigenvalues
of the asymptotic state play a role in determining the fundamental cooling limit. We can
therefore restrict our analysis to a specific orthonormal basis, e.g., energy eigenbasis (it
is straightforward to generalise the obtained result to an arbitrary orthonormal basis).
Here we focus on group of unitary operations that map diagonal density operators of
the system SL to diagonal ones. This restriction hence provides us an opportunity to
describe the dynamics via stochastic maps that act upon the vector constructed with the
eigenvalues of the system and memory carriers.

The proof takes inspiration from a similar state-independent asymptotically optimal
protocol introduced in Ref. [87]. Here we employ a specific unitary U on the entire SLR
system, which can be decomposed as follows

U = V ⊕ 1̄ (B.32)

where V acts unitarily on the Hilbert space HSL ⊗HG, in which HG ⊂ HR is a subspace
spanned by the two eigenstates of the reset systems (fresh machines) that have the
maximum energy gap of (k − `)Emax, i.e., |0〉R and |d(k−`)

M − 1〉R, and 1̄ represents the
identity on the subspace H

G̃
= HR \ HG. In the energy eigenbasis, V can also be written

in the form of

V =



1

σx
. . .

σx

1


2dSd`M×2dSd`M

, (B.33)

where σx is the Pauli X operator. The energy eigenvectors of the Hilbert space HSL⊗HG

are sorted as

|2q〉SLG = |2q〉SLR = |q〉SL ⊗ |0〉R,

|2q + 1〉SLG = |2q + 1〉SLR = |q〉SL ⊗ |d(k−`)
M − 1〉R, (B.34)

with corresponding eigenvalues of ξ2q = p(0)
q /ZR and ξ2q+1 = p(0)

q e−β(k−`)Emax/ZR for
q ∈ {0, 1, . . . , dSd`M}, respectively, where ZR = ZM(β)(k−`) is the partition function of the
reset system and {p(0)

q } are the eigenvalues of the initial state of SL.
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The unitary U acts to swap every neighbouring element on the diagonal part of the
global density matrix in the subspace HSL ⊗HG and leave the other elements untouched.
We now focus on the transformation of the diagonal elements on the global space SLR
under such dynamics. We write the initial state as

%
(0)
SLR =

2dSd`M−1∑
r=0

ξ(0)
r |r〉〈r|SLR +

dSd
k
M−1∑

r=2dSd`M

ξ(0)
r |r〉〈r|SLR

= αk`%
(0)
SLG ⊕ (1− αk`)%(0)

SLG̃
, (B.35)

where %(0)
SLG and %(0)

SLG̃
are normalised density matrices and αk` = (1 + e−β(k−`)Emax)/ZR.

After applying the unitary U , we have

%
(1)
SLR = U%

(0)
SLRU

† = αk`V %
(0)
SLG V

† ⊕ (1− αk`)%(0)
SLG̃

= αk`

[
ξ

(0)
0 |0〉〈0|SLR + ξ

(0)
dSd

k
M−1|dSd

k
M − 1〉〈dSdkM − 1|SLR

+
dSd

`
M−2∑
r=0

(
ξ

(0)
2r+2|2r+1〉〈2r+1|SLR+ξ(0)

2r+1|2r+2〉〈2r+2|SLR
))]
⊕(1− αk`)%(0)

SLG̃
.

(B.36)

It is clear that the output state is also diagonal in the energy eigenbasis. One can
easily obtain the reduced state of the system SL after one timestep from Eq. (B.36) by
taking a partial trace over R:

%
(1)
SL = trR

[
%

(1)
SLR

]
=αk`

[
(p(0)

0 +p(0)
1 )

1+e−β(k−`)Emax
|0〉〈0|SL+

(p(0)
dSd

`
M−2+p(0)

dSd
`
M−1)e−β(k−`)Emax

1+e−β(k−`)Emax
|dSd`M−1〉〈dSd`M−1|SL

+
dSd

`
M−2∑
r=1

(p(0)
r−1e

−β(k−`)Emax + p
(0)
r+1)

1 + e−β(k−`)Emax
|r〉〈r|SL

]
+ (1− αk`)

dSd
`
M−1∑
r=0

p(0)
r |r〉〈r|SL. (B.37)

Since the output state on HSLR has a block-diagonal structure with respect to this
subspace decomposition, it is locally classical, i.e., has diagonal marginals with respect to
the local energy eigenbasis. Therefore, the dynamics of the relevant part of the reduced
state can be described in terms of a classical stochastic matrix acting on SL (instead of a
CPTP map as would be required if coherences were relevant). In addition, this stochastic
matrix is independent of the timestep (since the protocol is non-adaptive) and the SL
state at each time. This allows us to describe the evolution of the target system under
this protocol via a time-homogeneous Markov process.

Since the unitary applied does not create coherence in the marginals, it is convenient
to introduce a notation for the vectorised form of the diagonal entries of the SL state, i.e.,
pSL := diag{pr}

dSd
l
M−1

r=0 , where pr are the eigenvalues of the state %SL; since the density
matrix is a unit trace positive operator, it follows that the vector pSL has non-negative
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entries that sum to 1, i.e., it is a stochastic vector. Then, the state transformation of the
system SL between each step of the protocol can be written as

p(1)
SL =

(
αk`V

(
(k − `)Emax

)
+ (1− αk`)1

)
p(0)
SL =: Tp(0)

SL. (B.38)

where T describes the transition matrix for the Markovian process and the matrix V(ε) is
given by

V(ε) = 1
1 + e−βε



1 1 . . . 0

e−βε 0 1 . . . 0

0 e−βε 0 . . . 0

0 0 . . .
. . .

...

0 0 . . . e−βε e−βε


dSd

`
M×dSd

`
M

. (B.39)

Since we apply the fixed unitary at each step and the transition matrix is independent of
the state of SL, the state transformation of SL after n steps can be written as

p(n)
SL = T

n p(0)
SL. (B.40)

In order to obtain the asymptotic state of the system, we investigate the eigenvalues of
the transition matrix given in terms of the two matrices V and 1, which allows us to
compute the eigenvalues of T. The eigenvalues of the matrix V are presented in Ref. [87]:
V has a unique eigenvalue ν0 = 1, with the remaining eigenvalues given by

νq =
2e−β2 (k−`)Emax cos

(
qπ

dSd
`
M

)
1 + e−β(k−`)Emax

∀ q ∈ {1, . . . , dSdlM − 1}. (B.41)

Since 1 is diagonal with respect to any orthonormal basis and has uniform eigenvalues, it
is straightforward to show that the eigenvalues of T are obtained by:

λq = αk`νq + (1− αk`). (B.42)

Thus, T also has a unique eigenvalue 1; the eigenvector associated to this value is the
steady state solution of dynamics. Moreover, T also has the same eigenvectors as V,
since those associated to 1 are trivial. We can then obtain the asymptotic state of the
system SL under a constraint on its initial state, which turns out to only depends on the
macroscopic properties of the system and the environment [87]:

p∗SL = lim
n→∞

T
n p(0)

SL =
{

e−β(k−`)qEmax

ZSL(β, (k − `)Emax)

}dSdlM−1

q=0
. (B.43)

This steady state is gives the eigenvalues of the optimally cool achievable state if p(0)
SL ≺ p∗SL.

So far, we have shown how one can reach the optimally asymptotic state of SL by employing
the fixed unitary in Eq. (B.32) at each iteration. From this asymptotic state, one can
easily obtain the coolest achievable reduced state for the system S, i.e., %∗S.
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In the non-adaptive scenario, one can further investigate how many repetitions of the
cycle are required to achieve the asymptotic state (within a given tolerance). One useful
measure for the number of iterations is the mixing time of a Markov process to reach
a distance less than η to the desired state, i.e., tmix := min (n) : |p(n)

SL − p∗SL| ≤ η. This
mixing time can be upper bounded by a function of difference between the largest and
second largest eigenvalues, ∆ := λ0 − λ1, as follows

tmix(η) ≤ 1
∆ log

 1
ηp∗

dSd
l
M−1

 . (B.44)

For the protocol considered above, the spectral gap can be explicitly calculated

∆ = λ0 − λ1 = 1− αk`ν1 − (1− αk`)

= αk`

1−
2e−β2 (k−`)Emax cos

(
π

dSd
`
M

)
1 + e−β(k−`)Emax


≥ 1 + e−β(k−`)Emax

(ZM(β))k−`

(1− e−β2 (k−`)Emax)2

1 + e−β(k−`)Emax


= (1− e−β2 (k−`)Emax)2

(ZM(β))k−` . (B.45)

Then we have

tmix(η) ≤ (ZM(β))k−`

(1− e−β2 (k−`)Emax)2
log

(
1

ηp∗0e
−β(k−`)(dSdlM−1)Emax

)
. (B.46)

This result provides an estimate for the number of iterations of the protocol to reach the
optimally cool system.

We now compare the cooling performance between adaptive and non-adaptive strategies
for a given choice of memory structure. In the non-adaptive strategy, the rate of cooling
is determined completely by the spectral gap ∆ in Eq. (B.45), as the same dynamics is
repeated at each step. In the adaptive scenario, this is no longer the case and a single
parameter does not dictate the rate of convergence to the asymptotic state. Instead, in
general, the cooling rate depends upon the entire energy structure of the system and
all machines, making a closed form expression difficult to derive. Nonetheless, we can
describe the solution to the problem of reaching a step-wise provably optimal system state
at finite times as a protocol, as done in the main text. This protocol converges to the
same asymptotic value as the non-adaptive case, but offers a finite time advantage, as
shown in Fig. B.6.

Lastly, in Fig. B.7, we compare various memory structures (i.e., values of k, `) with
respect to the optimal adaptive protocol. In order to do so in a meaningful way, we compute
the ground state population of the system for after a fixed number m = k+ (n− 1)(k− `)
machines have been exhausted. If one were to compare the ground state populations
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Figure B.6: Finite-Time Advantage with Adaptive Protocols. Here we compare the adaptive
and non-adaptive protocols for a qubit system (with Emax = 1) interacting with qubit machines (with
Emax = 2) with initial temperature β = 0.2 and memory structure given by k = 3, ` = 2. In the
adaptive scenario, we make use of the step-wise optimal protocol described in the main text; in the
non-adaptive, the unitary in Eq. (B.33) is repeatedly implemented. We see that, although both scenarios
asymptotically converge to the same ground state population, the adaptive protocol outperforms the
non-adaptive one at finite times. This behaviour is more pronounced for larger dimensions. On the other
hand, the non-adaptive, state-independent protocol is more robust and as it rapidly converges to the
asymptotically-optimal state, therefore better suited to practical implementations. Note that, in this
case, every second step of the non-adaptive protocol does not act to cool the system.

after n unitaries had been implemented, for various k, `, one would be making an unfair
comparison with respect to the total resources at hand; e.g., after three unitaries with
k = 4, ` = 3 the experimenter has used six machines, whereas for k = 3, ` = 0, they have
used nine. Comparing various scenarios at fixed values of m provides insight into how cool
the system can be prepared after all constituents of a finite sized environment are used up
for the given memory structure. This change of perspective comes at the cost of the fact
that the number of physical unitaries n needed to be implemented in order to exhaust the
resources (quantified by m) now varies; e.g., to use six machines with k = 4, ` = 3 takes
three unitaries, whereas with k = 1, ` = 0 it takes six. Lastly note that not all values of
k, ` are valid for a given m, due to the restriction that n must be an integer.
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Figure B.7: Finite-Time Behaviour of Step-Wise Optimal Protocol. Here we plot the ground
state population after m machines have been completely exhausted, for various values of k, ` as described
in the text (we use a qubit system and qubit machines, with β = 0.2, Emax = 1 and Emax = 2). The
finite time behaviour generally depends upon the full structure of the energy spectra, but already here
we see some interesting effect. For instance, note that at m = 7 (first point shown), the k = 7, ` = 0
case provides the best possible cooling, as it allows for a full 8-partite unitary between the system and
seven machines. However, for more applications of such a unitary with in the memoryless scenario, the
performance can be worse than other cases with more local interactions (smaller k) and longer memory
(larger `).
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APPENDIX C
Supplemental Information for

Chapter 3

C.1 Connection to Previous Results

In this section we show that the result derived in the main text for the Markovian case
(that is, Theorem 3.1) implies the preceding one in Ref. [170]. For the ease of the reader,
we restate both results here (changing slightly the terminology of the latter to the one
used here).

Theorem C.1. Let {Pn(xn, . . . , x1)}n≤K be a K-Markovian process (Definition 3.2).
Then, the process is also K-classical (Definition 3.1) if and only if there exist a system state
ρt0 (at a time t0 ≤ t1) which is diagonal in the computational basis {|x〉}x∈X and a set of
propagators

{
Λtj ,tj−1

}
j=1,...,K

which are Non-Coherence-Generating-and-Detecting (NCGD)

with respect to {|x〉}x∈X , such that ρt0 and
{

Λtj ,tj−1

}
j=1,...,K

yield {Pn(xn, . . . , x1)}n≤K via
Eq. (3.16).

Theorem C.2 (Theorem 2 of Ref. [170]). Let {Pn(xn, . . . , x1)}n≤K be the process fixed by
the Quantum Regression Formula (QRF) Eq. (3.16), with respect to a set of propagators
forming a Completely Positive and Trace Preserving (CPTP) semigroup, i.e., Λtl,tj =
eL(tl−tj) for any tl ≥ tj with L a Lindblad generator [281, 282], and an initial state ρt0.
Then the process {Pn(xn, . . . , x1)}n≤K is K-classical (Definition 3.1) for any ρt0 diagonal
in the computational basis if and only if the family of propagators is NCGD in the sense
that

∆ ◦ Λs3,s2 ◦∆ ◦ Λs2,s1 ◦∆ = ∆ ◦ Λs3,s1 ◦∆ ∀ s3 ≥ s2 ≥ s1 ≥ t0 . (C.1)

While the two theorems are clearly related, there are two relevant differences. The
new result is more operational in the sense that the statements only depend on the
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statistics one obtains by making the measurements in the classical basis at the specified
times, whereas the statement in Ref. [170] relies on two underlying assumptions on the
Markovianity of the quantum dynamics. The first of these assumptions is that the system
multi-time statistics satisfy the QRF [Eq. (3.16)], and the second is that the dynamics
forms a semigroup. As we will see below, the second of these assumptions can be relaxed,
but the first is crucial if one wants to have the benefit of the statement in Ref. [170],
which not only relates possible models for the statistics,1 but makes also a statement
about how the possibility of modelling a process classically implies that the propagators
referred to the actual underlying evolution have to be NCGD. To be able to make this
connection between the statistics and the underlying quantum evolution, we need to
restrict by assumption the types of evolutions we are considering. For the Markov case,
considered here, the natural choice is the QRF [Eq. (3.16)], as we discussed in the main
text that they are closely related.

To prove the connection between the two theorems, it is useful to consider the following
corollary to Theorem 3.1 of the main text:

Corollary C.1. Let {Pn(xn, . . . , x1)}n≤K be the process fixed by the QRF Eq. (3.16), with
respect to a set of divisible propagators and an initial state ρt0.

Let the classical dynamics of this process be invertible, that is, P1(xj) 6= 0 for an initial
diagonal state that is full-rank, for any tj <∞. Then, the process {Pn(xn, . . . , x1)}n≤K is
K-classical (Definition 3.1) for any ρt0 diagonal in the computational basis if and only if
the family of propagators is NCGD, see Eq. (C.1).

Proof. Let {Pn(xn, . . . , x1)}n≤K be a process satisfying the QRF Eq. (3.16), with respect
to a set of divisible propagators satisfying Eq. (C.1). Since the latter implies Eq. (3.21)
and the QRF implies that the process is K-Markovian, for any initial diagonal state in
the computational basis K-classicality follows from Theorem 3.1.

Conversely, let the assumptions hold and the process be K-classical, in particular for
an initial diagonal full-rank state. The NCGD condition follows from the equation

tr [Px3 ◦ Λs3,s2 ◦∆ ◦ Λs2,s1 ◦ Px1 ◦ Λs1 [ρ0]]

=
∑
x2

tr [Px3 ◦ Λs3,s2 ◦ Px2 ◦ Λs2,s1 ◦ Px1 ◦ Λs1 [ρ0]]

=
∑
x2

P3 (x3, x2, x1)

= P2 (x3, x1)

= tr [Px3 ◦ Λs3,s1 ◦ Px1 ◦ Λs1 [ρ0]] (C.2)

1Namely that it is equivalent to be able to model the statistics as coming from an evolution satisfying NCGD,
as to be able to model it as coming from a classical evolution.
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(for s3 ≥ s2 ≥ s1 in T ) by linearity, since from the assumptions (invertibility of the
classical dynamics and taking a diagonal, full-rank initial state) we have that Px1◦Λs1 [ρ0] 6=
0 ∀ x1, s1 <∞ (for s1, s2, s3 →∞, Λsi,sj → 1 and the NCGD property holds trivially).

The only difference between this corollary and Theorem 2 of Ref. [170] is that here we
have the divisibility of the “full” propagators and invertibility of the classical propagators
in the assumptions, while there the dynamics was assumed to be of Lindblad type.
This latter assumption is however strictly stronger, as it implies divisibility and that
Pxj ◦ eLtj [ρ] 6= 0 ∀ xj, tj <∞ and for any full-rank ρ, since (finite-dimensional) semigroup
evolutions cannot decrease the rank of a state on a finite time [368].

In total, we have shown in this section that Theorem 2 of Ref. [170] can be interpreted
as a corollary of Theorem 3.1 by using the connection between the QRF and Markovianity
and further restricting to the case of Lindblad evolution. Moreover, Corollary C.1 shows
how, by relaxing such restriction and assuming a proper invertibility condition on the
classical dynamics, it is possible to establish a one-to-one correspondence between the
classicality of a process satisfying the QRF and the NCGD property, where the latter is
referred to the propagators of the actual dynamics.

C.2 Absence of Coherence for a Model System: Qubit
Coupled to a Continuous Degree of Freedom

In this Appendix, we provide the mathematical details missing in the main text for
Example 3.1. We begin with the expression of the global state at time t1, immediately
before the first measurement:

ρse(t1) =
∫ ∞
−∞

dp dp′ f(p)f ∗(p′)
(
ρ00e

i(p−p′)t1 |0p〉〈0p′|+ ρ01e
i(p+p′)t1|0p〉〈1p′|

+ρ10e
−i(p+p′)t1|1p〉〈0p′|+ ρ11e

−i(p−p′)t1 |1p〉〈1p′|
)
. (C.3)

After a measurement at time t1 with outcome ±, the state is subsequently given by

ρ(±)
se (t1) = |±〉〈±| ⊗

∫ ∞
−∞

dp dp′ f (±)
1;t1 (p, p′)|p〉〈p′|, (C.4)

where we emphasise that we have a tensor product state and have introduced the amplitude

f
(±)
1;t1 (p, p′) := 1

C
(±)
t1

f(p)f ∗(p′)
(
ρ00e

i(p−p′)t1ρ01e
i(p+p′)t1 ± ρ10e

−i(p+p′)t1 + ρ11e
−i(p−p′)t1

)
,

(C.5)

as well as the normalisation factor C(±)
t1 =

∫∞
−∞ dp |f(p)|2(1± 2Re(ρ01e

2ipt1)). Note that
no σ̂x-coherence is present at this stage.
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If we now let the system-environment evolve up to a certain time τ > t1, the global
state will be

ρ(±)
se (τ) = 1

2

∫ ∞
−∞

dp dp′ f (±)
1;t1 (p, p′)

(
ei(p−p

′)(τ−t1)|0p〉〈0p′|

±ei(p+p′)(τ−t1)|0p〉〈1p′| ± e−i(p+p′)(τ−t1)|1p〉〈0p′|

+e−i(p−p′)(τ−t1)|1p〉〈1p′|
)
, (C.6)

where the superscript ± refers to the outcome of the first measurement at time t1. The
corresponding system state at time τ is then given by tracing out the environmental
degrees of freedom, resulting in

ρ(±)
s (τ) = 1

2

 1 ±k(±)(τ, t1)

±k(±)∗(τ, t1) 1

 , (C.7)

with

k(±)(τ, t1) =
∫ ∞
−∞

dp f (±)
1;t1 (p, p)e2ip(τ−t1)

= 1
C

(±)
t1

∫ ∞
−∞

dp |f(p)|2
(
1± ρ01e

2ipt1 ± ρ10e
−2ipt1

)
e2ip(τ−t1)

= 1
C

(±)
t1

(k(τ − t1)± ρ01k(τ)± ρ10k(τ − 2t1)) . (C.8)

Once again, we see that if the initial system state is a convex mixture of |+〉 and |−〉
and k(t) is real (e.g., a Lorentzian distribution centered at 0) then no σ̂x-coherence is
present at any time τ . This can be seen because the reduced state can be written as in
Eq. (3.34) for the real α = (±k(±)(τ, t1) + 1)/2. As a side remark, we note that even if
the initial state had some coherences w.r.t. σ̂x, these would have been destroyed after the
first measurement at time t1 and, as long as ρ01 ∈ R, would not have been “re-generated”
by the subsequent evolution.

Indeed, the argument above can be reiterated for the subsequent measurements; for
instance, if we consider the global state after the second measurement at time t2, we find

ρ(s)
se (t2) = |±〉〈±| ⊗

∫ ∞
−∞

dp dp′ f (s)
2;t2,t1(p, p′)|p〉〈p′| (C.9)

with

f
(s)
2;t2,t1(p, p′)= 1

C
(s)
t2,t1

f
(±)
1;t1 (p, p′)

(
ei(p−p

′)(t2−t1)+sg(s)ei(p+p′)(t2−t1)+sg(s)e−i(p+p′)(t2−t1)

+e−i(p−p′)(t2−t1)
)
, (C.10)

where s denotes the sequence of + and − obtained in the measurements and sg(s) the
sign of the corresponding product. The entire procedure can be iterated, by replacing
f

(±)
1;t1 (p, p′) with f (s)

2;t2,t1(p, p′), so that the state at any subsequent time would remain in the
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form of Eq. (3.34), with the off-diagonal elements given by a linear combination with real
coefficients of the real function k(t) evaluated at different times. In Appendix C.3, we
will show how Example 3.1 can be described using a comb representation as introduced in
Section 3.5.

C.3 Comb Representation of a Model System: Qubit Coupled
to a Continuous Degree of Freedom

In Appendix C.2, we showed the absence of coherence in the state of the system
at all times for the dynamics of Example 3.1. To do so, we computed the full system-
environment dynamics; however, the full knowledge of the system-environment dynamics
is not necessary to understand the multi-time probabilities of observables of the system
alone. Moreover, the state of the environment is often not experimentally accessible in
practice, as it is typically highly complex. Therefore, it is convenient to only describe
the influence that the environment has on the multi-time probabilities. Importantly, this
influence, and the resulting correct descriptor of the underlying process, can be deduced
by probing the system alone.

Such a descriptor can be derived using the concept of quantum combs [125, 126], which
we briefly reviewed in Section 3.5. A quantum comb contains all statistical information
that can be inferred about the process it describes (on the set of times upon which it is
defined). While here we will construct the comb for Example 3.1 by explicitly solving
the system-environment dynamics, it is important to note that it could be reconstructed
experimentally by means of measurements on the system alone, without any access to or
knowledge of the environmental degrees of freedom, through a generalised tomographic
scheme [129].

In slight deviation from the notation of the main text, in this appendix, for better
orientation, here we explicitly write the labels of the Hilbert spaces a comb acts on, and
the times it is defined upon, as sub- and superscripts, respectively.

As described in Example 3.1, we start with a system-environment state ηse(t0 = 0)
= ρs(t0 = 0)⊗ |ϕe〉〈ϕe| where |ϕe〉 is fixed. As shown in Fig. C.1, the initial system state
ρs(t0) is associated with the Hilbert space with label 1. The channel

Ct1:t0(ρs) =Ut1,t0ρs ⊗ |ϕe〉〈ϕe| (C.11)

maps the initial system state to the full system-environment state at time t1 directly
before the intervention. The corresponding channel in comb description is given by

Ct1:t0
2α1 =

∑
i,j

Ut1,t0

(
|i〉〈j|2 ⊗

∫ ∞
−∞

dp
∫ ∞
−∞

dqf(p)f ∗(q)|p〉〈q|α
)
U †t1,t0 ⊗ |i〉〈j|1

=
∑
i,j

∫ ∞
−∞

dp
∫ ∞
−∞

dqf(p)f ∗(q)ei(φip−φjq)t1|i〉〈j|2 ⊗ |p〉〈q|α ⊗ |i〉〈j|1, (C.12)
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Figure C.1: Labelling of Hilbert Spaces used for the Comb Description of Example 3.1. The
grey box contains the comb Ct1:t0

2α1 and the red box the comb Ct2:t1
4β3α. The comb Ct2:t1:t0

4β321 corresponds to
everything inside the dashed box and consists of the contraction of the two combs Ct1:t0

2α1 and Ct2:t1
4β3α.

where the superscripts denote the intervention times and the subscripts the Hilbert spaces
on which the comb is acting. The object Ct1:t0

2α1 above is nothing other than the Choi state
associated with the channel. The dynamics from time t1 to time t2 is similarly given by
the channel

Ct2:t1(ρse) = Ut2,t1ρse (C.13)

applied to the combined system-environment state directly after the first intervention.
Again, this channel admits a Choi state description

Ct2:t1
4β3α =

∑
i,j

∫ ∞
−∞

dp
∫ ∞
−∞

dq ei(φip−φjq)(t2−t1)|ipip〉〈jqjq|4β3α. (C.14)

The next step is to eliminate the explicit description of the environment state on Hilbert
space α. To do this, we contract the Choi states of the two channels described above using
the link product ? described in Refs. [125, 126]. This leaves us with the comb describing
the dynamics on both times

Ct2:t1:t0
4β321 =Ct2:t1

4β3α ? C
t1:t0
2α1

=trα
[(
14β3 ⊗ Ct1:t0

2α1
Tα
) (
Ct2:t1

4β3α ⊗ 121
)]

=
∫ ∞
−∞

ds〈s|α
∑
i,j

∫ ∞
−∞

dp
∫ ∞
−∞

dqf(p)f ∗(q)ei(φip−φjq)t1 |iqi〉〈jpj|2α1

∑
k,l

∫ ∞
−∞

dr
∫ ∞
−∞

dt ei(φkr−φlt)(t2−t1)|krkr〉〈ltlt|4β3α|s〉α

=
∑
i,j,k,l

∫
. . .
∫ ∞
−∞

ds dp dq dr dt δ(s−q)δ(s−t)δ(p−r)f(p)f ∗(q)ei(φip−φjq)t1|ii〉〈jj|21

ei(φkr−φlt)(t2−t1)|krk〉〈ltl|4β3

=
∑
i,j,k,l

∫∫ ∞
−∞

ds dpf(p)f ∗(s)ei(φip−φjs)t1|ii〉〈jj|21e
i(φkp−φls)(t2−t1)|kpk〉〈lsl|4β3

=
∑
i,j,k,l

∫∫ ∞
−∞

ds dpf(p)f ∗(s)ei(φip−φjs)t1ei(φkp−φls)(t2−t1)|kpkii〉〈lsljj|4β321. (C.15)

We can also describe the projectors corresponding to the observed measurement
outcomes using Choi states, e.g., if we measured in the eigenbasis of σ̂x and obtained
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outcome +, the corresponding Choi state is given by

M+ = |+〉〈+| ⊗ 1
∑
i,j

|ii〉〈jj||+〉〈+| ⊗ 1 = 1
4
∑
i,j,k,l

|ij〉〈lk|. (C.16)

Again, using the link product, we can obtain the unnormalised joint system-environment
state directly after the second intervention at time t2, conditioned on the initial state of
the system ρs(0) and the interventions Mx1 ,Mx2 (where the superscripts xi refer to the
outcomes) as follows

ρ(x2,x1)
se (t2)5β =Ct2:t1:t0

4β321 ? ρs(t0)1 ? M
x1
32 ? M

x2
54

=tr4321
[
ρs(t0)T1 ⊗Mx1

32
T2 ⊗Mx2

54
T4Ct2:t1:t0

4β321

]
. (C.17)

For instance, if we observed the outcome + twice, the joint state after the second
intervention is given by

ρ(+,+)
se (t2)5β =

∑
i,j,k,l,
m,n,x,y,
a,b,c,d,
f,g,h,o

〈fgho|4321ρmn|n〉〈m|1 ⊗
1
4 |cx〉〈dy|32 ⊗

1
2 |+〉〈+|5 ⊗ |a〉〈b|β×

∫∫ ∞
−∞

ds dp f(p)f ∗(s)ei(φip−φjs)t1|ii〉〈jj|21e
i(φkp−φls)(t2−t1)|kpk〉〈lsl|4β3|fgho〉4321

=1
8 |+〉〈+|5 ⊗

∑
i,j,k,l

ρij

∫∫ ∞
−∞

ds dp f(p)f ∗(s)ei(φip−φjs)t1ei(φkp−φls)(t2−t1)|p〉〈s|β

=1
8 |+〉〈+|5⊗

∫∫ ∞
−∞

dp ds f̃ (+,+)
2;t2,t1(p, s)|p〉〈s|β, (C.18)

where we have introduced

f̃
(+,+)
2;t2,t1(p, s) =

∑
i,j,k,l

ρijf(p)f ∗(s)ei(φip−φjs)t1ei(φkp−φls)(t2−t1)

=f(p)f ∗(s)
(
ρ00e

i(p−s)t1 + ρ01e
i(p+s)t1 + ρ10e

−i(p+s)t1 + ρ11e
−i(p−s)t1

)
(
ei(p−s)(t2−t1) + ei(p+s)(t2−t1) + e−i(p+s)(t2−t1) + e−i(p−s)(t2−t1)

)
=f (+,+)

2;t2,t1(p, s) (C.19)

and checked consistency with the direct description in Appendix C.2.
Since we are mainly interested in the question of whether the obtained measurement

statistics can be explained classically, we restrict our attention to the unnormalised state of
the system alone, because the probability of obtaining a specific sequence of measurement
outcomes is encoded in the trace of the corresponding system state. Therefore we eliminate
the description of the environment by tracing over the Hilbert space β, which we can do
directly at the level of the comb itself:

C̃t2:t1:t0
4321 =trβ[Ct2:t1:t0

4β321 ]

=
∑
i,j,k,l

∫ ∞
−∞

dq |f(q)|2 ei(φi−φj)qt1ei(φk−φl)q(t2−t1)|kkii〉〈lljj|4321. (C.20)
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Figure C.2: Dilation for Example 3.1. Pictorial representation of the quantum combs describing
Example 3.1 with two interventions.

Following the same procedure as above, we then obtain the system state after the second
intervention

ρ(x2,x1)
s (t2)5 = C̃t2:t1:t0

4β321 ? ρs(t0)1 ? M
x1
32 ? M

x2
54 . (C.21)

Similarly, the probability to obtain, e.g., twice the measurement result + is given by

P2(+, t2; +, t1) = tr
[
ρ(+,+)
s (t2)5

]
. (C.22)

If we introduce τn := tn − tn−1, by way of induction, we find that

Ctn::t0 =
∑

i2n...i1,j2n...j1

∫∫ ∞
−∞

dp dq f(p)f ∗(q)|p〉〈q|
2n⊗
a=1

ei(φiap−φjaq)τa |iaia〉〈jaja|2a,2a−1,

C̃tn::t0 =
∑

i2n...i1,j2n...j1

∫ ∞
−∞

dp |f(p)|2
2n⊗
a=1

ei(φia−φja )pτa|iaia〉〈jaja|2a,2a−1, (C.23)

where we suppressed the subscripts of the combs. As above, Ctn::t0 denotes the comb
including the outgoing environment and C̃tn::t0 the comb describing the system alone, see
Fig. C.2 for a pictorial representation. Therefore, the joint probability distribution for
sequences of measurement outcomes is given by

Pn(xn, tn; . . . ;x1, t1) = tr
[
ρs(0)T1

n⊗
a=1

(
Mxa

2a+1,2a

)T
C̃tn::t0

]
. (C.24)

C.4 Alternative Example for Non-Classical Dynamics that do
not Create Coherences

Here, we provide an alternative example of a process where the state of the system is
diagonal in the computational basis at all times but does not yield classical statistics. To
this end, consider the following circuit (see Fig. C.3): Let the initial system-environment
state at time t0 be a maximally entangled two qubit state ϕ+ that undergoes trivial
evolution between t0 and t1. At t1 the system alone is thus in a maximally mixed state ρt1
Between t1 and t2, the system and the environment undergo a CPTP map Et2,t1 (which
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Figure C.3: Non-Classical Process that does not Display Coherences. The state of the system
is classical, i.e., it does not contain coherences with respect to the classical basis, at any step of the process.
The corresponding statistics do not satisfy the Kolmogorov conditions, though. Potential measurements
are depicted as green circles. The blue dotted line signifies the comb of the process (see Sec. 3.5).

could—in principle—be dilated to a unitary map [369], but for conciseness, we restrict
ourselves to the relevant part of it), that yields output |0〉 on the system, if system and
environment are in the state ϕ+, and |1〉 otherwise, i.e., when the system-environment
state is orthogonal to ϕ+. Consequently, its action can be written as

Et2,t1 [η] = tr(ϕ+η)|0〉〈0|+ tr[(1− ϕ+)η]|1〉〈1| . (C.25)

It is easy to check that Et3,t2 is indeed CPTP, and the state of the system at t2 is a convex
mixture of |0〉〈0| and |1〉〈1| for all possible experimental interventions at t1; there are thus
no coherences in the state of the system at any of the times {t1, t2}. However, this process
does not satisfy the Kolmogorov condition.

To see this, consider the probabilities for a measurement in the computational basis at
t2, with no operation performed at t1. In this case, the system-environment state before
the action of Et2,t1 is equal to ϕ+, which means that we have ρt2 = |0〉〈0|. Consequently, a
measurement in the computational basis at t2 yields the probabilities

P1(0, t2) = 1 and P1(1, t2) = 0 . (C.26)

On the other hand, performing a measurement at t1 and discarding the outcomes amounts
to performing the completely dephasing map ∆1. Immediately after this map, i.e., right
before Et2,t1 , the system-environment state is of the form

ηset1 = 1
2
∑
x1

|x1〉〈x1| ⊗ |x1〉〈x1| =
1
2
(
ϕ+ + ϕ−

)
, (C.27)

where ϕ− = (σz ⊗ 1)ϕ+(σz ⊗ 1) is a Bell state. Consequently, in this case the final system
state ρt2 is of the form ρt2 = 1

2 (|0〉〈0|+ |1〉〈1|). Finally, the obtained probabilities for a
measurement in the computational basis at t2 are

P∆1
1 (0, t2) =

∑
x1

P2(x1, t1; 0, t2) = 1
2

and P∆1
1 (1, t2) =

∑
x1

P2(x1, t1; 1, t2) = 1
2 , (C.28)

which does not coincide with (C.26). Even though the state of the system is incoherent at
all considered times, i.e., appears to be classical, the multi-time statistics do not satisfy
the Kolmogorov condition.
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C.5 Measure of Non-Classicality

In this appendix we derive the optimal solution of the game which defines our measure
of non-classicality M(C) and show that it can be formulated as a linear program. We also
derive the dual of this problem for completeness.

In our game, Bob can choose the points in time at which he wants Rudolph to
perform projective measurements and those for which Rudolph should not interfere
with the natural evolution of the system. This defines a sequence of measurements
Ti(~x) = ⊗tj∈τiΦ+

j ⊗tk∈τci Pxk . Given the choice of any sequence of this form and labelling
the obtained outcome sequence of the experiment by ~x, the best strategy for Bob is to
announce that the comb that was tested is C if the probability for measuring outcome
~x with said sequence Ti(~x) is higher for C than for CCl. (i.e., if tr[(CCl. − C)Ti(~x)] < 0),
and announcing CCl. otherwise. The probability that he is correct when announcing C,
given that the outcome obtained was ~x, is given by:

P(C|~x) = P(C, ~x)
P(~x) = P(~x|C)

P(~x) P(C), (C.29)

where the prior probability is P(C) = 1/2. Denoting by SCl. the set of all ~x such that
tr[(CCl. − C)Ti(~x)] > 0 and SCl.

c its complement, the probability that Bob wins the game
is given by

∑
~x∈SCl.c

P(C|~x)P(~x) +
∑

~x∈SCl.
P(CCl.|~x)P(~x)

= 1
2

 ∑
~x∈SCl.c

P(~x|C) +
∑

~x∈SCl.
P(~x|CCl.)


= 1

2

 ∑
~x∈SCl.c

tr[CTi(~x)] +
∑

~x∈SCl.
tr[CCl.Ti(~x)]


= 1

2

1 +
∑

~x∈SCl.
(−tr[CTi(~x)] + tr[CCl.Ti(~x)])

 . (C.30)

Assuming that both Alice and Bob play ideally, using Lemma 3.1, the probability
PB(C) that Bob wins is given by

PB(C) = 1
2 [1 +M(C)] , (C.31)
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where M(C) is the solution of

minimise: max
i

∑
~x∈SCl.

tr[(CCl. − C)Ti(~x)]

subject to: SCl. = {~x|tr[(CCl. − C)Ti(~x)] ≥ 0},

CCl. =
∑

yK ,...,y1

PK(~y)PyK ⊗ · · · ⊗ Py1 + χ,

tr[χ · (⊗tj∈τiAj ⊗tk∈τci Pzk)] = 0,

CCl. ≥ 0,

trKi [CCl.] = 1(K−1)o ⊗ΘK−1,

...

tr2i [Θ2] = 11o ⊗ ρ1i ,

PK(~y) joint probability distribution, (C.32)

where we defined Aj := Φ+
j − Dj and ρ1i is a valid quantum state. The hierarchy of

partial trace conditions on the comb written above ensure that the overall action of any
instrument at a later time cannot influence previous statistics [125, 126].

Starting from the above program, we see that χ does not contribute to the trace, as
tr[χTi(~x)] is, by definition, a marginal of a zero-distribution (due to the third constraint
above), see also the proof of Lemma 1). This leaves us with contributions only from the
diagonal parts of the operator CCl., where the non-zero entries are those that correspond to
PK(~y)PyK ⊗· · ·⊗Py1 , which must satisfy tr[CCl.] = 1 and CCl. ≥ 0 due to the requirement
that PK(~y) is a valid probability distribution. Note that for any such an operator, there
exists a χ such that the total operator satisfies the additional requirements in the above
program, since one simply must add terms of the form ∑

yK ,...,y1 PK(~y)PyK ,zK ⊗· · ·⊗Py1,z1 ,
where the Pyj ,zj are projectors up to a permutation on the input basis (i.e., Pyj ,zj =
|yj〉〈yj|o ⊗ |zj〉〈zj|i). We are then left with:

minimise: max
i

∑
~x∈SCl.

tr[(CCl. − C)Ti(~x)]

subject to: SCl. = {~x|tr[(CCl. − C)Ti(~x)] ≥ 0},

CCl. =
∑

yK ,...,y1

PK(~y)PyK ⊗ · · · ⊗ Py1 ,

PK(~y) joint probability distribution. (C.33)

Since both C and CCl. represent (up to a non-contributing χ term) deterministic quantum
combs, we have ∑

~x

tr[(CCl. − C)Ti(~x)] = 0 (C.34)

and thus ∑
~x

∣∣∣tr[(CCl. − C)Ti(~x)]
∣∣∣ = 2

∑
~x∈SCl.

tr[(CCl. − C)Ti(~x)]. (C.35)
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This allows us to express M(C) as half of the solution of

minimise: max
i

∑
~x

∣∣∣tr[(CCl. − C)Ti(~x)]
∣∣∣

subject to: CCl. =
∑

yK ,...,y1

PK(~y)PyK ⊗ · · · ⊗ Py1 ,

PK(~y) joint probability distribution. (C.36)

In order to transform this program into a Linear Program (LP), for every testing sequence
{Ti(~x)}~x, we define an arbitrary order of the outcomes ~x, i.e, we label them as ~xj. Then

max
i

∑
~x

∣∣∣tr[(CCl. − C)Ti(~x)]
∣∣∣ (C.37)

is the solution of

minimise: a

subject to: a ≥
∑
j

∣∣∣tr[(CCl. − C)Ti(~xj)]
∣∣∣ , (C.38)

which is equivalent to

minimise: a

subject to: a ≥ si,

si =
∑
j

bij,

bij ≥ cij ≥ −bij,

cij = tr
[
(CCl. − C)Ti(~xj)

]
. (C.39)

Combining this with the outer minimisation, we finally have that M(C) is half of the
solution of

minimise: a

subject to: a ≥ si,

si =
∑
j

bij,

bij ≥ cij ≥ −bij,

cij = tr
[
(CCl. − C)Ti(~xj)

]
,

CCl. =
∑

yK ,...,y1

PK(~y)PyK ⊗ · · · ⊗ Py1 ,

PK(~y) joint probability distribution, (C.40)

which is a linear program.
In order to simplify the numerical implementation and the derivation of the dual

program, we will also order the vectors ~y (arbitrarily), identify pk with PK(~y(k)), and
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define αijk

tr
[
CCl.Ti(~xj)

]
=
∑
k

pkαijk (C.41)

for all pk, i.e.,

αijk = tr
[
PyK(k) ⊗ · · · ⊗ Py1(k)Ti(~xj)

]
(C.42)

for the sequence yK(k), ..., y1(k) corresponding to ~y(k). In addition, we define

βij = tr [CTi (~xj)] , (C.43)

which allows us to write

cij =tr
[
(CCl. − C)Ti(~xj)

]
=
∑
k

pkαijk − βij. (C.44)

Then, the above optimisation problem is equivalent to

minimise: a

subject to:
∑
j

bij − a ≤ 0,

∑
k

pkαijk − βij − bij ≤ 0,

−
∑
k

pkαijk + βij − bij ≤ 0,
∑
k

pk − 1 = 0,

pk, a, bij ≥ 0. (C.45)

The Lagrangian corresponding to this problem is

L(a,pk, bij, Xi, Yij, Zij,W )

=a
[
1−

∑
i

Xi

]
+
∑
ij

bij [Xi − Yij − Zij]

+
∑
k

pk

∑
ij

αijk (Yij − Zij)−W


+W +
∑
ij

βij (Zij − Yij) (C.46)

and the dual function explicitly written

q(Xi,Yij, Zij,W )

= inf
pk≥0,a,bij

L(a, pk, bij, Xi, Yij, Zij,W ), (C.47)
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where we used that a, bij ≥ 0 is implicit in the remaining conditions. The dual problem is
then given by

maximise: W +
∑
ij

βij(Zij − Yij)

subject to:
∑
i

Xi = 1,

Xi − Yij − Zij = 0 ∀ ij,∑
ij

αijk (Yij − Zij)−W ≥ 0 ∀ k,

Xi, Yij, Zij ≥ 0,

W ∈ R, (C.48)

which can straightforwardly be reformulated as

maximise: Ω

subject to: Ω ≤
∑
ij

(αijk − βij) (2Yij −Xi) ∀ k,

∑
i

Xi = 1,

Xi, Yij, Xi − Yij ≥ 0,

Ω ∈ R. (C.49)

Evidently, the above considerations are amenable to many extensions but that is the
matter of future work.

C.6 Non-Discord-Creating Maps

Here, for comprehensiveness, we characterise the set of maps Γ : B(Hi
s ⊗ Hi

e) →
B(Ho

s ⊗Ho
e) that map discord-zero states to discord-zero states, where we mean discord-

zero with respect to the classical basis. Such system-environment maps form a subset of
the Non-Discord-Generating-and-Detecting (NDGD) maps of Definition 3.3 [in the sense
that a set of them would satisfy Eq. (3.69)] and would thus lead to classical statistics
on the level of the system. However, for classical statistics, it is not necessary that the
underlying maps do not create discord.

To facilitate notation, throughout this Appendix, we will denote discord-zero states
as DØ states, and maps that do not create discord as DØ maps. We have the following
lemma:
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Lemma C.1 (Structure of DØ maps). The Choi state G of a DØ map Γ : B(Hi
s⊗Hi

e)→
B(Ho

s ⊗Ho
e) is of the form

G =
ds∑

k,j=1
pk|jΠo

k ⊗ Πi
j ⊗Ooi

jk +G⊥ , (C.50)

where {Πi/o
l } are orthogonal rank-1 projectors on Hi/o

s that are diagonal in the computa-
tional basis, Ooi

jk ∈ B(Ho
e ⊗Hi

e) is the Choi state of a CPTP map Ωjk : B(Hi
e)→ B(Ho

e),
pk|j is a conditional probability distribution, i.e., ∑k pk|j = 1 and pk|j ≥ 0, and G⊥ ∈
B(Ho

s ⊗Ho
e ⊗Hi

s ⊗Hi
e) is orthogonal to the set of DØ states, i.e., tr[(1⊗ ρ)G⊥] = 0 for

all DØ states ρ ∈ B(Hi
s ⊗Hi

e).

Before we prove this lemma, we emphasise its structural relation to the representation
of any Maximally Incoherent Operation (MIO), i.e., the structure of maps F : B(Hi

s)→
B(Ho

s) that map incoherent states ρ ∈ Ξ ⊂ B(Hi
s) onto incoherent states ρ′ = F [ρ] ∈ Ξ ⊂

B(Ho
s), where Ξ denotes the set of incoherent states with respect to the computational

basis. The Choi state F of the map F is a positive element of B(Ho
s ⊗Hi

s). Choosing a
basis {τ o

k}
d2
s
k=1 and {ωi

j}
d2
s
j=1 for B(Ho

s) and B(Hi
s), respectively, any F can be written as

F =
∑
j,k

fjk τ
o
k ⊗ ωi

j , (C.51)

where fjk ∈ R. We can choose the basis {ωi
j} to consist of the ds rank-1 projectors

Πi
j in the computational basis and ds(ds − 1) elements Π̃i

s that are orthogonal to these
projectors, i.e., such that tr(Πi

jΠ̃i
s) = 0 (e.g., one could choose the off-diagonal elements

|m〉〈n| + |n〉〈m| and i(|m〉〈n| − |n〉〈m|)). With this choice of basis elements Eq. (C.51)
reads

F =
∑
j,k

fkj τ
o
k ⊗ Πi

j +
∑
r,s

f̃rs τ
o
r ⊗ Π̃i

s . (C.52)

Imposing the requirement that F does not create coherences with respect to the classical
basis then yields

F =
∑
j,k

pk|j Πo
k ⊗ Πi

j +
∑
r,s

f̃rs τ
o
r ⊗ Π̃i

s , (C.53)

where pk|j ≥ 0, ∑k pk|j = 1, and τ o
r ∈ B(Ho

s). Indeed, an F of the form of Eq. (C.53)
yields an incoherent output state for any incoherent input state ρcl = ∑ds

r=1 qrΠi
r ∈ Ξ:

F [ρcl] = tri

[(
1

o ⊗ ρT
cl

)
F
]

=
∑
kr

pk|rqrΠo
k . (C.54)

Importantly, Eq. (C.53) constitutes a decomposition of the form F = F ‖ + F⊥, where
F ‖ = ∑

j,k pk|j Πo
k ⊗ Πi

j encapsulates the action of F on incoherent states, and F⊥ is such
that all incoherent states lie in its kernel, i.e., tr(ρF⊥) = 0 for all ρ ∈ Ξ. The fact that
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F⊥ does not have to vanish in order for F to be an MIO demonstrates in a transparent
way the (well-known) fact that there are MIOs that necessitate coherent resources for
their implementation [184–186].

As emphasised throughout the main body of this paper, DØ states reduce to incoherent
ones when the environment is trivial. Consequently, DØ maps are the natural extension
of MIOs, and the proof of Lemma C.1 follows similar logic to the above proof for the
structural properties of MIOs:

Proof. Employing the reasoning that led to Eq. (C.53), any DØ map Γ has a Choi state
G of the form

G =
∑
kjµν

gkµjν τ
o
k ⊗ Πi

j ⊗Noi
µν +

∑
rsµν

g̃rµsν τ
o
r ⊗ Π̃i

s ⊗Noi
µν , (C.55)

where gkµjν , g̃rµsν ∈ R and {Noi
µν}

d2
e
µ,ν=1 is a basis of B(Ho

e ⊗Hi
e). As for the case of MIOs,

Eq. (C.55) constitutes a decomposition G = G‖ +G⊥, where G⊥ is orthogonal to the set
of DØ states. Consequently, the action of Γ on any DØ state is entirely encapsulated
in G‖ and it remains to show that this term is of the form given in the lemma. To this
end, we note that a map Γ is DØ iff it maps any state of the form Πi

` ⊗ ηi
` to a DØ state.

Letting Γ act on such a product state, we obtain

Γ[Πi
` ⊗ ηi

` ] = tri

{[
1

o ⊗
(
Πi
` ⊗ ηi

`

)T
]
G‖
}

=
∑
kµν

gkµ`ν τ
o
k ⊗ tri

[(
1

o ⊗ ηiT
`

)
Noi
µν

]
(C.56)

!=
∑
r

pr|` Πo
t ⊗ ξo

r|` , (C.57)

where ∑r pr|` = 1 and pr|` ≥ 0, and ξo
r ∈ B(Ho

e) are states of the environment. The last
line of Eq. (C.57) stems from the requirement that Γ is a DØ map, and the remaining
open index ` signifies that the resulting output state depends on the input state Πi

` ⊗ ηi
` .

In the same way as above, we can choose the basis {τ o
k} to consist of projectors {Πo

k}
onto the computational basis and elements that are orthogonal to these projectors. Then,
comparing Eqs. (C.56) and (C.57), we see that all of the terms of G‖ where τ o

k is not a
projector onto the computational basis must vanish. Finally, the terms Noi

µν have to be such
that tri

[(
1⊗ ηiT

l

)∑
µν gkµlνN

oi
µν

]
yields the correct output state pk|`ξo

k|`. Consequently,∑
µν gkµlνN

oi
µν can be chosen to be (up to normalisation pk|`) the Choi state Ooi

k` of a CPTP
map. Putting these observations together yields Eq. (C.50).
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C.7 Proof that Non-Discord-Generating-and-Detecting
(NDGD) Dynamics ⇒ Classical Process

For the proof of Theorem 3.4, we employ the fact that the completely dephasing map
has no influence on the outcomes of a measurement in the computational basis, i.e.,

Pxj = ∆j ◦ Pxj = Pxj ◦∆j ∀ xj . (C.58)

The probability Pk(xk, . . . , x1) to measure outcomes {xk, . . . , x1} at times {tk, . . . , t1} is
given by [see Eq. (3.67)]

tr{(Pxk⊗Ie) ◦ · · · ◦ Γt2,t1 ◦ (Px1 ⊗ Ie)[ηset1 ]} , (C.59)

where {Γtj ,tj−1} are system-environment CPTP maps and ηset1 is the system-environment
state at time t1. Summing this probability distribution over the outcomes at time tj
amounts to replacing Pxj in (C.59) by ∆j. Zooming in on the relevant time (and leaving
the Ie implicit), we see that

Pxj+1 ◦ Γtj+1,tj ◦∆j ◦ Γtj ,tj−1 ◦ Pxj−1

= Pxj+1 ◦∆j+1 ◦ Γtj+1,tj ◦∆j ◦ Γtj ,tj−1 ◦∆j−1 ◦ Pxj−1

= Pxj+1 ◦ Γtj+1,tj ◦ Ij ◦ Γtj ,tj−1 ◦ Pxj−1 , (C.60)

where we have used Eq. (C.58) in the first line, and both the fact that the dynamics is
NDGD and Eq. (C.58) in the second line. As Eq. (C.60) holds for arbitrary times tj, it
implies that for NDGD dynamics, the completely dephasing map cannot be distinguished
from the identity map when the process is probed by measurements in the computational
basis, which implies that the Kolmogorov condition holds for any joint probabilities with
at least 3 different times. For the 2-time joint probabilities, we can exploit, along with
the NDGD property, the fact that the initial state is zero-discord. We have

∑
x1

P2(x2, x1) = tr{Px2 ◦ Γt2,t1 ◦∆1 ◦ Γt1,t0 [ηset0 ]}

= tr{Px2 ◦∆2 ◦ Γt2,t1 ◦∆1 ◦ Γt1,t0 [ηset0 ]}

= tr{Px2 ◦∆2 ◦ Γt2,t1 ◦∆1 ◦ Γt1,t0 ◦∆0[ηset0 ]}

= tr{Px2 ◦ Γt2,t0 [ηset0 ]} = P1(x2), (C.61)

where we used Eq. (C.59) and ∑x1 Px1 = ∆1 in the first line, Eq. (C.58) in the second
line, the invariance of the initial zero-discord state with respect to ∆0 in the third line,
and finally the definition of NDGD dynamics, Eq. (C.58), and the invariance of ηset0 in the
fourth line. Consequently, the resulting statistics satisfy all of the Kolmogorov conditions
and are thus classical.
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C.8 Classicality ��⇒ Non-Discord-Generating-and-Detecting
(NDGD) Dynamics

Here, we provide an example of dynamics that are not NDGD, yet lead to classical
dynamics, thus demonstrating that it is not necessary for a dynamics to be NDGD in order
for it to appear classical. We consider the following situation (see Fig. C.4 for a graphical
representation): Let the system of interest be a qubit that is initially in state |0〉 and let
the initial environment be in a plus state, i.e., τ et0 = 1√

2(|0〉+ |1〉)). The first evolution
Γt1,t0 from t0 to t1 is a Controlled-NOT (CNOT) gate, such that the system-environment
state at t1 is a maximally entangled state. The second evolution Γt2,t1 from t1 to t2 is
such that it yields a system-environment state 1s

2 ⊗ |0〉〈0| if the se
′ input state is ϕ+

se′ , and
1s

2 ⊗ |1〉〈1| otherwise. Consequently, when the completely dephasing map is applied at t1,
the system-environment state at t2 is 1s

2 ⊗
1e

2 , while it is equal to 1s

2 ⊗ |0〉〈0| if the identity
map was implemented, and as such, the dynamics is not NDGD. However, the system
state is always maximally mixed, independent of whether ∆1 or I1 was implemented at
time t1. To make the example non-trivial, we add a third free dynamics Γt3,t2 from t2 to
t3. We choose Γt3,t2 such that it induces a unital dynamics on the level of the system,
independent of the environment state at t2. This happens, e.g., when the corresponding
system-environment Hamiltonian is of product form, i.e., Hse = Hs ⊗He, independent of
the explicit form of the respective terms [286]. With this final dynamics, the system state
at each of the times t1, t2, and t3 is maximally mixed, and the resulting statistics satisfy
Kolmogorov conditions, i.e., they are classical.

Figure C.4: Non-NDGD Dynamics that leads to Classical Statistics. The first map Γt1,t0 (blue
transparent box) performs a CNOT gate on the system and the environment. The subsequent CPTP
map Γt2,t1 maps ϕ+ and 1

4 onto two different system-environment states with the same reduced system
state ρt3 = 1

2 . The final CPTP map Γt3,t2 is such that it induces a unital dynamics on the system.
Consequently, the system state at t1, t2, and t3 is maximally mixed independent of whether the completely
dephasing, or the identity map was implemented at t1 and t2.
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C.9 Example of a Genuinely Quantum Process

Consider the following process, depicted in Fig. C.5, which is a variation on that
presented in Section 3.7. The process begins with a two-qubit system-environment
state in the Bell pair ϕ+

se, the system part of which the experimenter has access to
measure at t1. Following this, the process “performs” the CPTP system-environment map
Γsezz : B(Hsi⊗Hei)→ B(Hso⊗Heo⊗Hzo), whose action is as follows: It measures its joint
inputs in the Bell basis and if the measurement outcome corresponds to ϕ+

se, it outputs a
ϕ+
se system-environment state as well as a classical flag state |0〉z; on the other hand, if

the measurement outcome does not correspond to ϕ+
se, it outputs a system-environment

state whose system part is a pure state in the z-basis, and sets the flag state to |1〉z to
indicate that the system state has been biased in the z-basis. The action of the map is
thus as follows:

Γsezz [ηse] = tr[ϕ+
seηse]ϕ+

se ⊗ |0〉〈0|z + tr[(1se − ϕ+
se)ηse]|0〉〈0|s ⊗ τe ⊗ |1〉〈1|z. (C.62)

For this map (and all that follow in this example), the output state of the environment
when the ϕ+

se outcome is not recorded is irrelevant for our argument; as such, we simply
write a generic quantum state τe.

Following this part of the dynamics, the experimenter has access to measure the system
at time t2. The subsequent dynamics of the process is controlled on the state of the
classical z flag: If it is in the state |0〉z, the system-environment is subject to a similar
dynamics as before, Γseyy : B(Hsi ⊗Hei)→ B(Hso ⊗Heo ⊗Hyo); however, this time if the
Bell basis measurement outcome does not correspond to ϕ+

se, the system is biased in the
y-basis, e.g., set to the −1 eigenstate of σ(y), |−(y)〉 := 1√

2(|0〉− i|1〉), with a classical y flag
set to the state |1〉y and sent forward. If, on the other hand, the z flag is in the state |1〉z,
the system-environment undergoes trivial dynamics (i.e., is subject to the identity map)
and the y flag is set to |0〉y. In either case, the previous z flag state is also sent forward
unperturbed. Thus, between t2 and t3, the system-environment evolves conditionally
according to

z = 0 :

Γseyy [ηse] = tr[ϕ+
seηse]ϕ+

se ⊗ |0〉〈0|y + tr[(1se − ϕ+
se)ηse]|−(y)〉〈−(y)|s ⊗ τe ⊗ |1〉〈1|y

z = 1 :

Ise[ηse]⊗ |0〉〈0|y. (C.63)

Following this, the experimenter has access to the system at t3.
The final portion of the dynamics between t3 and t4 follows a similar construction to

above, but the implementation of the map Γsexx : B(Hsi ⊗ Hei) → B(Hso ⊗ Heo ⊗ Hxo)
is controlled on the joint state of the z and y classical flags. If zy = 00, the system-
environment is measured in the Bell basis: If the measurement outcome does not correspond
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t1 t2

ϕ+
se ηsez2 ηsezy3 ηsezyx4

z y x

Π4

t3 t4

Γsez
z Γsey

y Γsex
x

{I1,M1} {I2,M2} {I3,M3}

Figure C.5: Genuinely Quantum Process. The system-environment begin in a maximally en-
tangled Bell state ϕ+

se. As described in the text, the process dynamics consists of a sequence of maps,
Γsezz ,Γseyy ,Γsexx , that either output ϕ+

se or else bias the system in either the z-, y- or x-basis respectively
[see Eqs. (C.62) – (C.64)]. The overall implementation of each of these maps is controlled on the joint
state of all previous classical flag states z, y, x, which encode whether or not the system has already
been biased. We show that this process is genuinely quantum by tracking the system-environment
state throughout the dynamics, conditioned on whether the identity map I or an arbitrary CPTP
map Mi was implemented at time ti; the labels ηsez2 , ηsezy3 and ηsezyz4 refer to the overall joint state
immediately prior to the interrogation at the relevant time [see Eqs. (C.65), (C.67), (C.69), (C.70), (C.72)
and (C.73)]. In particular, we show that there does not exist a non-pathological Positive Operator-Valued
Measure (POVM) Π4 that an experimenter can implement at t4 such that the four sequences {I1, I2, I3},
{M1, I2, I3}, {I1,M2, I3} and {I1, I2,M3} cannot be distinguished, thereby proving that the process
is genuinely quantum.

to ϕ+, the system is biased in the x-basis, e.g., set to the −1 eigenstate of σ(x), |−(x)〉 :=
1√
2(|0〉 − |1〉), with a classical x flag set to the state |1〉x and sent forward. If, on the other

hand, zy 6= 00, the system-environment undergoes trivial dynamics (i.e., is subject to the
identity map) and the x flag is set to |0〉x. Mathematically, the controlled dynamics is
described as

zy = 00 :

Γsexx [ηse] = tr[ϕ+
seηse]ϕ+

se ⊗ |0〉〈0|x + tr[(1se − ϕ+
se)ηse]|−(x)〉〈−(x)|s ⊗ τe ⊗ |1〉〈1|x

zy = 10, 01 :

Ise[ηse]⊗ |0〉〈0|x. (C.64)

Note that the flag state zy = 11 cannot occur. Finally, the environment and all flag states
are discarded and the experimenter has access to the system at t4, concluding the process.

We now show that there exist no unrestricted measurement scheme for this process
such that the statistics observed are classical, i.e., we prove that the process is genuinely
quantum. As in the main text, we do this by considering the state of the system to be
measured at the final time t4 conditioned on a history of identity maps and arbitrary
CPTP maps {M1,M2,M3} implemented at various sets of earlier times. In each case, by
demanding classicality we end up with a different constraint on the structure of the POVM
at the final time, and the only valid POVMs that simultaneously satisfy all conditions
are the pathological ones that do not reveal anything about the process. The conclusion
is that any non-pathological POVM at t4 will be able to distinguish between previous
implementations of the identity map or an arbitrary non-pathological instrument at a
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given time, therefore picking up on the invasiveness of (at least some of) the previous
interrogations and leading to non-classical statistics.

Consider first the scenario where the experimenter implements identity maps at the first
three times, I1, I2, I3. In this case, the overall state immediately prior to the measurement
at t4 is

ηsezyx4 (I1, I2, I3) = ϕ+
se ⊗ |000〉〈000|zyx. (C.65)

The reduced system state is then maximally mixed:

ηs4(I1, I2, I3) = 1

2 . (C.66)

Next, consider the case where the experimenter implements the identity map at the
first two times, I1, I2, followed by an arbitrary CPTP mapM3 6= I3 at t3. The system-
environment joint state immediately prior to t3 is ϕ+

se, since the previous identity maps
on the system and the dynamics Γsezz ,Γseyy leading up to t3 preserve the initial state;
moreover, the zy flag is in the joint state 00, since both previous Bell basis measurements
are necessarily successful. Now, the system-local CPTP mapM3 6= I3 will perturb the
joint system-environment state, and so the map Γsexx (which is implemented due to the
joint state of the input flags) only successfully records the outcome corresponding to ϕ+

se

with some probability r = tr[ϕ+
se(Ms

3 ⊗ Ie)[ϕ+
se]] < 1; otherwise, the system is biased in

the x-basis. The total joint state immediately prior to t4 in this scenario is then

ηsezyx4 (I1, I2,M3)=rϕ+
se⊗|000〉〈000|zyx+(1−r)|−(x)〉〈−(x)|s⊗τe⊗|001〉〈001|zyx. (C.67)

The reduced system state is thus biased in the x-basis:

ηs4(I1, I2,M3) = r

21+ (1− r)|−(x)〉〈−(x)|. (C.68)

Next, consider the case where the experimenter implements the identity map at the
first and third time, I1, I3, with an arbitrary CPTP map M2 6= I2 implemented in
between at time t2. The system-environment joint state immediately prior to t2 is ϕ+

se,
since the previous identity map on the system and the dynamics Γsezz prior to t2 again
preserve the initial state; moreover, the z flag is in the state 0, since the earlier Bell basis
measurement is necessarily successful. Again, the system-local CPTP mapM2 6= I2 will
perturb the joint system-environment state, and so the map Γseyy (which is implemented
due to the state of the input flag) only successfully records the outcome corresponding to
ϕ+
se with some probability q = tr[ϕ+

se(Ms
2 ⊗ Ie)[ϕ+

se]] < 1; otherwise, the system is biased
in the y-basis. The total joint state immediately prior to t3 in this scenario is then

ηsezy3 (I1,M2) = qϕ+
se ⊗ |00〉〈00|zy + (1− q)|−(y)〉〈−(y)|s ⊗ τe ⊗ |01〉〈01|zy. (C.69)

In this case, the experimenter then implements the identity map to the system at t3,
which leaves the overall state invariant. The subsequent system-environment dynamics
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Γsexx will be enacted when zy = 00, i.e., with probability q: In each such run, the system-
environment state is guaranteed to be in the state ϕ+

se, thus the system-environment state
output by Γsexx will be also. In the other cases, when zy 6= 00, the subsequent dynamics
will be trivial. Thus, the total joint state immediately prior to t4 in this scenario is

ηsezyx4 (I1,M2, I3)=qϕ+
se⊗|000〉〈000|zyx+(1−q)|−(y)〉〈−(y)|s⊗τe⊗|010〉〈010|zyx. (C.70)

The final reduced system state is thus biased in the y-basis:

ηs4(I1,M2, I3) = q

21+ (1− q)|−(y)〉〈−(y)|. (C.71)

Lastly, consider the scenario where the experimenter first implements an arbitrary
CPTP mapM1 6= I1 at t1, followed by identity maps at the second and third time, I2, I3.
Just as in the main text,M1 6= I1 will perturb the initial system-environment state and
so the map Γsezz will only successfully record the outcome corresponding to ϕ+

se with some
probability p = tr[ϕ+

se(Ms
1 ⊗ Ie)[ϕ+

se]] < 1; otherwise, the system will be biased in the
z-basis. The total joint state immediately prior to t2 in this scenario is then

ηsez2 (M1) = pϕ+
se ⊗ |0〉〈0|z + (1− p)|0〉〈0|s ⊗ τe ⊗ |1〉〈1|z. (C.72)

The identity map implemented by the experimenter on the system at t2 does not change
this state. Thus, Γseyy will subsequently be enacted with probability p, i.e., when z = 0:
In such cases, the system-environment is in the state ϕ+

se and the output of the map Γseyy
will be so also, accompanied by the classical y flag with the value 0. In the other cases,
the system-environment undergoes trivial dynamics. Again, at t3 implementation of the
identity map on the system leaves the joint state unperturbed. Only when the joint state
of zy is 00 will the map Γsexx be implemented: In each such run, the system-environment
is guaranteed to be in the state ϕ+

se, and thus so too will be the output of the map. In the
other cases, trivial dynamics ensues. The overall joint state in this scenario immediately
prior to t4 is then

ηsezyx4 (M1, I2, I3)=pϕ+
se⊗|000〉〈000|zyx+(1−p)|0〉〈0|s⊗τe⊗|100〉〈100|zyx, (C.73)

and so the reduced system state is biased in the z-basis:

ηs4(M1, I2, I3) = p

21+ (1− p)|0〉〈0|. (C.74)

We are now in a position to prove the claim that we set out to, namely that the process
considered is genuinely quantum. Demanding classicality means that the experimenter
cannot distinguish whether an identity map or a dephasing map was implemented at any
subset of previous times: To allow for arbitrary and possibly unrestricted interrogation
schemes, here we have considered the more general case where the experimenter is allowed
to implement arbitrary CPTP maps, of which any POVM measurement followed by an
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arbitrary preparation is a special case. This more general notion of classicality (with respect
to a general, possibly unrestricted, interrogation scheme) means that the experimenter
cannot distinguish between the implementation of the identity map or the CPTP map at
any subset of previous times and thereby provides a valid notion of a genuinely quantum
process. Above, in Eqs. (C.68), (C.71) and (C.74), we have calculated the system state
that would be measured at t4 conditioned on the fact that a CPTP map was implemented
at each one of the previous three times [as well as the case where only a sequence of
identity maps was implemented in Eq. (C.66)]. Intuitively, in each of the three cases,
the system is biased in one of the x-, y- or z-basis directions, and in the case where the
experimenter interacts only trivially with the system, it is completely unbiased. The only
way that a measurement at t4 cannot distinguish between these four scenarios is if it is
blind to biases in every basis. The only types of POVM that can achieve this are trivial,
with all elements proportional to the identity matrix, {Π(x4)

4 } ∝ 1 ∀ x4. Thus, there is
no (non-trivial) measurement scheme for this process such that the full statistics appears
classical, and thus it is a genuinely quantum process.
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APPENDIX D
Supplemental Information for

Chapter 5

D.1 Classical Processes

D.1.1 Memoryless Classical Processes and Markovian Statistics

Here, we prove Observation 1 of the main text:

Observation 1. In the classical setting, memoryless processes are equivalent to Markovian
statistics.

Naturally, this equivalence is well-known, but its explicit discussion exposes many of
the subtleties with respect to marginalisation that play a crucial role in the quantum case.
For the proof, in the forwards direction, beginning with Eq. (5.2), we have

P(xn, . . . , x1) = 〈xn|Sn:n−1|xn−1〉〈xn−1| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1 , (D.1)

where {Sj:j−1} and p1 are, respectively, the stochastic matrices and the initial probability
vector that define the memoryless classical process. Computing the conditional probability
for an arbitrary time tj given the entire sequence of historic outcomes up until that time
explicitly gives

P(xj|xj−1, . . . , x1) = 〈xj|Sj:j−1|xj−1〉〈xj−1|Sj−1:j−2|xj−2〉〈xj−2| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1
〈xj−1|Sj−1:j−2|xj−2〉〈xj−2| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1

= 〈xj|Sj:j−1|xj−1〉 ∀xj−2, . . . , x1. (D.2)

This expression is independent of all x1, . . . , xj−2 and it is indeed equivalent to the the
conditional probability P(xj|xj−1) an experimenter would observe when only making
measurements at tj−1 and tj, i.e., they do not measure (which we denote below by
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Ij−2:1). Unlike in quantum mechanics, this conditional probability can be expressed by
marginalising the full joint probability distribution [see Eq. (5.4)] as follows

P(xj|xj−1) = P(xj, xj−1, Ij−2:1)
P(xj−1, Ij−2:1)

=
∑
xj−2,...,x1 P(xj, xj−1, xj−2, . . . , x1)∑
xj−2,...,x1 P(xj−1, xj−2, . . . , x1)

=
∑
xj−2,...,x1〈xj|Sj:j−1|xj−1〉〈xj−1|Sj−1:j−2|xj−2〉〈xj−2| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1|x0〉∑

xj−2,...,x1〈xj−1|Sj−1:j−2|xj−2〉〈xj−2| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1|x0〉

= 〈xj|Sj:j−1|xj−1〉. (D.3)

Thus we have that for a memoryless process, the conditional probabilitiesP(xj|xj−1, . . . , x1)
and P(xj|xj−1) coincide (and amount to 〈xj|Sj:j−1|xj−1〉), leading to Markovianity of the
statistics and consequently the decomposition of the joint probability distribution expressed
in Eq. (5.3).

Conversely, any Markovian statistics can be faithfully reproduced via a memoryless
classical model: Given any joint probability distribution over measurement outcomes for
a classical stochastic process, one can always write

P(xn, . . . , x1) = P(xn|xn−1, . . . , x1)P(xn−1|xn−2, . . . , x1) . . . P(x2|x1)P(x1). (D.4)

Equation (D.4) holds true for any probability distribution (by definition of conditional
probabilities), with the decomposition on the r.h.s. encoding potential memory effects.
For Markovian statistics, the above expression simplifies to Eq. (5.3). Then, one can
simply define a set of matrices {Sj:j−1} via

〈xj|Sj:j−1|xj−1〉 := P(xj|xj−1). (D.5)

These matrices are stochastic (as they contain only non-negative entries and each of the
columns to unity since ∑xj P(xj|xj−1) = 1∀xj−1). One can also define the initial state
via 〈x1|p1 := P(x1). From these objects, one can reproduce the joint statistics faithfully
via the memoryless dynamical model expressed in Eq. (5.2).

D.1.2 Sub-Statistics of Memoryless Classical Processes

Here, we prove Corollary 5.1 of the main text:

Corollary 5.1. All sub-statistics of a memoryless classical process are Markovian and
the corresponding conditional probabilities are mutually compatible.

For the proof, consider a memoryless process on Tn = {t1, . . . , tn} and an arbitrary
sub-statistics where the experimenter measures at time tj and any subset of earlier times
Γ(i) (with corresponding sequence of outcomes xΓ(i)), where tj > ti = max(Γ(i)). Below,

290



Appendix D

we both assume that Γ(i) does not “skip times” (e.g., it can be of the form {t3, t2, t1}, but
not {t3, t1}) and that min(Γ(i)) = t1. These assumptions are not crucial and do not affect
the generality of the results, but significantly simplifies notation. We denote by M the
set of all times between ti and tj and by F that of all times after tj, with corresponding
outcome sequences xM and xF and do-nothing operations IM and IF , respectively. For
convenience, we also introduce the do-nothing operation IFjM for all times after ti. With
this, we explicitly calculate the probability of observing xj conditioned on the sequence of
previous outcomes xΓ(i) as

P(xj|xΓ(i))

= P(IF , xj, IM , xi, . . . , x1)
P(IFjM , xi, . . . , x1)

=
∑

xFxM P(xn, . . . , x1)∑
xF xjxM P(xn, . . . , x1)

=
∑

xFxM P(xn|xn−1) . . .P(x2|x1)∑
xF xjxM P(xn|xn−1) . . .P(x2|x1)

=

[∑
xFP(xn|xn−1). . .P(xj+1|xj)

][∑
xMP(xj|xj−1). . .P(xi+1|xi)

]
{P(xi|xi−1). . .P(x2|x1)}[∑

xF xjxM P(xn|xn−1) . . .P(xi+1|xi)
]
{P(xi|xi−1) . . .P(x2|x1)}

=
∑
xM

P(xj|xj−1) . . .P(xi+1|xi) =: P(xj|xi), (D.6)

where in the second line we employed the marginalisation rule to compute the sub-statistics
from the full process on Tn, in the third line we invoked the Markovianity condition (on
the full statistics), in the fourth line we split the sums into independent parts, in the fifth
line we used the fact that the first sum in the numerator and the sum in the denominator
both evaluate to unity, and the final line only depends on xj and xi and satisfies the
properties of a conditional probability distribution. Thus we see that any sub-statistics of
a memoryless classical stochastic process are also Markovian, i.e., P(xj|xΓ(i)) = P(xj|xi)
for all tj > ti. As mentioned, this reasoning also holds for more “complicated” sets Γ(i),
albeit with a slightly more cumbersome notation than used in the proof above.

Moreover, the Markovian sub-statistics are compatible in the sense that it does not
matter what occurred at any time prior to that of the most recent conditioning argument,
i.e., ti. For instance, if one computes P(xj|xi, Ii−1:`+1, x`, I`−1:1), this should also be
independent of x` (i.e., Markovian sub-statistics) and equal to P(xj|xΓ(i)) = P(xj|xi)
computed above (i.e., compatible). This can be seen by noting that for any historic
sequence (of either measuring or not at any times t1, . . . , ti−1, which we denote with
(x ∪ I)i−1:1), the logic of Eq. (D.6) holds, since the only changes would appear in the
terms in curly parentheses in the fourth line, which always cancel. Hence, we have the
compatibility P(xj|xi, (x ∪ I)i−1:1) = P(xj|xi) for all possible combinations of measuring
or not in the history leading up to time ti. Again, this argument can be run in exactly the
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same vein for any two subsets of times Γ(i) and Γ(i)′ satisfying max(Γ(i)) = max(Γ(i)′) = ti,
with the result that P(xj|xΓ(i)) = P(xj|xΓ(i)′) = P(xj|xi) for all tj > ti.

D.2 Quantum Processes

D.2.1 Memoryless Quantum Processes and Markovian Statistics

Here, we prove Lemma 5.1 of the main text:

Lemma 5.1. Any memoryless quantum process leads to Markovian statistics (for sharp,
projective measurements).

Beginning with Eq. (5.6), we have that for any memoryless quantum process

P(xn, . . . , x1) = tr
[
P(xn)
n Λn:n−1 . . .Λ2:1P(x1)

1 ρ1
]
, (D.7)

where {Λj:j−1} are mutually independent Completely Positive and Trace Preserving
(CPTP) maps, ρ1 is an initial quantum state, and P(xj)

j [ • ] = |xj〉〈xj|• |xj〉〈xj|. The statist-
ics up to tj is given by P(In:j+1, xj, . . . , x1) =: P(xj, . . . , x1) = tr

[
P(xj)
j Λj:j−1 . . .Λ2:1P(x1)

1 ρ1
]

(this can be seen either by direct computation or by invoking causality), where In:j+1

denotes “do-nothing” operations from tj to tn. With this, computing the conditional
probability for an arbitrary time tj given the entire sequence of historic outcomes up until
that time explicitly gives

P(xj|xj−1, . . . , x1)

=
tr
[
P(xj)
j Λj:j−1 . . .Λ2:1P(x1)

1 ρ1
]

tr
[
P(xj−1)
j−1 Λj−1:j−2 . . .Λ2:1P(x1)

1 ρ1
]

=
tr
[∑

` |xj〉〈xj|L`j:j−1|xj−1〉〈xj−1|
(
Λj−1:j−2 . . .Λ2:1P(x1)

1 ρ1
)
|xj−1〉〈xj−1|L`†j:j−1|xj〉〈xj|

]
tr
[
|xj−1〉〈xj−1|

(
Λj−1:j−2 . . .Λ2:1P(x1)

1 ρ1
)
|xj−1〉〈xj−1|

]
=
∑
`〈xj|L`j:j−1|xj−1〉〈xj−1|L`†j:j−1|xj〉〈xj−1|

(
Λj−1:j−2 . . .Λ2:1P(x1)

1 ρ1
)
|xj−1〉

〈xj−1|
(
Λj−1:j−2 . . .Λ2:1P(x1)

1 ρ1
)
|xj−1〉

=
∑
`

〈xj|L`j:j−1|xj−1〉〈xj−1|L`†j:j−1|xj〉

= 〈xj|Λj:j−1[|xj−1〉〈xj−1|]|xj〉, (D.8)

where we wrote Λj:j−1[ • ] := ∑
` L

`
j:j−1 • L

`†
j:j−1 in Kraus operator form in the second

line, and then made use of the cyclicity of the trace and the fact that the measurements
are sharp (rank-1) projectors in the third line (importantly, if the projectors are not
rank-1, corresponding, e.g., to the measurement of an observable with degeneracies, then
memoryless processes do not necessarily lead to Markovian statistics [106, 131], since in
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this case the state after the measurement is not fully determined by the outcome; this
fact is also true in the classical setting). This expression is independent of all x1, . . . , xj−2

and therefore the conditional probabilities are Markovian. We now show that it is indeed
equivalent to the conditional probability P(xj|xj−1, Ij−2:1) =: P(xj|xj−1), where the
experimenter does not measure at all on times t1, . . . , tj−2. Explicitly, we have

P(xj|xj−1)

=
tr
[
P(xj)
j Λj:j−1P

(xj−1)
j−1 Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1

]
tr
[
P(xj−1)
j−1 Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1

]
=

tr
[∑

` |xj〉〈xj|L`j:j−1|xj−1〉〈xj−1| (Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1) |xj−1〉〈xj−1|L`†j:j−1|xj〉〈xj|
]

tr [|xj−1〉〈xj−1| (Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1) |xj−1〉〈xj−1|]

=
∑
`〈xj|L`j:j−1|xj−1〉〈xj−1|L`†j:j−1|xj〉〈xj−1| (Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1) |xj−1〉

〈xj−1| (Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1) |xj−1〉
=
∑
`

〈xj|L`j:j−1|xj−1〉〈xj−1|L`†j:j−1|xj〉

= 〈xj|Λj:j−1[|xj−1〉〈xj−1|]|xj〉. (D.9)

Thus, we see that the conditional statistics in both situations above coincide and are indeed
MarkovianP(xj|xj−1,. . ., x1)=P(xj|xj−1, Ij−2:1)=P(xj|xj−1)=〈xj|Λj:j−1[|xj−1〉〈xj−1|]|xj〉.

D.2.2 Sub-Statistics of Memoryless Quantum Processes

Here, we prove Lemma 5.2 from the main text:

Lemma 5.2. Any memoryless quantum process leads to Markovian sub-statistics (for
sharp, projective measurements) that are mutually compatible.

Similar to Appendix D.1.2, we will restrict the discussion again to subsets of Tn of
the form Γ(i) = {t1, . . . , ti} and show that P(xj|xΓ(i)) = P(xj|xi) holds for all tj > ti and
ti = max(Γ(i)). Let Ij−1:i+1 denote the “do-nothing” operation at all times between ti and
tj. With this, we obtain

P(xj|Ij−1:i+1,xΓ(i))

=
tr
[
P(xj)
j Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:iP(xi)

i Λi:i−1P(xi−1)
i−1 . . .P(x1)

1 ρ1
]

tr
[
P(xi)
i Λi:i−1P(xi−1)

i−1 . . .P(x1)
1 ρ1

]
= 〈xj|Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:i[|xi〉〈xi|]|xj〉〈xi|Λi:i−1P(xi−1)

i−1 . . .P(x1)
1 ρ1|xi〉

〈xi|Λi:i−1P(xi−1)
i−1 . . .P(x1)

1 ρ1|xi〉
= 〈xj|Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:i[|xi〉〈xi|]|xj〉 ∀ xi−1, . . . , x1. (D.10)
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In the case where no measurements are made until time ti, we similarly have

P(xj|Ij−1:i+1, xi, Ii−1:1)

=
tr
[
P(xj)
j Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:iP(xi)

i Λi:i−1Ii−1 . . . I1ρ1
]

tr
[
P(xi)
k Λi:i−1Ii−1 . . . I1ρ1

]
= 〈xj|Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:i[|xi〉〈xi|]|xj〉〈xi|Λi:i−1Ii−1 . . . I1ρ1|xi〉

〈xi|Λi:i−1Ii−1 . . . I1ρ1|xi〉
= 〈xj|Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:i[|xi〉〈xi|]|xj〉. (D.11)

Thus, we see that both conditional probabilities are equal and independent of all
measurement outcomes prior to ti i.e., we have

P(xj|Ij−1:i+1, xi, xi−1, . . . , x1) = P(xj|Ij−1:i+1, xi, Ii−1:1) =: P(xj|xi) (D.12)

and the sub-statistics are indeed Markovian. Regarding consistency, note that for any
combination of measuring or not in the times prior to ti, the only changes to the above
expressions occur in the numerator term that always cancels with the corresponding part
in the denominator, and so compatibility holds true, i.e., P(xj|Ij−1:i+1, xi, (x ∪ I)i−1:1) =
P(xj|xi) for all possible choices of (x ∪ I)i−1:1, i.e., all possible choices of measuring
or not at times {t1, . . . , ti−1} in the history. As for the classical case we demonstrated
in Appendix D.1.2, the argument above can be run in exactly the same way for more
“complicated” subsets Γ(i) ⊂ Tn, with the only difference that the notation becomes slightly
more cumbersome.

D.3 Hidden Quantum Memory and Incompatibility

D.3.1 Hidden Quantum Memory

Here we explicitly calculate all sub-statistics of the example used in Observation 2 and
show that, while the full statistics is Markovian, there are non-Markovian sub-statistics,
i.e., we uncover hidden quantum memory. This phenomenon acts as a witness to the
impossibility of a memoryless quantum process description by way of contradiction with
(the first part of) Lemma 5.2, which states that any memoryless process leads to Markovian
sub-statistics. The circuit corresponding to the process we discuss is shown in Fig. D.1,
where, for convenience, the states we explicitly calculate in the discussion below are
annotated.

We begin with the full statistics. The probability over measurement outcomes at time
t1 are set by the initial state of the process, i.e.,

P(x1) = tr [|x1〉〈x1|ρ1] , (D.13)

with the post-measurement (subnormalised) state ρ2(x1) = P(x1)|x1〉〈x1|; without loss of
generality, we choose ρ1 = 1

2 and thereby set P(x1 = 0) = P(x1 = 1) = 1
2 . The process

294



Appendix D

Figure D.1: Circuit with Hidden Quantum Memory / Incompatible Markovian Statistics.
For convenience, we reproduce the circuit provided in Fig. 5.2 in the main text. Additionally, to better
facilitate orientation, the states that are explicitly mentioned throughout the proof are marked in green,
i.e., the points in the circuit where the states ρ2, ρ

′
2, ρ3, ϕ3, . . . occur. For the proof of Observation 2, the

final Exclusive-OR (XOR) gate is not part of the circuit, but it is included in the proof of Observation 3.

then consists of a Hadamard gate, which rotates said post-measurement state (which is
diagonal in the σz-basis) to the σx-basis, and we have

ρ′2(x1) := Hρ2(x1)H =


1
2 |+〉〈+| for x1 = 0
1
2 |−〉〈−| for x1 = 1.

(D.14)

The experimenter then measures this state again in the computational (σz) basis, yielding
the joint two-time statistics

P(x2, x1) = 1
4 ∀ x2, x1. (D.15)

The state after the second measurement is independent of x1 and given by

ρ3(x2, x1) = 1
4 |x2〉〈x2| ∀ x2, x1. (D.16)

This state is then swapped with the environment, which is prepared in an arbitrary
fiducial state τ , which we set as the blank state |0〉. The joint system-environment state
ϕ3 immediately prior to the measurement at t3 is given by

ϕ3(x2, x1) = SWAP[ρ3(x2, x1)⊗ τ ] = τ ⊗ ρ3(x2, x1) = 1
4 |0〉〈0| ⊗ |x2〉〈x2|. (D.17)

The experimenter then measures the system at time t3, recording the probabilities

P(x3, x2, x1) =


1
4 for x3 = 0

0 for x3 = 1
∀ x2, x1. (D.18)

This distribution is Markovian, as we have the conditional probabilities

P(x3|x2, x1) =

1 for x3 = 0

0 for x3 = 1
∀ x2, x1, (D.19)
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which is independent of x1 [indeed, the statistics are “super”-Markovian as the conditional
probabilities are also independent of x2, so we have P(x3|x2, x1) = P(x3|x2) = P(x3)].
The system-environment state ϕ′3(x3, x2, x1) following the measurement at t3 is

ϕ′3(x3, x2, x1) = (P(x3)
3 ⊗ I)[ϕ3(x2, x1)] = 1

4 |0〉〈0| ⊗ |x2〉〈x2|, (D.20)

i.e., the measurement at t3 is non-invasive (note that the outcome x3 = 1 cannot occur).
Subsequently, a channel occurs that measures the environment in the σx-basis and feeds
forward |0〉 (|1〉) whenever the measurement outcome is + (−). The corresponding CPTP
map is given by Υ[ • ] = ∑

k Y
k • Y k† with Kraus operators Y 0 = |0〉〈+| and Y 1 = |1〉〈−|.

Since 〈±|x2〉 〈x2|±〉 = 1
2 ∀x2, this yields the system-environment state

ϕ4(x3, x2, x1) = (I ⊗Υ)[ϕ′3(x3, x2, x1)] = 1
8 |0〉〈0| ⊗ 1. (D.21)

After this, a Controlled-NOT (CNOT) gate on system and environment occurs (with the
environment qubit acting as control), leading to

ϕ′4(x3, x2, x1) = CNOT[ϕ4(x3, x2, x1)] = 1
161⊗ 1. (D.22)

The experimenter performs the final measurement at t4, recording the probabilities

P(x4, x3, x2, x1) =


1
8 for x3 = 0

0 for x3 = 1
∀ x4, x2, x1. (D.23)

This distribution is indeed Markovian, as the conditional probabilities are

P(x4|x3, x2, x1) =


1
2 for x3 = 0

0 for x3 = 1
∀ x4, x2, x1, (D.24)

[where we take the convention that conditioning on an event that cannot occur (i.e.,
x3 = 1) gives conditional probability 0]. Thus, the full joint statistics P(x4, x3, x2, x1) is
Markovian.

On the other hand, consider the situation in which the experimenter does not measure
at time t2, i.e., the sub-statistics P(x4, x3, I2, x1). Everything until Eq. (D.14) remains
the same, but without measurement at t2 we have the state

ρ3(I2, x1) = I2[ρ′2(x1)] = 1
2

|+〉〈+| for x1 = 0

|−〉〈−| for x1 = 1.
(D.25)

The system is then swapped with the environment, yielding the joint state

ϕ3(I2, x1) = SWAP[ρ3(I2, x1)⊗ τ ] = τ ⊗ ρ3(I2, x1) = 1
2

|0〉〈0| ⊗ |+〉〈+| for x1 = 0

|0〉〈0| ⊗ |−〉〈−| for x1 = 1.
(D.26)
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Measurement of the system at t3 leads to the joint statistics

P(x3, I2, x1) =


1
2 for x3 = 0

0 for x3 = 1
∀ x1. (D.27)

Thus, we have the conditional probabilities

P(x3|I2, x1) =

1 for x3 = 0

0 for x3 = 1
∀ x1. (D.28)

The system-environment state ϕ′3(x3, I2, x1) following the measurement at t3 is

ϕ′3(x3, I2, x1) = (P(x3)
3 ⊗ I)[ϕ3(I2, x1)] = 1

2

|0〉〈0| ⊗ |+〉〈+| for x1 = 0

|0〉〈0| ⊗ |−〉〈−| for x1 = 1.
(D.29)

After the map Υ on the environment, we have the system-environment state

ϕ′4(x3, I2, x1) = (I ⊗Υ)[ϕ′3(x3, I2, x1)] = 1
2

|0〉〈0| ⊗ |0〉〈0| for x1 = 0

|0〉〈0| ⊗ |1〉〈1| for x1 = 1

= 1
2 |0〉〈0| ⊗ |x1〉〈x1|. (D.30)

Upon application of the CNOT gate, the system-environment state is

ϕ′4(x3, I2, x1) = CNOT[ϕ4(x3, I2, x1)] = 1
2 |x1〉〈x1| ⊗ |x1〉〈x1|. (D.31)

The experimenter finally performs the measurement at t4, recording the statistics

P(x4, x3, I2, x1) =


1
2δx4x1 for x3 = 0

0 for x3 = 1.
(D.32)

This sub-statistics is, however, non-Markovian, since the conditional probability at time
t4 depends on x1. Explicitly, we have

P(x4|x3, I2, x1) = P(x4, x3, I2, x1)
P(x3, I2, x1) =

δx4x1 for x3 = 0

0 for x3 = 1
6= P(x4|x3). (D.33)

As we have discussed in the main text, such non-Markovian sub-statistics cannot arise
for a memoryless quantum process probed by sharp projective measurements (as is the
case in this example), and therefore we conclude that the statistics observed—although
Markovian on the whole—cannot be faithfully reproduced by a memoryless quantum
process.
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D.3.2 Incompatibility

Here we explicitly calculate all sub-statistics of the example used in Observation 3
and show that although they are all Markovian (i.e., unlike in Observation 2, there is no
explicit hidden quantum memory), they are nonetheless incompatible, therefore serving
to witness the impossibility of a memoryless quantum process description by way of
contradiction with (the second part of) Lemma 5.2.

The process is the same as above, with an additional Exclusive-OR (XOR): |00〉 7→
|0〉, |11〉 7→ |0〉, |01〉 7→ |1〉, |10〉 7→ |1〉. being performed on the final system-environment
state, so all the statistics computed until time t3 remain unchanged. In the case where
measurements are made at all times, we have [beginning at Eq. (D.22)]

ρ′5(x3, x2, x1) = XOR[ϕ′4(x3, x2, x1)] = 1
81. (D.34)

The system is then measured, leading to the same joint statistics as in the earlier example
[i.e., when measurements are made at each time, the XOR gate has no influence on the
statistics; see Eqs. (D.23) and (D.24)]

P(x4, x3, x2, x1) =


1
8 for x3 = 0

0 for x3 = 1
∀ x4, x2, x1. (D.35)

These statistics are indeed Markovian, as we have

P(x4|x3, x2, x1) =


1
2 for x3 = 0

0 for x3 = 1
∀ x4, x2, x1. (D.36)

In the case of the sub-statistics where no measurement is made at time t2, we have [starting
from Eq. (D.31)]

ρ′5(x3, I2, x1) = XOR[ϕ′4(x3, I2, x1)] = 1
2 |0〉〈0|, (D.37)

since the system-environment state before the XOR gate is perfectly classically correlated.
The measurement at t4 then yields the statistics

P(x4, x3, I2, x1) =


1
2 for x4 = 0, x3 = 0

0 for x4, x3 6= 0
∀ x1. (D.38)

In contrast to the previous example, these sub-statistics are also Markovian, since we have

P(x4|x3, I2, x1) =

1 for x4 = 0, x3 = 0

0 for x4, x3 6= 0
∀ x1. (D.39)

It is also straightforward to check that the only other relevant sub-statistics, namely
P(x4, I3, x2, x1) when the experimenter does not measure at time t3, is also Markovian
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[which can be deduced from the Markovianity of the full statistics P(x4, x3, x2, x1) and not-
ing that the measurement at t3 is non-invasive, so P(x4, I3, x2, x1) = ∑

x3 P(x4, x3, x2, x1)].
Thus, in this example, all sub-statistics are Markovian. However, noting the discrepancy

between Eqs. (D.36) and (D.39), we see that they are nonetheless incompatible: As we
showed in Lemma 5.2, any memoryless quantum process must lead to Markovian sub-
statistics that are also compatible, i.e., such that P(x4|x3, x2, x1) = P(x4|x3, I2, x1). As
this is not the case here, we see a contradiction with the possibility for a memoryless
description that faithfully reproduces the observed statistics.
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